
Lecture 5: Stationary States

November 18, 2016

1 Definition of Stationary States

The main question we discuss here is meaning of the energy conservation in Quantum Mechanics.
Our starting point in this case again should be the Classical Mechanics. In Classical Mechanics
within Hamiltonian formulation the time dependence of any observable Acl is defined by the relation:

dAcl
dt

=
∂Acl
∂t

+ {Acl, Hcl} (1)

where {· · ·} is a Poission brackets.
The above equation applied to the classical Hamiltonian itself (Acl = Hcl) means that it

becomes energy independent observable if there is no explicit time dependence in Hcl. Such a
function represents the conserved classical energy of the system.

Based on the correspondence principle - (I), one now assumes that there should be similar
to Hcl observable also in Quantum Mechanics which is explicitly time independent. Since for any
quantum mechanical observable one can associate an operator. Then naturally this will corresponds
to the Hamiltonian operator which is explicitly time independent: Ĥ.

Given such Hamiltonian operator one can now define the Stationary States as eigenstates of
this Hamiltonian.

Ĥ | ψn(t, q)〉 = En | ψn(t, q)〉 (2)

with time independent eigenvalues En. Here q is the generic variable on which Hamiltonian op-
erator, Ĥ depends on. Note that the similar equation is true also for the continuous spectrum of
the energy eigenstates En. Below we will use notations E and | ψE(q, t)〉 to identify the case with
continuous eigenstates. According to the above definition the meaning of the energy conservation
in Quantum Mechanics is that if at t = t0 the eigenvalue of the Hamiltonian was En, then it is En
for any other time.

1.1 Time dependence of the Stationary States

Using Schroedinger equation from Lecture 4 (Eq.()) one can obtain the time dependence of the
stationary states as follows:

ih̄
d | ψn(t, q)〉

dt
= Ĥ | ψn(t, q)〉 = En | ψn(t, q)〉 (3)
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where in the RHS part of the equation we used the fact that | ψn(t)〉 is an eigenstate of Ĥ. The
above differential equation can be explicitly solved for the t dependence part of the state vector by
the method of separable variables. Since En is t independent one can express the solution in the
form:

| ψn(t, q)〉 = A | φn(t)〉 | ψn(q)〉, (4)

where A is a constant. Inserting the above state vector in Eq.(3) one obtains simple first order
differential equation for the time dependent part of the stationary state vector:

ih̄
d | φn(t)〉

dt
= En | φn(t)〉 (5)

which has a solution in the form:
| φn(t)〉 = Be−i

En
h̄
t, (6)

where B is the constant of integration. Inserting above solution into Eq.(4) for the stationary sate
vector one obtains:

| ψn(t, q)〉 = e−i
En
h̄
t | ψn(q)〉. (7)

Here the absorbed the normalization constants into the state vector | ψ(q)〉.
Similarly for the continuous eigenvalue case one obtains:

| ψE(t, q)〉 = e−i
E
h̄
t | ψE(q)〉. (8)

Time Indeterminacy: It is worth comparing the solution of Eq.(7) to the solution of the free
particle wave function with fixed momentum px:

ψp(x) =
1√
2πh̄

ei
px
h̄
x (9)

This wave function as we discussed in the Lecture 4, is spread all over the space with constant
probability density to be found anywhere. In this respect Eq.(7) can be considered analogous to
Eq.(9) but in the time scale: that is the probability of observing energy En is constant at any given
time interval.
Time Dependence of any given Quantum State: If we use Eq.(7) as a orthonormal basis,
then we can express the time dependence of any given quantum state as superposition of stationary
states in the form:

| ψ(t)〉 =
∑
n

ane
−iEn

h̄
t | ψn(q)〉 (10)

where an are time independent coefficients.

1.2 Characterization of Eigenstates of Hamiltonian

Let us consider the several characteristics of eigenstates of Hamiltonian considering the discrete
and continuous cases separately.
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1.2.1 Spectrum

For the case of discrete spectrum the equation for the eigenstates and eigenvalues reads:

Ĥ | ψn〉 = En | ψn〉. (11)

Since En represents a discrete real numbers one can define its minimal value calling it ground state
or K-state. The full state the satisfies also Schroedinger equation according to Eq.() will be:

| ψn(t)〉 = e−i
En
h̄
t | ψn〉 (12)

The above relations can be extended to the continuum range of energy spectrum. In this case the
full wave function will read as:

| ψE(t)〉 = e−i
E
h̄
t | ψE〉 (13)

with the normalization condition:

〈ψ′E(t) | ψE(t)〉 = δ(E′ − E) (14)

- Wave Function: One can define the wave function corresponding to the full quantum state
(Eq.(13) (for one-dimensional case):

ψn(x, t) = 〈ψx | ψn(t)〉 (15)

where | ψx〉 is the eigenstate of Ĥ in Eq.(11). According our discussions in Lecture 4 the quantity
ρn(x) =| ψn(x, t) |2 will describe the coordinate distribution of the state. As it follows from Eq.(13)
such a distribution is time independent - representing one of the main features of stationary states.

- Expectation Values: For the set of eigenstates the expectation value of any given observable
A is:

Ā =
∑
n

〈ψn(t) | Â | ψn(t)〉 =
∑
n

〈ψn | Â | ψn〉, (16)

where the RHS part of the equation is obtained based on the fact that we are working within
Schroedinger picture in which the all operators of quantum mechanical observables are time inde-
pendent and we also use the relation of Eq.(13). As one can see for stationary states the expectation
values are time independent too.

- Degenerate States: If two eigenstates | ψn〉 and | ψn〉′ have same eigenvalue En, then such
states are called degenerate states. It can be show that the degeneracy takes place once there are
as minimum two hermitian operators f̂ and ĝ such tgat

[f̂ Ĥ] = [ĝĤ] = 0 but [f̂ ĝ] 6= 0 (17)

The degenerate states are characterized with several following properties:
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• Any linear combination of degenerate states is an eigenstate of Ĥ with the same eigenvalue

• Choice of an eigenstate for the degenerate states is not unique

• Degenerate sates are not orthogonal, however is is possible to construct an orthogonal state
with specific linear combination of the degenerate states

Example: One example of the degenerate stationary state is the free quantum state | ψE,px〉
which is an eigenstate of the p̂x and Ĥfree = p̂2

x
2m operators:

p̂x | ψE,px〉 = px | ψE,px〉 (18)

Ĥfree | ψE,px〉 =
p2
x

2m
| ψE,px〉.

, Since the eigenvalue for the energy E = p2
x

2m it follows that two different eigenstates ψE,px〉 and
ψE,−px〉 will have same eigenvalue for the energy. It will be interesting to identify what are those

mutually noncommutative f̂ and ĝ operators that commute with Ĥfree.

- Case of two (or more) Hamiltonians: If Ĥ = Ĥ1(q1)+Ĥ2(q2) where q1 and q2 are independent
parameters then, for the stationary state of Ĥ, | ψn〉 one has

| ψn〉n =| ψn1〉× | ψn2〉 with En = En1 + En2, (19)

where | ψn1/n2〉 and En1/n2 are the eigenstates and eigenvalues of hamiltonian H1 and H2 respec-
tively.

- Space Localization of Bound and unbound States: As we discussed above the stationary states
can have discreet or continues values of energy eigenvalues. This will corresponds to the following
condition for the normalization:

〈ψn | ψn〉 = 1 for discrete states

〈ψE′ | ψE〉 = δ(E′ − E) for continuous states (20)

Introducing the wave functions for the above quantum states:

ψn/E(r) = 〈ψr | ψn/E〉 (21)

one can represent the Eq.(20) in the following form∫
| ψn(r) |2 d3r = 1 for discrete states (22)

and ∫
ψ∗E′(r)ψE(r)d3r = δ(E′ − E) for continuous states (23)
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where in both cases the integration is over the whole physical space.
The above two equations allow us to make conclusion about the space localization of the

stationary states. For the discrete states since integrand is positive definitive, the integral over the
infinite space can be finite only if the probability density is localized in the finite space decreasing
at most exponentially at infinite distances from the main localization points. Such a situation will
correspond to the system being bound - which will refer hereafter as bound state. For the case
of the continues states. Eq.(23) indicates that in the limit of E′ → E the integral diverges which
will corresponds to the integrand being distributed over the infinite ranges in the space. Such a
situation represents a probability density to be unbound - referring them as unbound states.

1.2.2 Schroedinger Equation for Stationary States

Since stationary states are eigenstates of hamiltonian operator, then using relation of Eq.(11) for
the Schroedinger equation one obtains:

ih̄
d

dt
| ψn/E(q, t)〉 = Ĥ | ψn/E(q, t)〉 = En/ | ψn/E(q, t)〉 (24)

Projeceting the above equation to the coordinate space eigenstates for the Schroedinger wave
equation one obtains:

ih̄
d

dt
ψn/E(q, r, t) = − h̄

2∇2

2m
ψn/E(q, r, t) + V (r)ψn/E(q, r, t) = En/ψn/E(q, r, t) (25)

1.3 Seven Pillars of Wisdom of Schroedinger Equation for Stationary States

Wisdom 1:Properties of Stationary Wave Function. For the stationary case we are dealing with
the Schroedinger equation in the form:

− h̄
2∇2

2m
ψn/E(q, r, t) + V (r)ψn/E(q, r, t) = Enψn/E(q, r, t) (26)

Supplemented with the probability density and density current as follows:

ρ(r) = ψ∗n/E(r)ψn/E(r) (27)

~j(r) =
ih̄

2m

[
ψn/E(r)~∇ψ∗n/E(r)− ψ∗n/E(r)~∇ψn/E(r)

]
=

h̄

m
Imψ∗n/E(r)~∇ψn/E(r).

The above equations we consider with the conditions that the probability density and the current
are finite quantities having no singularities. These conditions imposes the following restrictions on
the wave functions that should be a solution of Eq.(26.

• If the potential energy operator V (r) is finite everywhere then ψn/E should be finite and
continuous everywhere.
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• Additionally ~j to be finite ~∇ψn/E(r) should be finite and finally to have finite solution for the
eigenvalue of energy in Eq.(26) ∇ψn/E(r) also should be continuous such that ∇2ψn/E(r) is
finite too.

However in the case in which V (r) has singularity the above conditions need to me amended
with the condition that

• The ∇̂ψn/E(r) should have discontinuity such that ∇2ψn/E(r) will contain a singularity which
will allow to cancel the singular part of V (r) such that Eq.(26) will produce a finite results
for E.

Wisdom 2: Energy Spectrum Iniquality. If the potential energy has a minimum Vmin then for any
eigenstate of the Hamiltonian (including the ground state):

En ≥ Vmin (28)

This statement can be proved noticing that for any given quantum state one can have relation:

〈ψ | Ĥ | ψ〉 = 〈ψ | T̂ | ψ〉+ 〈ψ | V̂ | ψ〉 ≥ 〈ψ | V̂ | ψ〉 ≥ Vmin, (29)

where in the above equation we used the fact that 〈ψ | T̂ | ψ〉 ≥ 0. Since this inequality is correct
for any state vector | ψ〉, by choosing them to be the eigenstate of Ĥ Hamiltonian, | ψn〉 with
corresponding to the eigenvalue of En one obtains the relation of Eq.(28).

Wisdom 3: Bound and Unbound Quantum States. Let us consider a potential that disappears at
infinite distances. For the one-dimensional example:

V (x) ||x|→∞= 0 (30)

The one can prove that the spectrum of negative energy states can be only discrete and represent
a bound state, while positive energy spectrum corresponds to the continuous quantum states.
• We start with considering the negative energy case E < 0. Considering now the Eq.(26) in

the |x| → ∞ limit where the potential energy is negligible one obtains:

− h̄2

2m

d2

dx2
ψ(x) = − | E | ψ(x), (31)

which has a finite solutions in the form of:

ψ(x) = Ce−κ|x| (32)

where κ =

√
2m|E|
h̄ . In the above wave function the constant C can be fixed to achieve a normal-

ization condition: ∞∫
−∞

|ψ(x)|2dx = 1, (33)
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which according to our discussion in Eq.(20) corresponds to the discrete spectrum of the bound
state.

• Considering now the positive energy spectrum E > 0 for Eq.(26) at large distances |x| → ∞
one obtains:

− h̄2

2m

d2

dx2
ψ(x) =| E | ψ(x), (34)

which has a solutions in the form of:

ψ(x) = Ae−ikx +Beikx, (35)

where k =
√

2mE
h̄ . With appropriate arrangements of constants A and B the above solution can be

normalized as: ∞∫
−∞

ψk′(x)ψk(x)dx = δ(k′ − k). (36)

According to our discussion in Eq.(20) such a normalization will corresponds to the wave function
representing an unbound wave function with continuous values for energy.

Thus the above discussion introduces a concept of absolute negative energy of the system. That
is if potential energy disappears at infinity then the constituents of bound system should necessarily
have a negative values of energy.

Wisdom 4: Quantum Tunneling. The one profound conclusion from the previous discussion is that
one can not trap the positive energy particle by the potential barrier that disappears at infinity.
This is the foundation of the Quantum Tunneling effect according to which the positive energy
particle trapped by the potential barrier will tunnel out from the trap and has finite probability
to appear at distances outside to the potential energy region. Such a tunneling also indicates a
possibility of the quantum particles to be in the state in which its energy E < V (x).

Wisdom 5: Stability of a bound system: Let us consider a potential energy that behaves as:

V (r) = − α
rs
, (37)

and consider a quantum state confined to the region of r ≤ r0. In this case since the uncertainty of
position is in the order of r0 and one expects that for a stationary system the average momentum
is close to zero the rms value of the momentum according to the uncertainty principle

p2
rms ∼

h̄2

r2
0

(38)

Using this relation one can estimate the expectation value of the kinetic energy for a given stationary
state to be:

〈T 〉 ∼ h̄2

2mr2
0

(39)
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and expectation value of the energy of the quantum system:

Ē ≈ 〈T 〉+ 〈V 〉 =
h̄2

2mr2
0

− α

rs0
(40)

From above relation one observes that if s > 2, Ē can be arbitrarily negative at small r0. Moreover
there are bound sates with Ē → −∞ localized at r0 → 0. Such a situation allows the ground state
(with infinitely large binding energy) to be at the position r0 which corresponds to the quantum
system falling (or imploding) into the center.

If however, s < 2 then Ē can not be arbitrarily negative. If initially Ē < 0 then approaching
towards the center there is always some rmin0 at which Ē ≥ 0. Thus the bound system can not fall
intro the center and will have minimal dimensions of oder of ∼ rmin0 . This result indicates that the
bound quantum system wth s < 2 will have stability at finite distances and therefore will be able
to sustain a structure.

Since Coulomb interaction behaves as −α
r , that is s = 1, the above results explains why atoms

are stable and electrons are not falling to the center as it follows from Classical Electrodynamics.

Wisdom 6: Characteristics of the energetic spectrum in dependence of the behavior of potential
energy V at infinity.

Let’s consider again V |r→infty→ 0 and being negative as in Eq.(37). Consider now the wave
packet concentrated at r0 → r0 + ∆r such that ∆r ∼ εr0, then one can estimate the expectation
values of kinetic energy as:

〈T 〉 ∼ h̄2

2m∆2r0
=

h̄2

2mε2r2
0

(41)

resulting in:

Ē ≈ 〈T 〉+ 〈V 〉 =
h̄2

2mε2r2
0

− α

rs0
. (42)

From above equation one observes that if s < 2 then at some large r0 one will have Ē ≤ 0 resulting
in a stationary bound states with ver large r0.The interesting property of these bound states is that
at r0 →∞ coressponds to :

Ē ≈∼ − α
r0
→ 0 (43)

which represents bound energy spectrum with its magnitude and relative spacing approaching to
0. Thus the discrete energy spectrum that corresponds to En → 0 with infinite number of the
states will indicate on the working of the potential of Eq.(37) with s < 2. One such example is the
Coloumb interaction.

If however s > 2 Ē becomes positive at some small r0 and number of negative sates are finite
with finite spacing between relative energy states.

Wisdom 7: The Time reversal in quantum mechanics. One of the outstanding properties of
Classical Mechanics is that for closed systems the invariance of the physical laws with respect
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to the time reversal t → −t. It is interesting to see whether such an invariance is preserved
in Quantum Mechanics. The answer is not trivial since in this fundamental level the reality is
described by the state vector rather than say coordinates ri and momenta pi like in Hamiltonian
formulation of Classical Mechanics. Since quantum mechanical analogue of classical closed systems
is the condition for the stationary states, to check the time reversal property one needs to consider
Schroedinger equation for the stationary states:

ih̄
d

dt
| ψ(q, t)〉 =

(
p2

2m
+ V

)
| ψ(q, t)〉 = E | ψ(q, t)〉. (44)

Applying time reversal transformation to the above equation one ontains:

−ih̄ d
dt
| ψ(q, t)〉 =

(
p2

2m
+ V

)
| ψ(q, t)〉 = E | ψ(q, t)〉. (45)

Comparing above two equations one observes that Eqs.(46) coincides with Eq.(46) only if one
considers the complex conjugate of it, i.e.

ih̄
d

dt
| ψ∗(q, t)〉 =

(
p2

2m
+ V

)
| ψ∗(q, t)〉 = E | ψ∗(q, t)〉. (46)

thus we conclude that the time reversal invariance in quantum mechanics need to be generalized
to the requirement of the invariance with respect to the wider transformation, such as:

t→ −t and | ψ〉 →| ψ∗r〉 (47)

2 Virial Theorem

As we observed above the stationary states have the most simple time dependence defined by their
energy eigenvalues. This fact results in the new relationship between operators of kinetic and
potential energies - commonly referred as Virial Theorem

To start we recall the energy dependence of the expectation value any given operator Q̂:

d〈Q̂〉
dt

=
i

h̄
〈[Ĥ, Q̂]〉+

∂〈Q̂〉
dt

. (48)

Since the time dependence of the stationary states are defined as in Eq.(7) and we are working within
the Schroedinger representation of Quantum Mechanics in which operators are time independent,
from the above equation one obtains that the time dependence of the expectation values of operators
is defined solely by the comutator of a given operator and Hamiltonian, i.e.

d〈Q̂〉
dt

=
i

h̄
〈[Ĥ, Q̂]〉. (49)
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If now further we choose operator Q̂ such that it is diagonal in time, i.e. does not alter the
time dependence of the stationary state for which expectation value is calculated then one obtains
d〈Q̂〉
dt = 0 resulting in

〈[Ĥ, Q̂]〉 = 0. (50)

This relation in principle we can call generalized Virial Theorem. For particular example we now
consider the case: Q̂ = x̂p̂ obtaining:

〈[Ĥ, x̂p̂]〉 = 〈[Ĥ, x̂]p |〉+ 〈x̂[Ĥ, p̂]〉 = 0, (51)

where in the above expression we used the relation:

[A,BC] = [AB]C +B[AC]. (52)

We now consider the commutators in Eq.(51) separately. Using the generic form of the Hamiltonian

Ĥ = p̂2

2m + V̂ (x) as well as commutation relation [x̂p̂] = ih̄

[Ĥ, x̂] = [
p̂2

2m
+ V̂ (x), x̂] = [

p̂2

2m
, x̂] =

1

2m
[p̂2, x̂] = − 1

2m
([x̂p̂]p̂+ p̂[x̂p̂] = − 1

2m
(2ih̄p̂) = − ih̄p

m
. (53)

Next, using the commutator relation [F̂ (x), p̂] = ih̄dF (x)
dx for any continuos function of F (x̂) one

obtains

[Ĥ, p̂] = [V̂ , p̂] = ih̄
dV̂ (x)

dx
. (54)

Note that in this case V̂ (x) is understood as V being continuous function of operator x̂. Inserting
Eqs.(53) and (54) into Eq.(51) one obtains

〈−ih̄ p̂
2

m
〉+ 〈ih̄x̂dV̂ (x)

dx
〉 = 0, (55)

which can be rearranged in the form of

2〈T̂ 〉 = 〈x̂dV̂ (x)

dx
〉. (56)

The above relation represents the Virial Theorem for one-dimensional case.
Considering the same derivation for each i = 1, 2, 3 components separately, the above expression

can be generalized for the three-dimensional case as follows:

2〈T̂ 〉 = 〈~̂r · ~∇V̂ (r)〉. (57)
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3 Examples of Application of Virial Theorem

3.1 Harmonic Oscillator

For one-dimensional Harmonic oscillator one can use the virial theorem to calculate its RMS dis-
tance. For this we note that expectation value of the Hamiltonian based on its eigenstates is:

〈H〉 = (n+
1

2
)h̄ω = 〈T 〉+ 〈V 〉 (58)

where V (x) = 1
2mω

2x2. Using the Virial theorem one obtains:

2〈T 〉 = 〈xdV
dx

= 2〈V 〉 = mω2〈x2〉 (59)

From the above relation it follows that 〈T 〉 = 〈V 〉 therefore from Eq.(58) one obtains:

2〈V 〉 = (n+
1

2
)h̄ω (60)

Using now the relation 〈V 〉 = 1
2mω

2〈x2〉 one obtains:

〈x2〉 =
(n+ 1

2)h̄

mω
. (61)

This result indicates that the square of the RMS radios of one-dimensional oscillator increases
linearly with the excitation energy.

3.2 Single Electron Atom

One can use the Virial Theorem to estimate the radius of a single electron atom as a function of
it’s excitation energy. We consider an electron in the Coulomb field of Z proton nucleus:

V (r) = −Zαh̄c
r

(62)

where α = e2

h̄c = 1/137.036. The energy levels of the electron in such atom are:

En = −Z
2α2mc2

2n2
. (63)

Using now the Virial Theorem for three-dimensional case one obtains:

2〈T̂ 〉〈~̂r · ~∇V̂ (r)〉 = −Zαh̄c〈r d
dr

(
1

r
)〉 = Zαh̄〈1

r
〉 = −〈V (r)〉. (64)

Using this relation and the expectation value for the Hamiltonian using its eigenstates one obtains:

〈H〉 = 〈T 〉+ 〈V 〉 =
1

2
〈V 〉. (65)
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Now using the fact that 〈H〉 = En and Eq.(62) from the above equation we can estimate the average
radius of the atom

〈1
r
〉 = 2

1

Zαh̄c

Z2α2mc2

2n2
=
Zαmc

h̄n2
. (66)

The interesting result here is that while for Harmonic Oscillator the size of the system grows like
∼
√
n, for single electron atom it grows as ∼ n2.
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