The EMC and EMC-like Effects Exposing the partonic structure of nuclei

Ian Cloët Argonne National Laboratory

Next generation nuclear physics with JLab12 and EIC Florida International University, Miami 10–13 February 2016

Office of Science

The EMC Effect

- Measurement of the *EMC effect* created a new paradigm regarding QCD and nuclear structure
 - 30+ years after discovery a broad consensus on explanation is lacking
 - valence quarks in nucleus carry less momentum than in a nucleon
- Understanding origin is critical for a QCD based description of nuclei
- Modern QCD motivated explanations based around medium modification of the bound nucleons
 - is modification caused by mean-fields which modify all nucleons all the time or by SRCs which modify some nucleons some of the time?

The EMC Effect

- Measurement of the EMC effect created a new paradigm regarding QCD and nuclear structure
 - 30+ years after discovery a broad consensus on explanation is lacking
 - valence quarks in nucleus carry less momentum than in a nucleon
- Understanding origin is critical for a QCD based description of nuclei
- Modern QCD motivated explanations based around medium modification of the bound nucleons
 - is modification caused by mean-fields which modify all nucleons all the time or by SRCs which modify some nucleons some of the time?

Many nuclear physicists still insist on nuclear structure explanation

Mean-Field Medium Modification

- Nuclei are extremely dense:
 - proton rms radius is $r_p \simeq 0.85$ fm, corresponds hard sphere $r_p \simeq 1.10$ fm
 - ideal packing gives $\rho \simeq 0.13 \text{ fm}^{-3}$; nuclear matter density is $\rho \simeq 0.16 \text{ fm}^{-3}$
 - 20% of nucleon volume inside other nucleons nucleon centers $\sim 2 \text{ fm}$ apart
- For realistic charge distribution 22% of proton charge at distances r > 1 fm
- Natural to expect that nucleon properties are modified by nuclear medium – even at the mean-field level
 - in contrast to traditional nuclear physics
- Understanding validity of two viewpoints remains key challenge for nuclear physics
 - a new paradigm or deep insights into colour confinement in QCD

Mean-Field Medium Modification

table of contents

Understanding the EMC effect

- The puzzle posed by the EMC effect will only be solved by conducting new experiments that expose novel aspects of the EMC effect
- Measurements should help distinguish between explanations of EMC effect e.g. whether *all nucleons* are modified by the medium or only those in SRCs
- Important examples are measurements of the EMC effect in polarized structure functions & the flavour dependence of EMC effect
- A JLab experiment has been approved to measure the spin structure of ⁷Li
- Flavour dependence will be accessed via JLab DIS experiments on ⁴⁰Ca & ⁴⁸Ca but parity violating DIS stands to play the pivotal role

Continuum QCD

- this is just a modern interpretation of the Nambu-Jona-Lasinio (NJL) model
- model is a Lagrangian based covariant QFT, exhibits dynamical chiral symmetry breaking & quark confinement; elements can be QCD motivated via the DSEs
- Quark confinement is implemented via proper-time regularization
 - quark propagator: $[p m + i\varepsilon]^{-1} \rightarrow Z(p^2)[p M + i\varepsilon]^{-1}$
 - wave function renormalization vanishes at quark mass-shell: $Z(p^2 = M^2) = 0$
 - confinement is critical for our description of nuclei and nuclear matter

Nucleon Electromagnetic Form Factors

• Nucleon = quark+diquark • Form factors given by Feynman diagrams:

Calculation satisfies electromagnetic gauge invariance; includes

- dressed quark–photon vertex with ρ and ω contributions
- contributions from a pion cloud

Nucleon quark distributions

• Nucleon = quark+diquark • PDFs given by Feynman diagrams: $\langle \gamma^+ \rangle$

Covariant, correct support; satisfies sum rules, Soffer bound & positivity

 $\langle q(x) - \bar{q}(x) \rangle = N_q, \ \langle x u(x) + x d(x) + \ldots \rangle = 1, \ |\Delta q(x)|, \ |\Delta_T q(x)| \leqslant q(x)$

A Nucleon in the Nuclear Medium

- For nuclei, we find that quarks bind together into colour singlet nucleons
 - however contrary to traditional nuclear physics approaches these quarks feel the presence of the nuclear environment
 - as a consequence bound nucleons are modified by the nuclear medium
- Modification of the bound nucleon wave function by the nuclear medium is a *natural consequence* of quark level approaches to nuclear structure
- For a proton in nuclear matter find
 - Dirac & charge radii each increase by about 8%; Pauli & magnetic radii by 4%
 - $F_{2p}(0)$ decreases; however $F_{2p}/2M_N$ almost constant μ_p almost constant

A Nucleon in the Nuclear Medium

- For nuclei, we find that quarks bind together into colour singlet nucleons
 - however contrary to traditional nuclear physics approaches these quarks feel the presence of the nuclear environment
 - as a consequence bound nucleons are modified by the nuclear medium
- Modification of the bound nucleon wave function by the nuclear medium is a *natural consequence* of quark level approaches to nuclear structure

For a proton in nuclear matter find

- Dirac & charge radii each increase by about 8%; Pauli & magnetic radii by 4%
- $F_{2p}(0)$ decreases; however $F_{2p}/2M_N$ almost constant μ_p almost constant

EMC and Polarized EMC effects

Definition of polarized EMC effect:

• ratio equals unity if no medium effects

- Large polarized EMC effect results because in-medium quarks are more relativistic (M* < M)
 - lower components of quark wave functions are enhanced and these usually have larger orbital angular momentum
 - in-medium we find that quark spin is converted to orbital angular momentum
 - A large polarized EMC effect would be difficult to accommodate within traditional nuclear physics and numerous other explanations of the EMC

EMC effects in Finite Nuclei

Spin-dependent cross-section is suppressed by 1/A

- should choose light nucleus with spin carried by proton e.g. \implies ⁷Li, ¹¹B, ...
- Effect in ⁷Li is slightly suppressed because it is a light nucleus and proton does not carry all the spin (simple WF: $P_p = 13/15$ & $P_n = 2/15$)
- Experiment now approved at JLab [E12-14-001] to measure spin structure functions of ⁷Li (GFMC: $P_p = 0.86$ & $P_n = 0.04$)

Everyone with their favourite explanation for the EMC effect should make a prediction for the polarized EMC effect in ⁷Li

table of contents

Turning off Medium Modification

Without medium modification both EMC & polarized EMC effects disappear

 Polarized EMC effect is smaller than the EMC effect – this is natural within standard nuclear theory and also from SRC perspective

Large splitting very difficult without *mean-field* medium modification
 table of contents JLab12 and EIC 10-13 February 2016

Mean-field vs SRC induced Medium Modification Argonne

Explanations of EMC effect using SRCs also invoke medium modification

• since about 20% of nucleons are involved in SRCs, need medium modifications about 5 times larger than in mean-field models

• For polarized EMC effect only 2–3% of nucleons are involved in SRCs

- it would therefore be natural for SRCs to produce a smaller polarized EMC effect
- Observation of a large polarized EMC effect would imply that SRCs are less likely to be the mechanism responsible for the EMC effect

table of contents

Flavour dependence of EMC effect

Find that EMC effect is basically a result of binding at the quark level

- for N > Z nuclei, d-quarks feel more repulsion than u-quarks: $V_d > V_u$
- therefore u quarks are more bound than d quarks
- Find isovector mean-field shifts momentum from u-quarks to d-quarks

$$q(x) = \frac{p^+}{p^+ - V^+} q_0 \left(\frac{p^+}{p^+ - V^+} x - \frac{V_q^+}{p^+ - V^+}\right)$$

• therefore, from protons to neutrons – this is opposite to SRCs, however unknown medium modification may still shift momentum from u to d

The NuTeV anomaly

• NuTeV: $\sin^2 \theta_W = 0.2277 \pm 0.0013(\text{stat}) \pm 0.0009(\text{syst})$ [Zeller et al. PRL. 88, 091802 (2002)]

- Standard Model: $\sin^2 \theta_W = 0.2227 \pm 0.0004 \Leftrightarrow 3\sigma \implies$ "NuTeV anomaly"
- At the time widely thought as evidence for physics beyond Stardard Model
- Corrections from the EMC effect $(\sim 1.5 \sigma)$ and charge symmetry violation $(\sim 1.5 \sigma)$ brings NuTeV result into agreement with the Standard Model
 - mean isovector field shifts momentum from u to d-quarks [therefore from p to n]

Parity-Violating DIS

Opportunities at an EIC

- The reaction $e^{\mp} A \longrightarrow \nu(\bar{\nu}) X$ has incredible promise for shedding new light on nucleon and nuclear PDFs
 - at EIC neutrino energy can be reconstructed from final state

Parton model expressions for W^{\pm} structure functions

$$F_1^{W^+} = \bar{u} + d + s + \bar{c} \qquad F_3^{W^+} = -\bar{u} + d + s - \bar{c}$$

$$F_1^{W^-} = u + \bar{d} + \bar{s} + c \qquad F_3^{W^-} = u - \bar{d} - \bar{s} + c$$

- Would provide much needed data on flavour structure of both valence and sea quark distribution functions
- Flavour dependence can also be test using e.g. SIDIS, π^+/π^- Drell-Yan, PVDIS, ν -DIS & W-production at RHIC

Quasi-elastic scattering

The cross-section for this process reads

$$\frac{d^2\sigma}{d\Omega \,d\omega} = \sigma_{\text{Mott}} \left[\frac{q^4}{|\boldsymbol{q}|^4} \, \boldsymbol{R}_L(\omega, |\boldsymbol{q}|) + \left(\frac{q^2}{2 |\boldsymbol{q}|^2} + \tan^2 \frac{\theta}{2} \right) \boldsymbol{R}_T(\omega, |\boldsymbol{q}|) \right]$$

- response functions are accessed via Rosenbluth separation
- In the DIS regime $Q^2, \omega \to \infty$ $x = Q^2/(2M_N\omega) = \text{constant} \text{response}$ functions are proportional to the structure functions $F_1(x, Q^2)$ and $F_2(x, Q^2)$

Coulomb Sum Rule

The "Coulomb Sum Rule" reads

$$C(|\mathbf{q}|) = \int_{\omega^+}^{|\mathbf{q}|} d\omega \; \frac{S_L(\omega, |\mathbf{q}|)}{\tilde{G}_E^2(Q^2)}$$
$$\tilde{G}_E^2 = Z \, G_{Ep}^2(Q^2) + N \, G_{En}^2(Q^2)$$

- Non-relativistic expectation as |q|becomes large – $C(|q| \gg p_F) \rightarrow 1$
 - CSR counts number of charge carriers
- The CSR was first measured at MIT Bates in 1980 then at Saclay in 1984

- both experiments observed significant quenching of the CSR
- Two plausible explanations: 1) *nucleon structure is modified in the nuclear medium;* 2) *experiment/analysis is flawed e.g. Coulomb corrections*

1.2

A number of influential physicists have argued very strongly for the latter

Coulomb Sum Rule Today

- No new data on the CSR since SLAC data from early 1990s
- The *quenching* of the CSR has become one of the most contentious observations in all of nuclear physics
- Experiment E05-110 was performed at Jefferson Lab in 2005

 should settle controversy of CSR *quenching*
- State-of-the-art traditional nuclear physics (GFMC) calculations find no quenching

Longitudinal Response Function

- Longitudinal polarization Π_L is obtained by solving a Dyson equation
- We consider two cases: (1) the electromagnetic current is that if a free nucleon; (2) the current is modified by the nuclear medium
- The *in-medium* nucleon current causes a sizeable quenching of the longitudinal response
 - driver of this effect is modification of the proton Dirac form factor
- Nucleon RPA correlations play almost no role for |q| ≥ 0.7 GeV

Coulomb Sum Rule

$$C(|\mathbf{q}|) = \int_{\omega^+}^{|\mathbf{q}|} d\omega \; \frac{S_L(\omega, |\mathbf{q}|)}{\tilde{G}_E^2(Q^2)}$$
$$\tilde{G}_E^2 = Z \, G_{Ep}^2(Q^2) + N \, G_{En}^2(Q^2) \underbrace{\overline{\mathfrak{S}}}_{\mathcal{S}}$$

- Recall that the non-relativistic expectation is unity for $|q| \gg p_F$
- GFMC ¹²C results are consistent with this expectation

- For a *free nucleon current* find relativistic corrections of 20% at $|q| \simeq 1 \text{ GeV}$
 - in the non-relativistic limit our CSR result does saturate at unity
- An *in-medium nucleon current* induces a further 20% correction to the CSR
 - good agreement with exisiting ²⁰⁸Pb data although this data is contested
- Our ¹²C result is in stark contrast to the corresponding GFMC prediction
 - forthcoming Jefferson Lab should break this impasse

Conclusion

- New Jefferson Lab results for the CSR are expected
 - confirmation or otherwise of the quenching of the CSR will have a dramatic impact
- Two state-of-the-art calculations predict vastly different results
 – for well understood reasons –
- Understanding the EMC effect is a another critical step towards a QCD based description of nuclei
 - approved JLab experiment will measure the polarized EMC effect in ⁷Li; PVDIS also important!
- The next frontier is GPDs and TMDs of nuclei at JLab12 or an EIC

