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4.4 The method of Variation of parameters

1. Second order differential equations (Normalized, standard form!).

y ′′ + P(x)y ′ + Q(x)y = f (x)

Suppose y1 and y2 form a fundamental set of solutions on an interval I
for

y ′′ + P(x)y ′ + Q(x)y = 0

We seek functions u1(x) and u2(x) such that:

yp = u1y1 + u2y2

is a particular solution of the nonhomogeneous differential equation.
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In that case,
y ′p = u1y ′1 + y1u′1 + u2y ′2 + y2u′2

We can impose the additional condition on u1 and u2:

y1u′1 + y2u′2 = 0

That is equivalent to
y ′p = u1y ′1 + u2y ′2
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From there,
y ′′p = u′1y ′1 + u1y ′′1 + u′2y ′2 + u2y ′′2

Now, substitute for yp, y ′p and y ′′p into the nonhomogeneous differential
equation"

y ′′p + Py ′p + Qyp = f (x)

which becomes:

u′1y ′1 + u1y ′′1 + u′2y ′2 + u2y ′′2 + Pu1y ′1 + Pu2y ′2 + Qu1y1 + Qu2y2 = f (x)
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Reorganizing leads to

u′1y ′1 + u1(y ′′1 + Py ′1 + Qy1) + u′2y ′2 + u2(y ′′1 + Py ′2 + Qy2) = f (x).

and finally, one obtains a second condition on u1 and u2

y ′1u′1 + y ′2u′2 = f (x)

PR (FIU) MAP 2302 5 / 92



What we have now is a system of two equations involving (the
derivatives of ) u1 and u2

y1u′1 + y2u′2 = 0

y ′1u′1 + y ′2u′2 = f (x)
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Observe that the determinant of the linear system in no other than the
Wronskian W (y1, y2) 6= 0 by assumption. Hence, the system has a
unique solution (u′1,u

′
2).

u′1 =

det

(
0 y2

f (x) y ′2

)
W (y1, y2)

= − y2f (x)

y1y ′2 − y ′1y2

u′2 =
f (x)y1

y1y ′2 − y ′1y2

From u′1 and u′2, we obtain u1 and u2 by integration.
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Example

y ′′ − 3y ′ + 2y =
e3x

1 + ex

Notice that undetermined coefficient methods does not work in this
example! Using the characteristic equation technique for instance, we
find that the general solution to the associated homogeneous equation
is

yc = C1ex + C2e2x .
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The method of variation of parameters tells us that we can find a
particular solution

yp = u1ex + u2e2x

by solving

exu′1 + e2xu′2 = 0

exu′1 + 2e2xu′2 =
e3x

1 + ex
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u′1 = − e2x

1 + ex

u′2 =
ex

1 + ex

u1 = −(ex + 1) + ln (ex + 1)

u2 = ln (ex + 1)

A particular solution is

yp = (−(ex + 1) + ln (ex + 1))ex + ln (ex + 1)e2x

and, finally, the general solution is

y = C1ex + C2e2x + e2x (ln (ex + 1)) + ex (ln (ex + 1)− (ex + 1)).
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Variation of parameters for higher order equations

y (n) + P1y (n−1) + ...+ Pny = f (x).

Let y1, ..., yn be n linearly independent solutions of

y (n) + P1y (n−1) + ...+ Pny = 0

Look for u1, ...,un such that u1y1 + ...+ unyn is a particular solution of
the nonhomogeneous equation.
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For that, one solves the following linear system:

y1u′1 + ...+ ynu′n = 0

y ′1u′1 + ...+ y ′nu′n = 0
... =

...

y (n−1)
1 u′1 + ...+ y (n−1)u′n = f (x)

u′i =
Wi(y1, ..., yn)

W (y1, ..., yn)

where Wi(y1, ..., yn) is the Wronskian in which the column i has been
replaced by the column (0, ...0, f (x)).
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Example

y ′′′ + y ′ = tan x

y ′′′ + y ′ = sec x
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4.5 The Cauchy-Euler equation

Standard form, nth order:

anxn dny
dxn + ...+ a1x

dy
dx

+ a0y = g(x).

Second order example:

x2y ′′ − 2xy ′ + 2y = x3 ln x

Observation: The substitution t = ln x reduces Cauchy-Euler equation
to an equation with constant coefficients!
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From
dy
dx

=
dy
dt

dt
dx

=
1
x

dy
dt

and
d2y
dx2 = − 1

x2
dy
dt

+
1
x

d2y
dt2

dt
dx

=
1
x2 (−dy

dt
+

d2y
dt2 )

Substitution leads to

d2y
dt2 − 3

dy
dt

+ 2y = te3t .

This can be solved using the method of undetermined coefficients or
variation of parameters!
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y(t) = C1e2t + C2et + (1
2 t − 3

4)e3t

y(x) = C1x2 + C2x + (1
2 ln x − 3

4)x3
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5.1-5.4: Applications: Spring vibrations, electric
circuits problems

Second order differential equations with constant coefficients

Consider a spring with natural length L.

Suspend a mass with weight Fg = mg. The spring is stretched by l .
Choose an orientation vector~i downward.

Hooke’s Law
mg = Kl

where K is the constant of the spring.
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Disturb the mass m with initial position x0 and velocity v0.

If x denotes the displacement from equilibrium position, then

mẍ~i = −Kx~i

mẍ = −Kx

ẍ + λ2x = 0

where
λ2 =

K
m
.

The mass executes a free, undamped motion.

x(t) = C1 cosλt + C2 sinλt .
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x(t) = A cos (λt + Φ)

The simple, harmonic motion.

λ =
√

K
m is the angular velocity,

T = 2π
λ is the natural period of the motion

f = λ
2π = 1

T is the natural frequency.

A =
√

C2
1 + C2

2 is the amplitude and Φ from tan Φ = −C2
C1

is the phase
angle.
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Solving
λt + Φ =

π

2

t0 =
π
2−Φ

λ is the phase shift.

The motion can be graphed now!
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Example #1, page 197.

Example: A 16 lb weight is placed upon the lower end of a coil spring
suspended vertically from a fixed support. The weight comes to rest in
its equilibrium position, thereby stretching the spring 6 in. Determine
the resulting displacement as a function of time in each of the following
cases:

a) If the weight is then pulled down 4 in. below its equilibrium
position and released at t=0 with initial velocity of 2 ft/sec directed
downward.

b) If the weight is then pulled down 4 in. below its equilibrium
position and released at t=0 with an initial velocity of 2 ft/sec
directed upward.

c) If the weight is then pushed up 4 in. above its equilibrium position
and released at t=0 with an initial velocity of 2 ft/sec. directed
downward.
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16 = K 6
12 = K

2 , so K = 32.

ẍ +
K
M

x = 0, M =
16
32

=
1
2

slugs

ẍ + 64x = 0

Finish the example!
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Damped motion

Mẍ = −Kx − βẋ ; FR = −βẋ

ẍ + λ2x + 2bẋ = 0

where
2b =

β

M
.

ẍ + 2bẋ + λ2x = 0

Free, damped motion The motion is not necessarily periodic anymore.

PR (FIU) MAP 2302 23 / 92



m2 + 2bm + λ2 = 0

m = −b ±
√

b2 − λ2.

b2 − λ2 > 0: Over-damped motion.

x(t) = e−bt [C1e
√

b2−λ2t + C2e−
√

b2−λ2t ].

Observe the damping factor e−bt !
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b2 − λ2 = 0: Critically damped motion.

x(t) = e−bt (C1 + C2t).

b2 − λ2 < 0: Under-damped motion.

x(t) = e−bt [C1 cos
√
λ2 − b2t + C2 sin

√
λ2 − b2t ].

Observe a periodic factor and a damping factor!
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b2 − λ2 = 0: Critically damped motion.

x(t) = e−bt (C1 + C2t).

b2 − λ2 < 0: Under-damped motion.

x(t) = e−bt [C1 cos
√
λ2 − b2t + C2 sin

√
λ2 − b2t ].

Observe a periodic factor and a damping factor!
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Example #2, page 208.
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Forced motion

Mẍ + βẋ + Kx = F cosωt

ẍ + 2bẋ + λ2x = f cosωt

where
f =

F
M
, 2b =

β

M
, λ2 =

K
M
.
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Assume we are in the under-damped situation, so that

xc(t) = Ae−bt cos (
√
λ2 − b2t + φ).

We look for a particular solution using the undetermined coefficients
method:

xp(t) = C cosωt + D sinωt
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We find that:

−ω2C + 2bωD + λ2C = f

−ω2D − 2bωC + λ2D =0

or equivalently

(λ2 − ω2)C + 2λωD = f

−2bωC + (λ2 − ω)D =0
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We find that:

−ω2C + 2bωD + λ2C = f

−ω2D − 2bωC + λ2D =0

or equivalently

(λ2 − ω2)C + 2λωD = f

−2bωC + (λ2 − ω)D =0
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By Cramer’s method for instance,

C =
f (λ2 − ω2)

(λ2 − ω2)2 + 4b2ω2

D =
2bωf

(λ2 − ω2)2 + 4b2ω2
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xp =
f (λ2 − ω2)

(λ2 − ω2)
2

+ 4b2ω2
cosωt +

2bωf

(λ2 − ω2)
2

+ 4b2ω2
sinωt

We will express xp as

xp = A cos (ωt + φ)
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A cosφ =
f (λ2 − ω2)

(λ2 − ω2)2 + 4b2ω2

−A sinφ =
2bωf

(λ2 − ω2)2 + 4b2ω2

So
A =

f
[(λ2 − ω2)2 + 4b2ω2]1/2

and finally

xp(t) =
f

[(λ2 − ω2)2 + 4b2ω2]1/2 cos (ωt + φ)
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dA
dω

=
2(λ2 − ω2)ω − 4b2ω

[(λ2 − ω2)2 + 4b2ω2]3/2 f

The critical ω’s are ω = 0 and ω2 = λ2 − 2b2.

xp(t) achieves the maximum amplitude when

ω = ωR =
√
λ2 − 2b2 =

√
K
M
− β2

2M2
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ωR is called the resonance frequency.

Observe that the resonance frequency ωR ≤
√
λ2 − b2 =

√
K
M −

β2

4M2 is
smaller than the frequency of the free motion!

The graph of y = A(ω) is called the resonance curve!
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x(t) = xc + xp

The function xc(t) eventually becomes negligible as time goes on, this
is the transient state.

xp(t) which remains forever, is called the steady state solution.
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In the undamped situation, b = 0,

xp(t) =
f

λ2 − ω2 cos (ωt + φ)

We can see that as ω approaches the natural frequency λ, the
amplitude of the steady state blows up! This phenomenon is known as
Pure resonance. It always has destructive effects on the systems.
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Assignments: page 189, #10-12, Page 217 (Ross), # 4-7, Page 224,
#1-3
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Example: Forced motion

A mass weighting 4 lb stretches a spring 1.5 in. The mass is displaced
2 in. in the positive direction and released with zero initial velocity.
assuming that there is no damping, and that the mass is acted upon by
an external force of 2 cos 3t lb, formulate the initial value problem
describing the motion of the mass and solve it.
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4 = 1
8K so K = 32

x(0) = 1
6

ẋ(0) = 0

4 = m.32 so, m = 1
8

1
8

ẍ + 32x = 2 cos 3t
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ẍ + 256x = 16 cos 3t

x(0) = 0

ẋ(0) = 0

Solving the above initial value problem leads to

x(t) =
151

1482
cos 16t +

16
247

cos 3t .
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Analogous systems

Mass on a spring:

mẍ + βẋ + Kx = f (t)

Inductor-Resistor-Capacitor (L-R-C) series circuit:

Lq̈ + Rq̇ +
1
C

q = E(t)

(E(t) is the electric potential)
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Put E(t) = E0 sinωt

Write the circuit equation as

LI′′ + RI′ +
1
C

I = ωE0 cosωt

Solving:
I(t) = Itr + Isp

where
lim

t→+∞
Itr = 0

Isp = Steady periodic solution
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Isp =
E0 cos (ωt − α)√
R2 + (ωL− 1

ωC )2

α = tan−1 ωRC
1− LCω2 , 0 ≤ α ≤ π

Z =

√
R2 + (ωL− 1

ωC
)2

(in Ohms) is called the impedance of the circuit. The amplitude of the
signal is

I0 =
E0

Z
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Electrical resonance

I0 = E0
Z = E0√

R2+(ωL− 1
ωC )2

attains its maximum when

ω =
1√
LC

This is the resonance frequency!. Tuning a radio receiver consists
essentially in modifying the value of C so as to match the frequency of
the incoming radio signal!
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6. Series solutions

Examples

Solve
dy
dx
− 2xy = 0

We look for a solution of the form

y =
∞∑

n=0

cnxn

Then
dy
dx

=
∞∑

n=0

ncnxn−1

and
dy
dx
− 2xy =

∞∑
n=0

ncnxn−1 − 2
∞∑

n=0

cnxn+1 = 0
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∞∑
m=0

(m + 1)cm+1xm − 2
∞∑

m=1

cm−1xm = 0

c1 +
∞∑

m=1

[(m + 1)cm+1 − 2cm−1]xm = 0
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c1 = 0 and (m + 1)cm+1 − 2cm−1 = 0 which implies that

c1 = 0 and cm+1 = 2
cm−1

m + 1

for m ≥ 2.

We will use the recurrence formula for cm to generate all coefficients in
the power series.
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c0 arbitrary

c1 = 0

c2 = 2
c0

2
= co

c3 = 2
c1

3
= 0

c4 = 2
c2

4
=

c0

2
c5 = 0
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In general,
c2n+1 = 0

for n = 0,1,2... and

c2n = 2
c2(n−1)

2n

= 2
c2(n−2)

(n − 2)(n − 1)
=

c2(n−2)

n(n − 1)

... =
...

=
c0

n!
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y = c0

(
1 +

∞∑
m=1

x2m

m!

)
= c0

( ∞∑
m=0

(x2)
m

m!

)

y = c0ex2
.

Check this solution using the separable equation technique!
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y = c0

(
1 +

∞∑
m=1

x2m

m!

)
= c0

( ∞∑
m=0

(x2)
m

m!

)

y = c0ex2
.

Check this solution using the separable equation technique!
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Example 2

(x − 1)y ′′ − xy ′ + y = 0, y(0) = −2, y ′(0) = 6

y =
∑
n≥0

cnxn

y ′ =
∑
n≥0

ncnxn−1

y ′′ =
∑
n≥0

n(n − 1)cnxn−2

0 = (x − 1)y ′′ − xy ′ + y = xy ′′ − y ′′ − xy ′ + y

=
∑
n≥0

[(n + 1)ncn+1 − (n + 2)(n + 1)cn+2 + (1− n)cn]xn
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So
cn+2 =

(1− n)cn + (n + 1)ncn+1

(n + 2)(n + 1)

c0 = y(0) = −2

c1 = y ′(0) = 6

Using the above recurrence formula, we see that

c2 = −1, c3 = −1
3 , c4 = − 1

4.3 , c5 = − 1
5.4.3

Claim: for n ≥ 2, cn = − 2
n! .
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proof

True for c2 and c3. Assume it is true for n − 1 and n − 2, then

cn =
(1− n)cn−2 + (n − 1)(n − 2)cn−1

n(n − 1)

=
(1− n) −2

(n−2)! + (n − 1)(n − 2) −2
(n−1)!

n(n − 1)

= − 2
n!
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y = −2 + 6x − 2
∑
n≥2

xn

n!

= 8x − 2− 2x − 2
∑
n≥2

xn

n!

= 8x − 2(
∑
n≥0

xn

n!
)

y = 8x − 2ex

Check by substitution that this is indeed the solution to the initial value
problem.
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Example 2

(x − 1)y ′′ − (2− x)y ′ + y = 0, y(0) = 2, y ′(0) = −1

c0 = y(0) = 2, c1 = y ′(0) = −1

The recurrence relation is:

cn+2 =
cn + (n − 2)cn+1

n + 2

y = 2− x + 2x2 − x3 +
x4

2
− x5

10
+

x6

20
+

x7

140
+ ...
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Series solutions around ordinary points

y ′′ + P(x)y ′ + Q(x)y = 0

The standard form for a second order linear differential equation.

Definition
A point x0 is said to be an ordinary point for the above differential
equation if P(x) and Q(x) are analytic at x0; that is, both have power
series in (x − x0) with positive radius of convergence.
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A point that is not an ordinary point is said to be a singular point.

Note: For power series solutions at an ordinary point, the radius of
convergence is at least equal to the distance to the nearest singular
point.
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Example

(x2 − 1)y ′′ + 4xy ′ +
2

x2 − 1
y = 0

takes the standard form

y ′′ +
4x

x2 − 1
y ′ +

2
(x2 − 1)2 y = 0

1 and −1 are singular points for this equation. Any other point is a
regular point, according to the above definition.
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Theorem
If x = x0 is an ordinary point of the differential equation
y ′′ + P(x)y ′ + Q(x)y = 0, we can always find two linearly independent
power series solutions of the form

y =
∞∑

n=0

cn(x − x0)n
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Example

Find two linearly independent solutions for

y ′′ − xy ′ + 2y = 0

Look for

y =
∞∑

n=0

cnxn

Then:

y ′ =
∞∑

n=1

ncnxn−1

y ′′ =
∞∑

n=2

n(n − 1)cnxn−2
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Example

Find two linearly independent solutions for

y ′′ − xy ′ + 2y = 0

Look for

y =
∞∑

n=0

cnxn

Then:

y ′ =
∞∑

n=1

ncnxn−1

y ′′ =
∞∑

n=2

n(n − 1)cnxn−2
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Therefore, y ′′ − xy ′ + 2y = 0 implies that

0 =
∑∞

n=2 n(n − 1)cnxn−2 −
∑∞

n=1 ncnxn +
∑∞

n=0 2cnxn

=
∑∞

n=0(n + 2)(n + 1)cn+2xn +
∑∞

n=0 2cnxn −
∑∞

n=1 ncnxn

= 2c2 + 2c0 +
∑∞

n=1[(n + 2)(n + 1)cn+2 + (2− n)cn]xn
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We deduce that
c2 = −c0

cn+2 =
(n − 2)cn

(n + 2)(n + 1)

c0: Arbitrary

c2 = −c0

c4 = 0

c2n = 0, n > 2
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We deduce that
c2 = −c0

cn+2 =
(n − 2)cn

(n + 2)(n + 1)

c0: Arbitrary

c2 = −c0

c4 = 0

c2n = 0, n > 2

PR (FIU) MAP 2302 62 / 92



c1 is also arbitrary.

c2n+1 =
(2n − 3)c2n−1

(2n + 1)(2n)
, 2n + 1 > 3

c3 = − c1
3.2

y1 = c0 − c0x2 = c0(1− x2)

y2 = c1x − c1

6
x3 + .. = c1(x − 1

6
x3 + ...)
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Another example

y ′′ − xy ′ − y = 0, x0 = 1

Find two linearly independent power series solutions.

Look for

y =
∞∑

n=0

cn(x − 1)n

for
y ′′ − (x − 1)y ′ − y ′ − y = 0
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6.2. Solutions about singular points: Frobenious
Method

Definition
For a differential equation

Py ′′ + Qy ′ + Ry = 0

A singular point x0 is said to be a regular singular point if (x − x0)Q
P

and (x − x0)2 R
P are analytic at x0. Otherwise, the regular point x0 is

said to be irregular singular.
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Example: The Euler Equation

x2y ′′ + αxy ′ + βy = 0

x = 0 is a regular singular point. As an alternate method of solution,
we look for

y = x r

Then
x r (x r )′′αx(x r )′ + βx r = 0 = x r (r(r − 1) + αr + β)

Any solution of
F (r) = r(r − 1) + αr + β = 0

leads to a solution y = x r of the Euler equation.
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Real, Distinct Roots

If r1 and r1 are the 2, real distinct roots, then

y = Ax r1 + Bx r2

Example: 2x2y ′′ + 3xy ′ − y = 0, x > 0
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Double Roots

F (r) = (r − r1)2

In this case y1 = x r1 is a solution and the method of reduction of order
shows that

y2 = x r1 ln x

is also a solution. (Check this directly!)

Example:
x2y ′′ + 5xy ′ + 4y = 0, x > 0
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Complex-Conjugate Roots

r1 = λ+ iµ, r2 = λ− iµ

z1 = xλ+iµ = e(λ+iµ) ln x = xλ(cos (µ ln x) + i sin (µ ln x))

z2 = xλ(cos (µ ln x)− i sin (µ ln x))
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y1 =
1
2

(z1 + z2) = xλ cos (µ ln x)

and
y2 = − 1

2i
(z1 − z2) = xλ sin (µ ln x)

are two linearly independent real solutions.

Example:
x2y ′′ + xy ′ + y = 0
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More Generally

Example:
2x2y ′′ − xy ′ + (1 + x)y = 0

0 is a regular singular point. We look for

y = x r
∞∑

n=0

anxn =
∞∑

n=0

anxn+r

Substituting into the differential equation and grouping like terms from
lowest power of x to higher powers:

F (r)x r+k +
∑
n≥1

[G(r ,n)]xn+r+k = 0
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Solve the indicial equation
F (r) = 0

and obtain recurrence relations from

G(r ,n) = 0

If r1 − r2 is not an integer, we always obtain two linearly independent
solutions.
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Example 2

x2y ′′ + (x2 + 4x)y ′ + (2x + 2)y = 0

y =
∞∑

n=0

cnxn+r

y ′ =
∑

(n + r)cnxn+r−1, y ′′ =
∑

(n + r)(n + r − 1)cnxn+r−2
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x2y ′ =
∞∑

n=0

(n + r)cnxn+r+1 =
∞∑

m=1

(m − 1 + r)cm−1xm+r

2xy =
∞∑

n=0

2cnxn+r+1 =
∞∑

m=1

2cm−1xm+r
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∑
(n + r)(n + r − 1)cnxn+r +

∑
(n + r)cnxn+r+1 +

∑
4(n + r)cnxn+r

+
∑

2cnxn+r+1 +
∑

2cnxn+r = 0

c0(r(r − 1) + 4r + 2)x r

+
∑∞

m=1 [[(m + r)(m + r + 3) + 2]cm + (m + r + 1)cm−1] xm+r = 0

F (r) = r(r + 3) + 2 = 0 = r2 + 3r + 2

cm = − (m + r + 1)cm−1

(m + r)(m + r + 3) + 2
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r1 = −2, r2 = −1

Work with the smaller root −2 first:

cn = −cn−1

n

Inductively, we see that

cn =
(−1)nc0

n!

This leads to

y1 = c0

∞∑
n=0

(−1)n

n!
xn−2 = c0x−2

∞∑
n=0

(−1)nxn

n!
= c0x−2e−x
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Form r = −1, we obtain
cn = − cn−1

n + 1

Inductively:
cn = (−1)n c0

(n + 1)!

Y2 = c0
∑ (−1)n

(n + 1)!
xn−1 = −c0x−2

∞∑
n=0

(−1)n+1

(n + 1)!
xn+1 = −c0x−2(e−x−1)

Check directly that x−2 and x−2e−x are solutions!

The general solution is

y = Ax−2e−x + Bx−2
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6.3 Bessel’s Equation and Bessel’s functions

x2y ′′ + xy ′ + (x2 − p2)y = 0

Bessel’s Equation of order p.

Any solution is called a Bessel function of order p. Theses functions
occur in connection with problems of Physics and Engineering.
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The case p = 0

xy ′′ + y ′ + xy = 0

0 is a regular, singular point.

Look for

y =
∞∑

n=0

cnxn+r

r2c0x r−1 + (1 + r)c1x r +
∞∑

n=2

[(n + r)2cn + cn−2]xn+r−1 = 0

The indicial equation is
r2 = 0

with double root r1 = 0 = r2.
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Then
(1 + r)2c1 = 0

and
(n + r)2cn + cn−2 = 0, n ≥ 2

r = 0⇒ c1 = 0

r = 0⇒ n2cn + cn−2 = 0⇒ cn = −cn−2

n2
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c2n+1 = 0

c2n =
(−1)nc0

(n!)222n , n ≥ 1

y = c0

∞∑
n=0

(−1)n

(n!)2 (
x
2

)2n = y1(x).

J0(x) =
∞∑

n=0

(−1)n

(n!)2 (
x
2

)2n

Bessel Function of the first kind of order zero.

J0(x) = 1− x2

4
+

x4

64
− x6

2304
+ ...

A second solution must be of the form (See Theorem 6.3)

y = x
∞∑

n=0

c∗nxn + J0(x) ln x
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8.3. Successive approximations

y ′ = f (x , y), y(x0) = y0.

Picard’s Method

y = φ(x), the d.e. is just specifying the slope of the tangent line to the
graph of the solution!

Zeroth approximation: φ0 = y0.

First approximation: φ1 (satisfying a different d.e.)

φ′1(x) = f (x , φ0(x)), φ1(x0) = y0.

φ1(x) = y0 +

∫ x

x0

f (t , φ0)dt
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Second approximation: φ2. (Satisfying a different d.e.)

φ′2(x) = f (x , φ1), φ2(x0) = y0.

φ2(x) = y0 +

∫ x

x0

f (t , φ1(t))dt

...

nth approximation:

φn(x) =

∫ x

x0

f (t , φn−1(t))dt
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One has a sequence of functions φ0, φ1, ..., φn, .... The exact solution is
given by:

φ = lim
n→∞

φn

Picard used this method to prove existence of solutions!

Observe that

φ′(x) = lim
n→∞

φ′n(x) = lim
n→∞

f (x , φn−1(x)) = f (x , φ).
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Example

y ′ = xy , y(0) = 1

Let
y = φ(x)

φ0 = 1

φ1 = 1 +

∫ x

0
tdt = 1 +

x2

2
.

φ2 = 1 +

∫ x

0
t(1 +

t2

2
)dt = 1 +

x2

2
+

(x2

2 )2

2

φ3 = 1 + u +
u2

2
+

u3

3!

where u = x2

2 .
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...

φn(x) =
n∑

i=1

ui

i!

Where u = x2

2 .

φ(x) = lim
n→∞

φn(x) = e
x2
2 .
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8.4. Numerical Methods: The Euler Method

Approximating the solution of

y ′ = f (x , y), y(x0) = y0.

Let x1 = x0, x2 = x0 + h, ...

xN = xN−1 + h

If φ(x) is the exact solution, let φ(x1), ..., φ(xN) be the evaluation of φ at
points xk .
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A numerical method will use the IVP to estimate φ(xk ), k = 1,2, ...,N.

Let y1, y2, ..., yN be approximations to φ(x1), , φ(x2), ..., φ(xN). A
one-step method uses yk−1 to find yk using the differential equation.
The method has also an alternate name of “starting method".
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The multi-step methods (using several previous approximations to find
yk ) are also known as "continuing methods".
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The Euler Method

φ the exact solution of y ′ = f (x , y), y(x0) = y0.

yn+1 = yn + hf (xn, yn).

Geometrically, the segment of then graph of y = φ(x) between
(xn, φ(xn)) and (xn+1, φ(xn+1)) is replaced by the line segment joining
(xn, yn) and (xn+1, yn + hf (xn, yn)).

y0 = φ(x0)
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Example

y ′ = 2x + y ; y(0) = 1

Use h = 0.2.

x0 = 0 x1 = 0.2 x3 = 0.4 x3 = 0.6 x4 = 0.8
y0 = 1 y1 = 12

10 y2 = 152
100 y3 = 1984

1000 y4 = 26168
10000
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