
MAC 2312   Review of sections 10.3 - 10.6 
 
For problems 1-14, determine whether the series converges or diverges.  Justify your answer. 
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15) For which of the convergent series above can you find the sum?  Go ahead and find those 
sums. 
 
For problems 16-19, determine whether the series is absolutely convergent, conditionally 
convergent, or divergent.  Justify your answer. 
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SOLUTIONS 
 
1) Converges because it is a p-series with p = 2.  Or, if you prefer doing things the hard way, you 
can use the integral test. 
 
2) Converges because it is geometric with r = ½ .  Hard way: ratio test or integral test. 
 
3) Diverges because it is the harmonic series times a constant.  (Or a p-series with p = 1 times a 
constant.)  Hard way: integral test. 
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Converges by the ratio test. 
 
5) This series is telescoping 
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Converges   (You could have also done the integral test here, using partial fractions or the 
substitution  x = 2sec2   to antidifferentiate.) 
 
6) Converges because it is a p-series with p=2 times a constant. 
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Converges by the integral test   (Or you could have used the comparison test comparing it to 

4
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∑ which is a p-series with p = 2, times a constant, with the first 4 terms deleted.) 

 
 
8) Converges because it is geometric with r = 1/e.  Hard way: ratio test or integral test. 
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Converges by the ratio test.  (You could also have done the integral test here using the 
substitution u = -x2. 
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Diverges by the divergence test. 
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So f is decreasing on [3, 4).   f is also continuous on the interval and has all positive terms. 
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Diverges by the integral test. 
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∑ converges because it is a p-series with p = 1.5, times a constant, with the first 2          

terms deleted. 
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Diverges by the ratio test for absolute convergence. 
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        Using a calculator (in the radian mode), you can confirm that the first term is positive, the           
next 3 terms are negative, etc.  In other words, this is not an alternating series.  We will           

consider the series of absolute values: 
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