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5.4. Sigma notation; The definition of area as limit

Assignment: page 350, #11-15, 27, 29, 37, 38, 48.

1 + 2 + 3 = 6

How about
1 + 2 + ...+ 100 =?

In Sigma notation
100∑
i=1

i

Notice
100∑
i−1

= 100 + 99 + ...+ 1

So

2
100∑
i=1

= (100 + 1) + (99 + 2) + ...+ (1 + 100) = 101× 100
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Therefore
100∑
i=1

=
101× 100

2

In general, we have the following formulas:

n∑
i=1

i =
(n + 1)n

2

Also:
n∑

i=1

i2 =
(2n + 1)(n + 1)n

6

n∑
i=1

i3 =

(
(n + 1)n

2

)2
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The area Problem:

Given the graph of a positive function

y = f (x)

compute the area under the graph, above the x-interval [a,b].

Solution: Subdivide the interval [a,b] by markings

x0 = a, x1 = x0 + ∆x1, ..., xi = xi−1 + ∆xi , ..., xn = b

The area of the region above [xi−1, xi ] is approximately the area of a
rectangle with base [xi−1, xi ] and height f (ci) where ci is some number
satisfying

xi−1 ≤ ci ≤ xi .
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Ultimately, the area A of the region mentioned at the beginning is
approximately

An =
n∑

i=1

f (ci)∆xi

In the end, the actual area is obtained by taking the limit of An when
n→∞.

A = lim
n→∞

An = lim
n→∞

n∑
i=1

f (ci)∆xi .
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5.5. The Definite integral

Assignment: page 360, #14-17.

For an arbitrary function f (x), not necessarily positive, one still has the
summations

An =
n∑
1

f (ci)∆xi

but they are not approximate areas anymore, we call them just
Riemann sums of f (x), the limit, if it exists, is called the Riemann
integral of f over the interval [a,b]. The standard notation is∫ b

a
f (x)dx .

The above is also known as the Definite integral of f over the interval
[a,b].
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Theorem
If a function f is continuous on [a,b], then f is Riemann integrable on
[a,b], that is, the definite integral

∫ b
a f (x)dx exists.
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Basic Properties of the integral

∫ b
a C dx = C(b − a) for any constant C∫ b
a Cf (x)dx = C

∫ b
a f (x)dx∫ b

a [f (x) + g(x)]dx =
∫ b

a f (x)dx +
∫ b

a g(x)dx
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For a < c < b,∫ b

a
f (x)dx =

∫ c

a
f (x)dx +

∫ b

c
f (x)dx

If f (x) ≤ g(x) for all a ≤ x ≤ b, then∫ b

a
f (x)dx ≤

∫ b

a
g(x)dx

If m ≤ f (x) ≤ M for all a ≤ x ≤ b, then

m(b − a) ≤
∫ b

a
f (x)dx ≤ M(b − a)
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The Mean Value Theorem for integrals

Suppose f (x) is continuous on the interval [a,b]

If m ≤ f (x) ≤ M for all a ≤ x ≤ b, then

m(b − a) ≤
∫ b

a
f (x)dx ≤ M(b − a)

and

m ≤ 1
(b − a)

∫ b

a
f (x)dx ≤ M

so, by the intermediate value Theorem (Calculus I), there exists a x̄ ,
a ≤ x̄ ≤ b such that

f (x̄) =
1

(b − a)

∫ b

a
f (x)dx .
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5.6. The Fundamental Theorem of Calculus

Assignment: page 373, #20-25, 32, 34, 60-64.

Part I

Let f be continuous on an open interval I and let a ∈ I. If F is defined
by

F (x) =

∫ x

a
f (t)dt

at all x ∈ I, then
F ′(x) = f (x)

at each x ∈ I.
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Proof

F ′(x) = lim
h→0

F (x + h)− F (x)

h

= lim
h→0

1
h

[

∫ x+h

a
f (t)dt −

∫ x

a
f (t)dt ]

= lim
h→0

1
h

∫ x+h

x
f (t)dt

= lim
h→0

f (̄t), x ≤ t̄ ≤ x + h

= f (x)

where x ≤ t̄ ≤ x + h is provided by the mean value Theorem for
integral.
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Part II ∫ b

a
f (x)dx = G(b)−G(a)

for any antiderivative G(x) of f (x).
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Proof

From Part I, an antiderivative of f (x) is given by

A(x) =

∫ x

a
f (t)dt

Suppose G(x) is any other antiderivative of f (x). Then

A(x) = G(x) + C

for some constant C. Also, notice that A(a) = 0, therefore, C = −G(a)

and A(b) =
∫ b

a f (x)dx .

It follows that∫ b

a
f (x)dx = A(b) = G(b) + C = G(b)−G(a).
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Examples: Compute
∫ 2

1 x2 + 1 dx ,
∫ π

3
0 sin 3x dx ,

∫ 8
4

1
x dx ,

∫ 11
6

1
x−1 dx .

Compute the average value of the cross sectional area of a disc of
radius 1.

Answer: Ā = 1
1−0

∫ 1
0 A(x)dx where A(x) is the cross sectional disc at

radial distance x from the center.
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5.7. Rectilinear motion using integration

Assignment: page 383, #14-16, 34-36, 41, 43.

Finding position and velocity.

D(t): the position; V (t) = D′(t): the velocity and A(t) = V ′(t)
represents the acceleration.

s(t) will represent the distance traveled, not the same as the
displacement. s′(t) = v(t) where v(t) = |V (t)| is the speed.

Equivalent integral formula:

D(t) =
∫

V (t)dt ; V (t) =
∫

A(t)dt ; s(t) =
∫

v(t)dt .
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Suppose that a particle moves on a coordinate line so that its velocity
at time t is V (t) = t2 − 2t m/s.

a) Find the displacement of the particle during the time interval
0 ≤ t ≤ 5

b) Find the distance traveled by the particle during the time interval
0 ≤ t ≤ 5.

answer:

a)

D(5)− D(0) =

∫ 5

0
V (t)dt =

50
3

b)

s(5)− s(0) =

∫ 5

0
v(t)dt =

∫ 2

0
−t(t − 2)dt +

∫ 5

2
t(t − 2)dt =

58
3
.
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Uniformly accelerated motion

A(t) = A is constant.

Let D0 = D(0), V0 = V (0). Then

V (t) =

∫
A(t)dt = At + C

V0 = C implies that
V (t) = At + V0
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D(t) =

∫
V (t)dt = A

t2

2
+ V0t + K

D0 = K implies that

D(t) =
A
2

t2 + V0t + D0.
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Example: Falling object.

A = −g where g is the gravitational constant (9.8m/sec2 or 32ft/sec2).

A projectile is fired vertically upward from ground level with initial
velocity v0 of 16 ft/s.

a) How long will it take for the projectile to hit the ground?

b) How long will the projectile be moving upward?

Answer: a) t=1

b)V (t) = 0 when t = 1
2 .
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5.9. Evaluating definite integrals by substitution

Assignment: page 394, #10-15, 35-40.

Use both ways to evaluate the following integrals:∫ 0
−3 x
√

1− xdx ,
∫ π

6
0 2 cos 3xdx ,

∫ 1
−1

x2dx√
x3+9

,∫ π
π
2

6 sin x(cos x + 1)5dx .∫ 1
−1

x2dx√
x3+9∫ π

π
2

6 sin x(cos x + 1)5dx
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5.10. Logarithmic functions from the integral point of
view

Assignment: page 406, #3, 4, 7, 11, 12.

Starting point: Define ln x so that ln 1 = 0 and d
dx ln x = 1

x .

Definition

ln x =

∫ x

1

dt
t
, x > 0.

Geometrically, ln x is the signed area to the right of x = 1, under the
graph of y = 1

x .

The graph of y = ln x .

Notice limx→+∞ ln x = +∞ and limx→0 ln x = −∞.
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The number e

Since ln′ x > 0, ln x = 1 has a unique solution, this solution is denoted
by e and is approximated by e ' 2.71828...., it is irrational!.
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Laws of logarithms

ln(xy) = ln x + ln y , for x , y > 0

ln( 1
x ) = − ln x

ln( x
y ) = ln x − ln y

ln(x r ) = r ln x
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Proof of laws of logarithms

d
dx (ln(xy) = y

xy = 1
x = d

dx ln x so ln(xy)− ln x = c a constant
independent of x .

Put x = 1 and observe that ln y − 0 = c so that

ln(xy)− ln x = ln y

Equivalently
ln(xy) = ln x + ln y .
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d
dx ln( 1

x ) = x(− 1
x2 ) = − 1

x = − d
dx ln x . So ln( 1

x ) + ln x = c a constant
independent of x .

Put x = 1 and observe that 0 + 0 = c, thus

ln(
1
x

) = − ln x .

Next law:

ln(
x
y

) = ln(x .
1
y

) = ln x − ln y .
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Next:

d
dx (x r ) = rx r−1.

d
dx (ln x r ) = rx r−1

x r = r
x = d

dx (r ln x). Hence, ln x r − r ln x = c, a constant
independent of x . Put x = 1 and observe that 0− 0 = c, so
ln x r − r ln x = 0 or equivalently:

ln x r = r ln x .

PR (FIU) MAC 2312 27 / 1



The natural exponential

ln x is strictly increasing for x > 0, so it has an inverse function ex

defined by:
x = ln y ⇐⇒ y = ex .

One has the identities ln(ex ) = x for all x and eln x = x for all x > 0.
Some other facts about ex are:

e0 = 1, lim
x→+∞

ex = +∞, lim
x→−∞

ex = 0.
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Laws of exponents

exey = ex+y

e−x = 1
ex

(ex )r = erx .
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Proof of the laws of exponents

ln(exey ) = ln ex + ln ey = x + y = ln(e(x+y)).

Since ln x is one-to-one, one concludes that exey = ex+y .
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Derivatives and integrals

For any positive number a 6= 1, one has

au = (eln a)u = eu ln a.

So,

d
dx

(au(x)) =
d
dx

eu(x) ln a = eu ln a. ln au′(x) = (ln a)au du
dx
.

∫
axdx =

∫
ex ln adx =

ex ln a

ln a
+ C.
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Examples

d
dx (3x3

) = 3x3
. ln 3.3x2 = 3 ln 3x23x3

.

∫
x10x2

dx =

∫
xeln 10x2

dx

=
1

2 ln 10

∫
eudu =

1
2 ln 10

eln 10x2
+ C

=
10x2

2 ln 10
+ C

where u = ln 10x2, du = 2 ln 10xdx . (Integration by substitution).
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6.1. Area between two curves

Assignment: page 419, #3,4,6,8,10,17.

Assumptions: f (x) ≥ g(x) for all x ∈ [a,b]

R denotes the region between the graphs of y = f (x) and y = g(x).

The area A of the region R is given by

A =

∫ b

a
[f (x)− g(x)]dx .
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Examples

1. Find the area of the region enclosed by the following curves:

y = x2 and y = 4x .

Solution: The region is bounded on top by y = 4x , on bottom by
y = x2, on left by x = 0 and on right by x = 4. This is determined by
finding all intersection point between y = 4x and y = x2, as well as
sketching the curves.

A =

∫ 4

0
(4x − x2)dx = 2x2 − x3

3

∣∣∣∣4
x=0

=
32
3
.
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2. Find the area enclosed by y = x3 − 4x2 + 3x , y = 0, x = 0, and
x = 3

Solution: The region is made of 2 pieces, one above the interval [0,1]

the other below [1,3]. The area is given by

A =

∫ 1

0
(x3 − 4x2 + 3x)dx +

∫ 3

1
−(x3 − 4x2 + 3x)dx = 3.08
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3. y = x3 − 2x2, y = 2x2 − 3x , x = 0 and x = 3.

(0,0), (1,−1) and (3,9) are intersection points. The area is given by

A =

∫ 1

0
(x3−2x2)− (2x2−3x)dx +

∫ 3

1
(2x2−3x)− (x3−2x2)dx = 2.2

4. Find the area between the curve y = sin x and the line segment that
joins the points (0,0) and (5π

6 ,
1
2) on the curve.

A =

∫ 5π
6

0
(sin x − 3

5π
x)dx
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6.2 Volume by slicing; Disc and washers

Assignment: page 429, #7,8,10,40-45.

Imagine a solid object lying along the X axis over the interval [a,b].
Perform a vertical uniform slicing into n slices, each of thickness ∆x
and sectional area A(x1), i = 1,2, ...,n. As long as the slicing is fine,
each slice has volume more or less given by ∆Vi = A(xi)∆x and the
solid itself has volume approximated by

Vn =
n∑

i=1

∆Vi =
n∑

i=1

A(xi)∆x
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This is a Riemann sum. Let the number of slice n go to infinity and
obtain the volume of the solid as

V = lim
n→∞

Vn =

∫ b

a
A(x)dx .
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In many instances, an expression for the function A(x) can be easily
determined. For example for solid of revolution, slices turn out to be
discs or washers, depending on the solid being plain or hollow.

Examples

1. Compute the volume of a solid cylinder of radius r and height h.

Solution

For 0 ≤ x ≤ h, a slice has area A(x) = πr2, so the volume of the
cylinder is

V =

∫ h

0
πr2dx = πr2x

∣∣∣∣h
0

= πr2h

as expected and known.
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2. Compute the volume of a hollow cylinder with inner radius r and
outer radius R and height h.

Here, each slice is a washer whose area is

A(x) = πR2 − πr2.

So the volume is

V =

∫ h

0
(πR2 − πr2)dx = π(R2 − r2)h.
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In general, when a region bounded by the graph of y = f (x) for
a ≤ x ≤ b, is revolved about the X -axis, the solid thus generated has
volume

V =

∫ b

a
πf 2(x)dx .

For a hollow solid generated using f (x) ≥ g(x), the volume formula is

V = π

∫ b

a
(f 2(x)− g2(x))dx .
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3. Find the volume of the solid that results when the region enclosed
by y = sec x , x = π

4 , x = π
3 and y = 0 is revolved about the x-axis.

Here A(x) = π sec2 x and therefore,

V =

∫ π
3

π
4

π sec2 xdx = π tan x
∣∣∣∣π3
π
4

= π(
√

3− 1)

4. The region bounded by y = x2 and x = y2 is revolved about the x
axis. The solid thus generated has volume

V =

∫ 1

0
π((
√

x)2 − (x2)2)dx = π

∫ 1

0
(x − x4)dx =

3π
10
.
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6.3. Volume by cylindrical shells

Assignment: page 436, #1,2,8-11, 15,16,30-32.

We perform a uniform vertical drilling into n cylindrical shells. Provided
the drilling is fine enough, each cylindrical shell has volume
approximated by

∆Vi = πr2
i hi − πr2

i−1hi = πhi(ri + ri−1)(ri − ri−1) = 2πhi(
ri + ri−1

2
)∆r

The volume of the solid is itself approximated by a Riemann sum

V '
n∑

i=1

∆Vi =
n∑

i=1

2πhi(
ri + ri−1

2
)∆r
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Actual volume is obtained by taking the limit when n→∞ and it is
given by the definite integral

V = 2π
∫ b

a
rh(r) dr

Here, a and b are the inner and outer radius in the solid.
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Examples

Consider the region bounded by the curves y = cos x2, x = 0,
x = 1

2
√
π and y = 0. Revolve the region about the y-axis and compute

the volume of the solid thus generated.

Solution

Each elementary shell has volume 2π cos x2 x dx over the interval
[0,
√
π

2 ]. So

V = 2π
∫ √

π
2

0
x cos x2dx = ....... =

π
√

2
2

.

Example 2 The region bounded by xy = 4, x + y = 5 is revolved about
the x-axis. Compute the volume of the solid thus generated.
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6.4. Length of a plane curve

Assignment: page 441, #5-8,29-32

Elementary arc length:

dL =
√

(dx)2 + (dy)2 =

√
1 +

(
dy
dx

)2

dx

So The arc length is given by

L =

∫ b

a

√
1 +

(
dy
dx

)2

dx .
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Or, if x is the function of y ,

L =

∫ d

c

√
1 +

(
dx
dy

)2

dy .
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Examples

1. Find the arc length of the curve

x =
1
3

(y2 + 2)3/2

form y = 0 to y = 1.

L =

∫ 1

0

√
1 +

(
dx
dy

)2

dy =

∫ 1

0

√
1 + y2(y2 + 2)dy =

4
3
.
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6.5. Area of a surface of revolution

Assignment: page 447, #2,3,7,8.

1. Revolving y = f (x) about the X axis:

The elementary surface area:

dS = 2πf (x)dL = 2πf (x)
√

1 + (f ′(x))2dx

Hence, the surface area of revolution is given by:

S =

∫ b

a
2πf (x)

√
1 + (f ′(x))2dx .
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2. Revolving x = g(y) about the Y axis:

S =

∫ d

c
2πg(y)

√
1 + (g′(y))2dy .
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Example

y =
√

4− x2, −1 ≤ x ≤ 1, revolve the curve about the X axis. Find the
surface area of revolution thus generated.
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6.6 Force and Work

Assignment: page 456, #7,20-24.

The work W done by a force F (x) moving an object on a straight line
from x = a to x = b is given by

W =

∫ b

a
F (x)dx .

Example: A force of 50 N moving an object from 0 to 10 m.

The work done is∫ 10

0
50dx = 50× 10 = 500Nm(or Joules)
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Example: Elastic springs

Hooke’s Law:The force exerted by an elastic spring is given by

F(x)=kx

where x is the displacement beyond the natural length of the spring
and k is a constant, the spring constant.

A spring has natural length of 15in. A 45lb weight stretches the spring
to a length of 20in.

Find the spring constant k .

Find the work done in stretching the spring 3in beyond its natural
length.

Find the work done in stretching the spring from 20in to 25in.
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Work against gravity

Newton’s Law of gravitation:

F (r) = K
r2

where r is the distance from center of gravity and K is a constant.

So

W =

∫ R1

R

K
r2 dr

is the work done by lifting an object from R to R1.
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Example

Compute the work required to lift a 1000lb weight from an orbit 1000mi
above the earth’s surface to one 2000mi above.

First find the constant K .

1000 =
K

(4000)2

so K = (4000)2.1000 = 16.109 in mi2.lb

PR (FIU) MAC 2312 57 / 1



W =

∫ 6000

5000

16.109

r2 dr

1mi .lb = 5280foot .lb

W = 16.109
(
−1

6000
+

1
5000

)
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Work done by emptying a tank.

A rectangular (6 m by 4 m) cone shaped vat (3 m high), contains water
to 2 m deep. Find the work required to pump all the water to the top of
the vat. The weight density of water is 9810N/m3.
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Lifting a slice of water at height x ∈ [0,2] to the top requires an
elementary work

dw = (3− x)9810Adx

where A(x) is the vat’s cross sectional area at height x . This cross
sectional rectangle has dimension 2r by 6m where

r
x

=
2
3

So r = 2x
3 and A(x) = 12× 2x

3 = 8x .

dw = (3− x)9810× 8xdx and the work required is

W =

∫ 2

0
(3− x)9810(8x)dx Nm (or joules).
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Work done by filling a tank

Filling one layer at a time!

An elementary volume of a slice:

dv = A(y)dy

The elementary work required to lift the slice at hight y :
dw = yρA(y)dy

The total work required to fill the tank:

W =

∫ b

a
ρyA(y)dy
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Example

Find the work required to fill up a cylindrical tank, radius 5 ft, height 10
ft, with water from ground level.

W =

∫ 10

0
62.4yπ25dy = 25× 62.4π × 50lb.ft
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6.8. Force exerted by a fluid

Assignment: page 472, #5,6,8,10.

The pressure p = ρh where h is the fluid height, ρ is the weight density
of the fluid.

The elementary force exerted on either side of a submersed plate

dF = ρ(c − y)L(y)dy

where L(y) is the horizontal cross sectional length of the plate at
location y . The measure c is the length of fluid column.

The total force exerted on either side of the plate is

F =

∫ b

a
ρ(c − y)L(y)dy
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7.2. Integration by parts

Let u, v be two differentiable functions. The product rule for
differentiation tells us that

d(uv) = udv + vdu

So:

uv =

∫
d(uv) =

∫
udv +

∫
vdu

Or, equivalently:

uv =

∫
uv ′dx +

∫
vu′dx
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The more useful form of this formula is∫
udv = uv −

∫
vdu

(Integration by Parts formula)
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Examples

Compute
∫

xe3xdx .

Look at this as
∫

xd(1
3e3x ) =

∫
udv where u = x and v = 1

3e3x .

Then apply the IPF:

∫
xe3xdx =

∫
udv = uv −

∫
vdu = x

1
3

e3x −
∫

1
3

e3xdx

=
1
3

xe3x − 1
9

e3x + C.
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Compute: ∫ 2

1
x sec−1 xdx

∫
x sec−1 xdx =

∫
sec−1 xd(

x2

2
) =

∫
udv = uv −

∫
vdu

=
x2

2
sec−1 x −

∫
dx

x
√

x2 − 1

=
x2

2
sec−1 x − 1

4

∫
2xdx√
x2 − 1

So ∫ 2

1
x sec−1 xdx =

(
x2

2
sec−1 x − 1

2
(x2 − 1)

1
2

)2

1
= 2

π

3
−
√

3
2
.
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Application of IPF

Compute
∫

sin−1 xdx

∫
sin−1 xdx = x sin−1 x −

∫
xd(sin−1 x)

= x sin−1 x −
∫

x√
1− x2

dx = x sin−1 x −
√

1− x2 + c.

Similarly,
∫

cos−1 xdx can be computed!∫
tan−1 xdx = x tan−1 x −

∫
xd(tan−1 x) = x tan−1 x −

∫ x
1+x2 dx =

x tan−1 x − 1
2 ln(1 + x2) + C.
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7.3. Trigonometric Integrals

sinn xdx = sinn−1 x sin x = sinn−1 xd(− cos x)

So∫
sinn xdx =

∫
sinn−1 xd(− cos x) =

∫
udv

= uv −
∫

vdu

= −sinn−1x cos x +

∫
cos x(n − 1) sinn−2 x cos xdx

= − cos x sinn−1 x + (n − 1)

∫
(1− sin2x) sinn−2 xdx

= − cos x sinn−1 x + (n − 1)

∫
sinn−2 xdx

−(n − 1)

∫
sinn xdx
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Therefore

(1 + n − 1)

∫
sinn xdx = − cos x sinn−1 x + (n − 1)

∫
sinn−2 xdx

Or ∫
sinn xdx = −1

n
cos x sinn−1 x +

n − 1
n

∫
sinn−2 xdx .
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In the same manner

∫
cosn xdx =

1
n

cosn−1 x sin x +
n − 1

n

∫
cosn−2 xdx .
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Example:

Compute
∫ π

4
0 sin4 dx

∫
sin4 xdx = −1

4
cos x sin3 x +

3
4

∫
sin2 xdx

= −1
4

cos x sin3 x +
3
4

[(−)
1
2

cos x sin x +
1
2

∫
dx ]

= −1
4

cos x sin3 x − 3
8

cos x sin x +
3
8

x + c

and

∫ π
4

0
sin4 xdx = −1

4
+

3π
32
.
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Integrals of powers of sine and cosine

∫
sinm x cosn xdx

If both exponents are even, then using the identity
sin2 x + cos2 x = 1 reduces the integrand to a sum of even powers
of cos x or sin x .

If not, the integrand can be reduced to sums of one of the
following:

sinm x cos x

or
cosn x sin x

Then use the substitution method to compute the integral.
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examples

∫
sin2k x cos2l xdx =

∫
sin2k x(1− sin2 x)ldx
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∫
sinm x cos2k+1 xdx =

∫
sinm x cos2k x cos xdx

=

∫
sinm x(1− sin2 x)k cos xdx .

Making the substitution u = sin x , the integral becomes:

∫
um(1− u2)kdu
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Similarly, with the substitution u = cos x , the integral∫
sin2l+1 x cosn xdx

becomes
−
∫

(1− u2)lundu

PR (FIU) MAC 2312 76 / 1



Integration of powers of secant and tangent

∫
tanm x secn xdx

If both m and n are odd, then the substitution u = sec x will work.

If at least one of m and n is even, then use the identity
sec2 x = 1 + tan2 x to change into powers of sec x or tan x only.

PR (FIU) MAC 2312 77 / 1



Examples

∫
tan2k+1 x sec2l+1 xdx =

∫
(sec2 x − 1)k sec2l tan x sec xdx

=

∫
(u2 − 1)ku2ldu

where u = sec x .∫
tanm x sec2l xdx =

∫
tanm x(1 + tan2 x)ldx∫

tan2k x secn xdx =
∫

(sec2 x − 1)k secn xdx
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∫
sec xdx =

∫
sec x

sec x + tan x
sec x + tan x

dx

=

∫
sec2 x + sec x tan x

sec x + tan x
dx

=

∫
du
u

where u = sec x + tan x

= ln | sec x + tan x |+ c
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∫
secn xdx =

∫
secn−2 x sec2 xdx

=

∫
secn−2 xd(tan x) Integration by parts follows

= secn−2 x tan x −
∫

(n − 2) secn−3 x sec x tan2 xdx

= secn−2 x tan x − (n − 2)

∫
secn−2 x(sec2 x − 1)dx

(1 + n − 2)

∫
secn xdx = secn−2 x tan x + (n − 2)

∫
secn−2 xdx∫

secn xdx =
1

n − 1
secn−2 x tan x +

n − 2
n − 1

∫
secn−2 xdx

PR (FIU) MAC 2312 80 / 1



∫
tan xdx =

∫
u

1 + u2 du where u = tan x

=
1
2

∫
dv
v

where v = 1 + u2

=
1
2

ln |1 + tan2 x |+ c

=
1
2

ln | sec2 x |+ c∫
tan xdx = ln | sec x |+ c
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∫
tanm xdx =

∫
tanm−2 x tan2 xdx

=

∫
tanm−2 x(sec2 x − 1)dx

=

∫
tanm−2 x sec2 xdx −

∫
tanm−2 dx∫

tanm xdx =
tanm−1 x

m − 1
−
∫

tanm−2 xdx for m 6= 1.
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Examples

Compute

∫
tan4 θ sec4 θdθ

∫
x tan2(x2) sec2(x2)dx

∫ π
6

0
sec3 θ tan θdθ
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