For problems 1-14, determine whether the series converges or diverges. Justify your answer.

1) $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$
2) $\sum_{k=1}^{\infty} \frac{1}{2^{k}}$
3) $\sum_{k=1}^{\infty} \frac{1}{2 k}$
4) $\sum_{k=1}^{\infty} \frac{1}{(2 k)!}$
5) $\sum_{k=5}^{\infty} \frac{4}{k^{2}-4}$
6) $\sum_{k=5}^{\infty} \frac{4}{(k-4)^{2}}$
7) $\sum_{k=5}^{\infty} \frac{4}{k^{2}+4}$
8) $\sum_{k=0}^{\infty} e^{-k}$
9) $\sum_{k=1}^{\infty} e^{-\frac{1}{k}}$
10) $\sum_{k=1}^{\infty} k e^{-k^{2}}$
11) $\sum_{k=2}^{\infty} \frac{k}{\ln k}$
12) $\sum_{k=3}^{\infty} \frac{\ln k}{k}$
13) $\sum_{k=3}^{\infty} \frac{\sqrt{k}}{k^{2}+7}$
14) $\sum_{k=3}^{\infty} \frac{\sqrt{k}}{k^{2}-7}$
15) For which of the convergent series above can you find the sum? Go ahead and find those sums.

For problems 16-19, determine whether the series is absolutely convergent, conditionally convergent, or divergent. Justify your answer.
16) $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{(k+1)^{10}}$
17) $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{3 k-1}$
18) $\sum_{k=0}^{\infty} \frac{(-1)^{k}(k+1)!}{3^{k}}$
19) $\sum_{k=1}^{\infty} \frac{\cos k}{k^{2}}$

SOLUTIONS

1) Converges because it is a p-series with $p=2$. Or, if you prefer doing things the hard way, you can use the integral test.
2) Converges because it is geometric with $r=1 / 2$. Hard way: ratio test or integral test.
3) Diverges because it is the harmonic series times a constant. (Or a p-series with $p=1$ times a constant.) Hard way: integral test.

$$
\begin{aligned}
& \text { 4) } \frac{u_{k+1}}{u_{k}}=\frac{1}{[2(k+1)]!} \cdot \frac{(2 k)!}{1}=\frac{(2 k)!}{(2 k+2)(2 k+1)(2 k)!}=\frac{1}{(2 k+2)(2 k+1)} \\
& \lim _{k \rightarrow \infty} \frac{1}{(2 k+2)(2 k+1)}=0<1
\end{aligned}
$$

Converges by the ratio test.
5) This series is telescoping
$\frac{4}{(k+2)(k-2)}=\frac{A}{k+2}+\frac{B}{k-2}$
$4=A(k-2)+B(k+2)$
$k=2 \Rightarrow 4=4 B \Rightarrow B=1$
$k=-2 \Rightarrow 4=-4 A \Rightarrow A=-1$
$\sum_{k=5}^{\infty}\left(\frac{1}{k-2}-\frac{1}{k+2}\right)$
$s_{n}=\left(\frac{1}{3}-\frac{1}{7}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+\left(\frac{1}{5}-\frac{1}{9}\right)+\left(\frac{1}{6}-\frac{1}{10}\right)+\left(\frac{1}{7}-\frac{1}{11}\right)+\cdots+\left(\frac{1}{n-2}-\frac{1}{n+2}\right)+$
$\left(\frac{1}{n-1}-\frac{1}{n+3}\right)+\left(\frac{1}{n}-\frac{1}{n+4}\right)+\left(\frac{1}{n+1}-\frac{1}{n+5}\right)+\left(\frac{1}{n+2}-\frac{1}{n+6}\right)$
$s_{n}=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}-\frac{1}{n+3}-\frac{1}{n+4}-\frac{1}{n+5}-\frac{1}{n+6}$
$\lim _{n \rightarrow \infty} s_{n}=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=\frac{57}{60}$
Converges (You could have also done the integral test here, using partial fractions or the substitution $\mathrm{x}=2 \sec 2$ to antidifferentiate.)
6) Converges because it is a p-series with $p=2$ times a constant.

$$
\begin{aligned}
& \int_{5}^{\infty} \frac{4 d x}{x^{2}+4}=\lim _{b \rightarrow \infty} \int_{5}^{b} \frac{4 d x}{x^{2}+4}=\lim _{b \rightarrow \infty}\left[4 \cdot \frac{1}{2} \tan ^{-1} \frac{x}{2}\right]_{5}^{b}=\lim _{b \rightarrow \infty}\left[2 \tan ^{-1} \frac{b}{2}-2 \tan ^{-1} \frac{5}{2}\right] \\
& =2\left(\frac{\pi}{2}\right)-2 \tan ^{-1} \frac{5}{2}
\end{aligned}
$$

Converges by the integral test (Or you could have used the comparison test comparing it to $\sum_{k=5}^{\infty} \frac{4}{k^{2}}$ which is a p-series with $\mathrm{p}=2$, times a constant, with the first 4 terms deleted.)
8) Converges because it is geometric with $r=1 / \mathrm{e}$. Hard way: ratio test or integral test.
9) $\lim _{k \rightarrow \infty} e^{-\frac{1}{k}}=e^{0}=1 \neq 0 \quad$ Diverges by the divergence test.
10) $\frac{u_{k+1}}{u_{k}}=\frac{k+1}{e^{(k+1)^{2}}} \cdot \frac{e^{k^{2}}}{k}=\frac{(k+1) e^{k^{2}}}{k e^{k^{2}+2 k+1}}=\frac{(k+1) e^{k^{2}}}{k e^{k^{2}} \cdot e^{2 k+1}}=\frac{k+1}{k e^{2 k+1}}$
$\lim _{k \rightarrow \infty} \frac{k+1}{k e^{2 k+1}}=0<1$
Converges by the ratio test. (You could also have done the integral test here using the substitution $\mathrm{u}=-\mathrm{x}^{2}$.
11) $\lim _{k \rightarrow \infty} \frac{k}{\ln k}=\lim _{x \rightarrow \infty} \frac{x}{\ln x}=\lim _{x \rightarrow \infty} \frac{1}{\frac{1}{x}}=\lim _{x \rightarrow \infty} x=\infty \neq 0$

Diverges by the divergence test.

$$
\begin{aligned}
& f(x)=\frac{\ln x}{x} \\
& f^{\prime}(x)=\frac{x \cdot \frac{1}{x}-\ln x \cdot 1}{x^{2}}=\frac{1-\ln x}{x^{2}}<0 \quad \forall x \geq 3
\end{aligned}
$$

12)

So f is decreasing on $[3,4) . f$ is also continuous on the interval and has all positive terms.

$$
\int_{3}^{\infty} \frac{\ln x}{x} d x=\lim _{b \rightarrow \infty} \int_{3}^{b} \frac{\ln x}{x} d x=\lim _{b \rightarrow \infty}\left[\frac{1}{2}(\ln x)^{2}\right]_{3}^{b}=\lim _{b \rightarrow \infty}\left[\frac{1}{2}(\ln b)^{2}-\frac{1}{2}(\ln 3)^{2}\right]=+\infty
$$

Diverges by the integral test.
13) $\frac{\sqrt{k}}{k^{2}+7}<\frac{\sqrt{k}}{k^{2}}=\frac{1}{k^{\frac{3}{2}}}$
$\sum_{k=3}^{\infty} \frac{1}{k^{\frac{3}{2}}}$ converges because it is a p -series with $\mathrm{p}=1.5$, with the first 2 terms deleted.
$\sum_{k=3}^{\infty} \frac{\sqrt{k}}{k^{2}+7}$ converges by the comparison test.
14) $\frac{\sqrt{k}}{k^{2}-7}<\frac{\sqrt{k}}{k^{2}-\frac{1}{2} k^{2}}=\frac{\sqrt{k}}{\frac{1}{2} k^{2}}=\frac{2}{k^{\frac{3}{2}}} \quad \forall k \geq 4$
$\sum_{k=3}^{\infty} \frac{2}{k^{\frac{3}{2}}}$ converges because it is a p -series with $\mathrm{p}=1.5$, times a constant, with the first 2
terms deleted.
$\sum_{k=3}^{\infty} \frac{\sqrt{k}}{k^{2}-7}$ converges by the comparison test.
15) \#2 has a sum of $\frac{a}{1-r}=\frac{\frac{1}{2}}{1-\frac{1}{2}}=1$
\#5 has a sum of $\frac{57}{60}$
\#8 has a sum of $\frac{a}{1-r}=\frac{1}{1-\frac{1}{e}}=\frac{e}{e-1}$
16) $\sum_{k=1}^{\infty} \frac{1}{(k+1)^{10}}$ converges because it is a p -series with $\mathrm{p}=10$, with the first term deleted.

So $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{(k+1)^{10}}$ is absolutely convergent.
17) $\lim _{k \rightarrow \infty} \frac{(-1)^{k+1}}{3 k-1}=0$ and $\frac{1}{2}>\frac{1}{5}>\frac{1}{8}>\ldots$ so it converges by the alternating series test.
$\int_{1}^{\infty} \frac{d x}{3 x-1}=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{d x}{3 x-1}=\lim _{b \rightarrow \infty}\left[\frac{1}{3} \ln |3 x-1|\right]_{1}^{b}=\frac{1}{3} \lim _{b \rightarrow \infty}[\ln |3 b-1|-\ln 2]=+\infty$
So $\sum_{k=1}^{\infty} \frac{1}{3 k-1}$ diverges by the integral test.
Thus $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{3 k-1}$ is conditionally convergent.
18) $\lim _{k \rightarrow \infty}\left|\frac{u_{k+1}}{u_{k}}\right|=\lim _{k \rightarrow \infty} \frac{(k+2)!}{3^{k+1}} \cdot \frac{3^{k}}{(k+1)!}=\lim _{k \rightarrow \infty} \frac{(k+2)(k+1)!\cdot 3^{k}}{(k+1)!3^{k} \cdot 3^{1}}=\lim _{k \rightarrow \infty} \frac{k+2}{3}=+\infty$

Diverges by the ratio test for absolute convergence.
19) $\frac{\cos 1}{1}+\frac{\cos 2}{4}+\frac{\cos 3}{9}+\frac{\cos 4}{16}+\frac{\cos 5}{25}+\ldots$

Using a calculator (in the radian mode), you can confirm that the first term is positive, the next 3 terms are negative, etc. In other words, this is not an alternating series. We will consider the series of absolute values: $\sum_{k=1}^{\infty} \frac{|\cos k|}{k^{2}}$

Since $|\cos k| \leq 1 \quad \forall k$, we have $\frac{|\cos k|}{k^{2}} \leq \frac{1}{k^{2}}$
$\sum_{k=1}^{\infty} \frac{1}{k^{2}}$ converges because it is a p -series with $\mathrm{p}=2$.
$\sum_{k=1}^{\infty} \frac{|\cos k|}{k^{2}}$ converges by the comparison test
$\sum_{k=1}^{\infty} \frac{\cos k}{k^{2}}$ is absolutely convergent.

