MAC 2312 Review of sections 10.3 - 10.6

For problems 1-14, determine whether the series converges or diverges. Justify your answer.
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15) For which of the convergent series above can you find the sum? Go ahead and find those
sums.

For problems 16-19, determine whether the series is absolutely convergent, conditionally
convergent, or divergent. Justify your answer.
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SOLUTIONS

1) Converges because it is a p-series with p = 2. Or, if you prefer doing things the hard way, you
can use the integral test.

2) Converges because it is geometric with r = ' . Hard way: ratio test or integral test.

3) Diverges because it is the harmonic series times a constant. (Or a p-series with p = 1 times a
constant.) Hard way: integral test.
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Converges by the ratio test.
5) This series is telescoping
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Converges (You could have also done the integral test here, using partial fractions or the
substitution x =2sec2 to antidifferentiate.)
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6) Converges because it is a p-series with p=2 times a constant.



0 b b
I J jdx = lim{4-ltan_1 i} = 1im[2 tan ' — b —2tan™ 5}
. x>+ 4 ZHOO x“+4 oo 2 2 b—w 2 2

7) .
= 2(—) —2tan” =
2

Converges by the integral test (Or you could have used the comparison test comparing it to
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Z P which is a p-series with p = 2, times a constant, with the first 4 terms deleted.)

8) Converges because it is geometric with r = 1/e. Hard way: ratio test or integral test.
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Converges by the ratio test. (You could also have done the integral test here using the
substitution y = -x2.
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So fis decreasing on [3, 4). f'is also continuous on the interval and has all positive terms.
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Diverges by the integral test.
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Z 3 converges because it is a p-series with p = 1.5, with the first 2 terms deleted.
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Z 5 converges by the comparison test.
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Z 3 converges because it is a p-series with p = 1.5, times a constant, with the first 2
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terms deleted.
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16) z (k + 1)10 converges because it is a p-series with p = 10, with the first term deleted.
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17) lll_l)lgm =0 and 5 > g > g >... so0 it converges by the alternating series test.
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diverges by the integral test.

o0 k+1
Thus Z (3k1 " is conditionally convergent.
k=1 -

lim

18) k— o

Ui | _ tim (k+2)! 3 _ lim (k +2)(k+D)!-3" _ tim k+2 _
k— o 3k+1 (k-l-l)' k— o (k+1)'3k .31 k— o 3

Diverges by the ratio test for absolute convergence.
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Using a calculator (in the radian mode), you can confirm that the first term is positive, the
next 3 terms are negative, etc. In other words, this is not an alternating series. We will
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k2 converges because it is a p-series with p = 2.
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