Physical Foundation of Quantum Computing PHY 4745 & PHY 6646

Misak Sargsian

M,W 6:25-7:40pm, CP101

Office Hours M,W - 3:30-4:30pm
CP224, sargsian@fiu.edu, 305-348-3954



Lecture 1Basic Quantum Mechanics for Quantum Computing

(1) What is Quantum Mechanics
(2) Axioms and Some Theorems of Quantum Mechanics
(3) Copenhagen Interpretation
(4) Entanglement and EPR Paradox
(5) Spin of Electron
(6) Polarization of Photons
(7) New Algebra

Lecture 2: What is Qubit?
(1)  Classical Bits
(1)  Quantum Qubits
(3) Quantum Cryptography

 
 
    


Lecture 3: Manipulating Qubits

(1) The Bloch Sphere, Spin 1/2
(2) Dynamical Evolution

(3) Manipulating Qubits: Rabi Oscillations
(4) Principles of NMR and MRI
 

Lecture 4: Quantum Correlations

(1) Two-Quibit States
(2) The State Operator (or Density Operator)
(3) The Quantum No-Cloning Theorem
(4) Decoherence
(5) The Bell Inequalities



Lecture 5: Introduction to Quantum Computing

(1) General Remarks

(2) Reversible Calculation
(3) Quantum Logic Gates

(4) The Deutsch Algorithm
(5) Generalization to n+m Qubits
(6) The Grover Search Algorithm
(7) The Quantum Fourier Transformation
(8) The Period of Function
(9) Classical Algorithms and Quantum Algorithms

Lecture 6: Physical Realizations
(1) NMR as a Quantum Computer
(2) Trapped Ions
(3)  Superconducting Qubits

(4) Quantum Dots
 

Lecture 7: Partial Differential Equations:
(1)  Boundary Value Problems and the Relaxation Method
(2)  Faster Method for Boundary Value Problems
(3)  Initial Value Problems

 


Lecture 8: Quantum Information
(1) Teleportation
(2) Shannon Entropy
(3)  Von Neumann Entropy
(4) Quantum Error Correction



Appendix: Python Installation
Python code examples for QComp




 ?   Information.

 QCompEverybody



Suggested Books & Links


1. "Quantum Computing for Everyone"
Chris Bernhardt (primary)

2."Quantum Computation and Quantum Information
Michael A. Nielsen, and Isaac L. Chuang

3. "Learn Quantum Computing with  Python
   and IBM Quantum Experience"
Robert Loredo

4. Online Resources at
 https://indico.cern.ch/event/970903/

 

The  pieces of the Final Grade:

Homeworks  (40%)
Presentation (20%)
Final Project (40%)

 

Homework Assignments:
(10% less for each day of the late homework)

HW1 ( due January 17 )

 HW2  (due January 24 )

HW3   (due  January 31)
 
HW4 
(due February 7)
 
HW5 
(due  February 14)

HW6  (due  February 21)

HW7  (due  )

HW8 (due  )

HW9 (due  )

HW10 (due  )

HW11 (due  )

HW12 (due  )

 Project (due  )  (choose one of the projects)

Library

 Grades (10% less for each day of late homeworks)
>90 A
>85-89 A-
>80-84 B+
>75-79 B
>70-74 B-
>65-69 C+
>60-64 C
>55-59 D
<55 F
 

 

�2020 Quantum Computing; � Misak Sargsian ABCDE