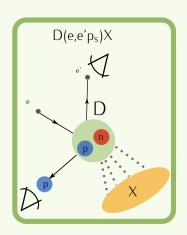
Final-state interactions in tagged DIS with the deuteron

Wim Cosyn

Ghent University, Belgium

Next generation nuclear physics with Jlab12 and EIC FIU, Miami Feb 13 2016

Tagged Spectator DIS off the deuteron

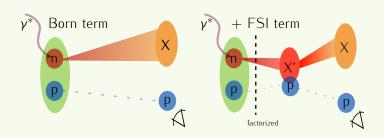


- Detection of a slow spectator proton
- At low proton momenta: extraction of neutron structure function
 - Necessary for flavor separation of pdf's (u/d ratio)
 - Constrain quark models of the nucleon
- At higher proton momenta: probe high density configurations, nucleon modifications, 6 quark configurations,...?
- For kinematics with high FSI: study space-time evolution of hadronization, constrain rescattering models.

Motivation

- (tagged spectator) DIS with intermediate Q^2 , high Bjorken x
- Resonance region $W \lesssim 2.5$ GeV
- Limited phase space for the final hadronic state → closure approximation not applicable
- Study influence of final-state interactions (FSI) through effective rescattering amplitudes

Reaction diagrams



- X: details about composition and evolution unknown
- Use general properties of soft scattering theory, without specifying X
- Factorized approach

W.C., M. Sargsian, PRC84 014601

- Generalised Eikonal Approximation
 - ▶ takes spectator recoil into account

4 / 26

- ► can use realistic nuclear wf
- Ideal for light nuclei! (D, ³He, ...)

Factorization

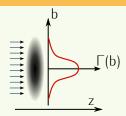
Relate semi-inclusive deuteron structure functions to the **neutron** ones for a moving nucleon at $\hat{x} = \frac{Q^2}{2p_i \cdot q} \approx \frac{x}{2-\alpha_s}$...

$$F_T^D(x, Q^2) = \left[2F_{1N}(\hat{x}, Q^2) + \frac{p_T^2}{m_i \hat{v}} F_{2N}(\hat{x}, Q^2)\right] \times S^D(p_r)(2\pi)^3 2E_r$$

...times a distorted spectral function that contains a plane-wave and FSI constribution. FSI amplitude has an on-shell and off-shell part (related to propagator of intermediate X').

$$S^{D}(\mathbf{p}_{r}) = \frac{1}{3} \sum_{M,s_{r},s_{s}} \left| \overbrace{\Phi_{D}^{M}(\mathbf{p}_{i}s_{i}, \mathbf{p}_{s}s_{s})}^{PW} - \int \underbrace{\frac{d^{3}\mathbf{p}_{s'}}{(2\pi)^{3}} \chi(\mathbf{p}_{s'}, \mathbf{m}_{x'}) \langle \mathbf{p}_{r}X | \mathcal{F} | \mathbf{p}_{s'}X' \rangle \frac{\Phi_{D}^{M}(\mathbf{p}_{i'}s_{i}, \mathbf{p}_{s'}s_{s})}{(\mathbf{p}_{s'}^{2} - \mathbf{p}_{s}^{2} + \Delta' - i\epsilon)} \right|^{2}}$$

FSI: Generalized eikonal approximation



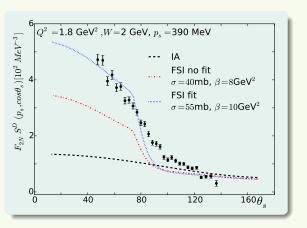
 Scattering amplitude is parametrized with the standard diffractive form

$$\langle \boldsymbol{p}_{r}, \boldsymbol{X} | \mathcal{F} | \boldsymbol{p}_{r'} \boldsymbol{X}' \rangle = \sigma_{\text{tot}}(\boldsymbol{W}, \boldsymbol{Q}^{2}) (i + \epsilon(\boldsymbol{W}, \boldsymbol{Q}^{2})) e^{\frac{\beta(\boldsymbol{W}, \boldsymbol{Q}^{2})}{2} t} \delta_{\boldsymbol{S}_{r}, \boldsymbol{S}_{r'}} \delta_{\boldsymbol{S}_{\boldsymbol{X}} \boldsymbol{S}_{\boldsymbol{X}'}}$$

Eikonal regime gives approximate conservation law $p_s^+ = p_{s'}^+$ in the high q limit. This leads to $m_X^2 > m_{X'}^2$, and yields pole values in the FSI integral of

$$\begin{split} \rho_{s,z} - \rho_{s,z}' &= \Delta = \frac{\nu + M_D}{\mid \vec{q} \mid} (E_s - m_p) + \frac{m_X^2 - m_{X'}^2}{2 \mid \vec{q} \mid} & \text{for } m_{X'}^2 \leq m_X^2 \,, \\ \rho_{s,z} - \rho_{s,z}' &= \Delta = \frac{\nu + M_D}{\mid \vec{q} \mid} (E_s - m_p) & \text{for } m_{X'}^2 > m_X^2 \,. \end{split}$$

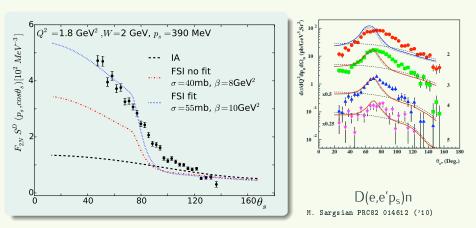
$D(e,e'p_s)X$ calculation without fits ($p_s = 300 - 560 \text{ MeV}$)



- Plane-wave calculation shows little dependence on spectator angle
- FSI effects grow in forward direction, different from quasi-elastic case

Wim Cosyn (UGent) Next gen nucl phys Feb 13, 2016 7 / 26

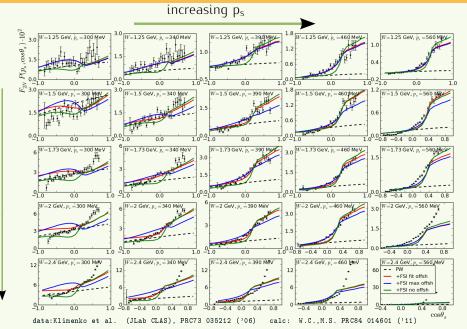
$D(e,e'p_s)X$ calculation without fits ($p_s = 300 - 560$ MeV)



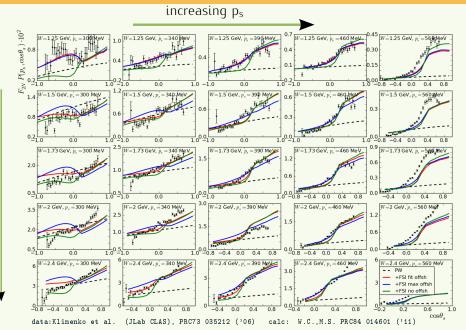
- Plane-wave calculation shows little dependence on spectator angle
- FSI effects grow in forward direction, different from quasi-elastic case

Wim Cosyn (UGent) Next gen nucl phys Feb 13, 2016 7 / 26

Calculation with $\sigma_{\rm XN}$ and $\beta_{\rm XN}$ fitted at ${\rm Q^2}{=}1.8~{\rm GeV^2}$



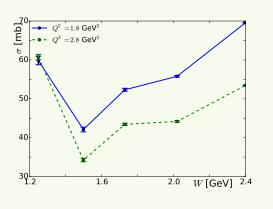
Calculation with $\sigma_{\rm XN}$ and $\beta_{\rm XN}$ fitted at ${\rm Q^2}{=}2.8~{\rm GeV^2}$



Results discussion

- Overall very nice agreement between the calculations and JLab CLAS Deeps data
- Systematic underestimation of data at p_s=560 MeV, breakdown of factorization, contribution from current fragmentation
- At lowest spectator momentum plane-wave and FSI amplitude comparable in magnitude, sensitive to smalldifferences
- Fitted off-shell calculations correspond more with no off-shell ones, pointing to suppressed off-shell amplitude

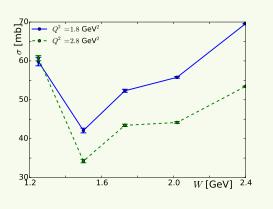
What can the σ_{XN} fit teach us?



- σ rises with invariant mass W, no sign of hadronisation plateau
- σ drops with Q², sign of Color Transparency?

- \blacksquare More measurements at higher Q^2 needed
- Values can be used as input for FSI effects in other calculations, such as inclusive DIS

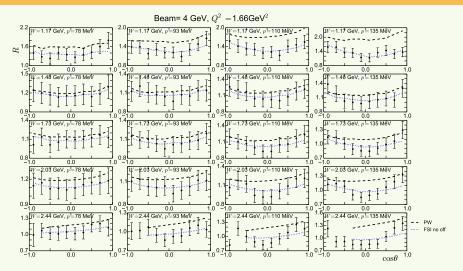
What can the σ_{XN} fit teach us?



- σ rises with invariant mass W, no sign of hadronisation plateau
- σ drops with Q², sign of Color Transparency?

- More measurements at higher Q² needed
- Values can be used as input for FSI effects in other calculations, such as inclusive DIS

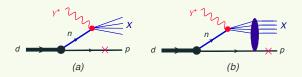
Comparison with BONuS ($p_s = 70 - 140 \text{ MeV}$)



Plane-wave calculation shown here with same normalization as the FSI one (so not fitted)

Wim Cosyn (UGent)

Free neutron F_{2n} extraction

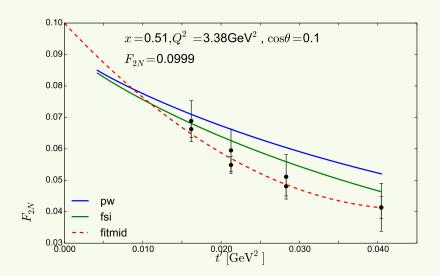


- On-shell neutron: take limit $t'=p_i^2-m_n^2=(p_D-p_s)^2-m_n^2\to 0$: plane-wave part of the spectral function has a quadratic pole while the FSI part has not (loop theorem).
 - ${\tt M.}$ Sargsian, and ${\tt M.}$ Strikman, PLB639, 223(2006)
- Provides model independent manner of extracting neutron structure.
 FSI, Fermi motion effects naturally disappear.
- Small binding energy of deuteron means extrapolation is not that far into the unphysical region
- Similar to Chew-Low extrapolation used to extract pion structure
- Application for EIC: JLab LDRD project ((un)polarized D,³He)
 Talk by K. Park

Use Bonus data: extrapolation

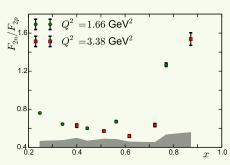
- Normalization issue with BONuS data: detector efficiency varied with p_s . Cross sections normalized to plane-wave model in backward spectator region
- Refitted this normalization of the data for the highest Q^2 , W bins $(\rightarrow \text{"low" } x)$, where F_{2n} is well established.
- Introduces some model dependence in this particular analysis. Not an issue in collider kinematics: no target material, forward detection, extrapolation distance is smaller...
- For each W, Q^2 bin, extrapolation done as a weighted average over all spectator angle bins

Use Bonus data: extrapolation



Data from two beam (4 and 5 GeV) energies

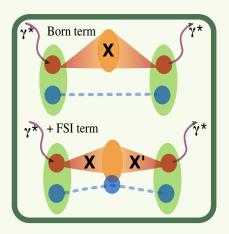
Use Bonus data: F_{2n}/F_{2p}



W.C., M. Sargsian, arXiv:1506.01067

- Robust results wrt deuteron wave function, fsi parameters, normalization of the data used in the extraction.
- Striking rise of the ratio at high x, would mean large d/u ratio at high x
 - Ratio highest at largest Q^2 value ... Duality arguments??
- Sign of hard isosinglet quark-quark correlation, analogous to np pairing in nuclei?

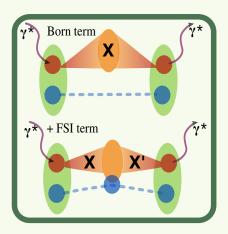
Inclusive DIS



W.C., M. Sargsian, W. Melnitchouk, PRC89, 014612 (2014)

- Optical theorem: relate hadronic tensor for inclusive process to imaginary part of forward scattering amplitude $W_{D,\text{incl}}^{\mu\nu} = \frac{1}{2\pi M_D} \frac{1}{3} \sum_{s_D,N} Im(A^{\mu\nu}_{s_D})$
- Effective rescattering amplitude: only possible FSI diagram
- FSI amplitude contains double on-shell and double off-shell rescatterings. On-shell off-shell cross terms cancel.
- Symmetrical (X' = X) and assymetrical rescatterings considered.

Inclusive DIS



W.C., M. Sargsian, W. Melnitchouk, PRC89, 014612 (2014)

- Optical theorem: relate hadronic tensor for inclusive process to imaginary part of forward scattering amplitude $W_{D,\text{incl}}^{\mu\nu} = \frac{1}{2\pi M_D} \frac{1}{3} \sum_{s_D,N} Im(A^{\mu\nu}_{s_D})$
- Effective rescattering amplitude: only possible FSI diagram
- FSI amplitude contains double on-shell and double off-shell rescatterings. On-shell off-shell cross terms cancel.
- Symmetrical (X' = X) and assymetrical rescatterings

Challenge: description of the FSI amplitude over the whole x, Q^2 range.

General formulas using GEA

$$\begin{split} W_{D}^{\mu\nu(\text{pw})} &= \frac{2m}{M_D} \sum_{N} \int d^3 \textbf{\textit{p}}_s \ W_{N}^{\mu\nu} \ S(\textbf{\textit{p}}_s) \\ W_{\text{FSI}}^{\mu\nu(\text{pm})} &= -\frac{\pi(2\pi)^3}{3 M_D} \sum_{N, X_1, X_2} \sum_{\text{spins}} \otimes m \int \frac{d^3 \textbf{\textit{p}}_{s_1}}{(2\pi)^3} \frac{d^3 \textbf{\textit{p}}_{s_2}}{(2\pi)^3} \frac{\Psi_D^{s_D\dagger}(\textbf{\textit{p}}_{i_2}, \textbf{\textit{s}}_{i_2}; \textbf{\textit{p}}_{s_2}, \textbf{\textit{s}}_{s_2}) \Psi_D^{s_D}(\textbf{\textit{p}}_{i_1}, \textbf{\textit{s}}_{i_1}; \textbf{\textit{p}}_{s_1}, \textbf{\textit{s}}_{s_1})}{2 \sqrt{E_{s_2} E_{s_1}}} \\ &\times \langle \textbf{\textit{p}}_{X_2}, \textbf{\textit{s}}_{X_2}; \textbf{\textit{p}}_{s_2}, \textbf{\textit{s}}_{s_2} | F_{NX_1, NX_2}^{(\text{nn})} | \textbf{\textit{p}}_{X_1}, \textbf{\textit{s}}_{X_1}; \textbf{\textit{p}}_{s_1}, \textbf{\textit{s}}_{s_1} \rangle J_{\text{VNX}_2}^{\mu\dagger}(\textbf{\textit{p}}_{i_2}, \textbf{\textit{s}}_{i_2}; \textbf{\textit{p}}_{X_2}, \textbf{\textit{s}}_{X_2}) \\ &\times J_{\text{VNX}_1}^{\nu}(\textbf{\textit{p}}_{i_1}, \textbf{\textit{s}}_{i_1}; \textbf{\textit{p}}_{X_1}, \textbf{\textit{s}}_{X_1}) \delta(\textbf{\textit{p}}_{X_1}^2 - m_{X_1}^2) \delta(\textbf{\textit{p}}_{X_2}^2 - m_{X_2}^2) \\ W_{\text{FSI}}^{\mu\nu(\text{off})} &= \frac{(2\pi)^3}{3 \pi M_D} \sum_{N, X_1, X_2} \sum_{\text{spins}} \otimes m \int_{\mathcal{P}} \frac{d^3 \textbf{\textit{p}}_{s_1}}{(2\pi)^3} \frac{d^3 \textbf{\textit{p}}_{s_2}}{(2\pi)^3} \frac{\Psi_D^{\text{sp}\dagger}(\textbf{\textit{p}}_{i_2}, \textbf{\textit{s}}_{i_2}; \textbf{\textit{p}}_{s_2}, \textbf{\textit{s}}_{s_2}) \Psi_D^{\text{sD}}(\textbf{\textit{p}}_{i_1}, \textbf{\textit{s}}_{i_1}; \textbf{\textit{p}}_{s_1}, \textbf{\textit{s}}_{s_1}) \\ &\times \langle \textbf{\textit{p}}_{X_2}, \textbf{\textit{s}}_{X_2}; \textbf{\textit{p}}_{s_2}, \textbf{\textit{s}}_{s_2} | F_{NX_1, NX_2}^{(\text{off})} | \textbf{\textit{p}}_{X_1}, \textbf{\textit{s}}_{X_1}; \textbf{\textit{p}}_{s_1}, \textbf{\textit{s}}_{s_1} \rangle J_{\text{VNX}_2}^{\mu\dagger}(\textbf{\textit{p}}_{i_2}, \textbf{\textit{s}}_{i_2}; \textbf{\textit{p}}_{x_2}, \textbf{\textit{s}}_{x_2}) \\ &\times J_{\text{VNX}_1}^{\nu}(\textbf{\textit{p}}_{i_1}, \textbf{\textit{s}}_{i_1}; \textbf{\textit{p}}_{X_1}, \textbf{\textit{s}}_{X_1}) \frac{1}{p_{X_1}^2 - m_{X_2}^2} \frac{1}{p_{X_2}^2 - m_{X_2}^2} \end{aligned}$$

- Currents not known! \rightarrow factorization and relate to $W_N^{\mu\nu}$
- In contrast with tagged DIS, unknown intermediate masses m_{X_1} , m_{X_2} .
- FSI contributions decrease with increasing Q^2 : follows naturally from limited phase space $\tilde{x} = \left(1 + \frac{m_X^2 p_i^2}{Q^2}\right)^{-1}$ (< 1)

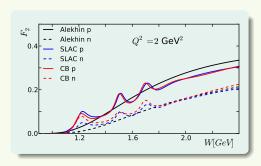
Wim Cosyn (UGent)

Next gen nucl phys

Feb 13, 2016

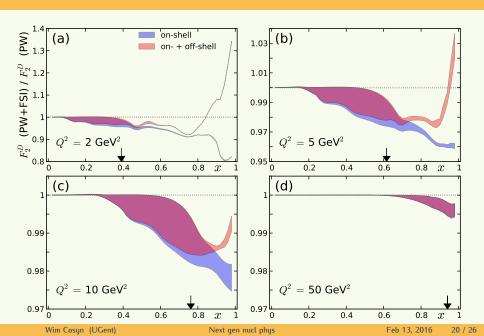
Model features

Use three effective resonances in the FSI diagram and continuum contribution (distribution)



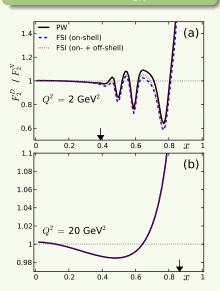
- Take scattering parametrizations from our fit to the Deeps data
- We don't take into account any possible relative phases between the resonances: maximum possible effect

Inclusive DIS calculations

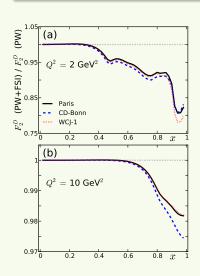


Inclusive DIS calculations

Ratio to F_{2N}



Deuteron wf dependence



Inclusive DIS calculations

- \blacksquare FSI on-shell contribution effects largest at high x
- Decreases with increasing Q^2 : follows naturally from limited phase space

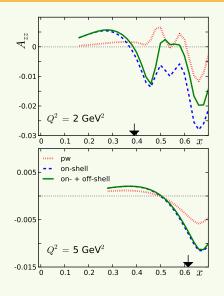
$$\tilde{x} = \frac{1}{1 + \frac{W_X^2 - \rho_i^2}{Q^2}} (< 1)$$

- Off-shell contribution shown is maximum possible contribution from three effective resonances: large contribution at $x \gtrsim 0.8$ and $Q^2 \lesssim 5 \text{ GeV}^2$
- Can be taken into account in neutron structure function extractions
- Dependence on deuteron wave function much smaller than size of FSI effects

A_{77} in inclusive DIS

- Scattering from a tensor polarized deuteron target (unpolarized electron) $d\sigma = d\sigma_u(1 + \frac{1}{2}P_{zz}A_{zz})$, sensitive to 4 new structure functions compared to the spin 1/2 case.
- Observable $\propto (2\sigma^{+1} \sigma^0)$ is identical 0 for a S-wave deuteron, very small when D-wave is included. Sensitive to non-nucleonic contributions such as hidden color (G. Miller, PRC89 (2014) 045203)
- lacktriangle Hermes measured $A_{zz}=0.157\pm0.69$ at x=0.45, $Q^2pprox5{
 m GeV}^2$
- Upcoming approved JLab12 experiment will improve our knowledge: E12-13-011
- A_{zz} through density matrix: $\rho_{02} = 1/\sqrt{2} \operatorname{diag}(1, -2, 1)$ (z-axis along photon)
- Only nucleonic contributions in our model

A_{zz} in inclusive DIS



- Only resonance contribution considered in the FSI, No DIS continuum contribution
- JLab 12 GeV kinematics considered
- Non-negligable contribution from FSI even at low x, but still nowhere near the Hermes value.
- Convolution (D-wave dominance → high spectator momenta) can pick up resonance contributions through the convolution
- Size of FSI effects decreases at higher Q^2

 $\label{eq:wc_marking} \mbox{WC, M. Sargsian, arXiv:} 1407.1653$

Conclusions

- Model for (tagged spectator) DIS on the deuteron based on general properties of soft rescattering.
- Fair description of the Deeps data
- Cross section rises with W and shows no signs of a plateau (hadronization) yet and drops with higher Q^2 (CT-like effect!)
- Extraction of neutron structure possible (JLab LDRD project), intriguing result from our analysis of the BONuS data
- In inclusive DIS: natural suppression of FSI at high Q^2
- FSI effects of a few percent in inclusive DIS at large Bjorken x

Outlook

- Method extendable to quasi-elastic inclusive A(e, e'), DVCS & SIDIS on nuclear targets
- Extension for diffractive FSI at lower x values (two-component model)
- ³He target and beyond

Comparison with Deeps: approach

- Deeps experiment (JLab CLAS): Klimenko et al., PRC73, 035212
- Use SLAC parametrization for neutron structure functions (as in data analysis)
- Take $\sigma_{\text{tot}}(W, Q^2)$ [and $\beta(W, Q^2)$] as free parameter in the distorted spectral function. Fits are done for each W, Q^2 over the 5 measured spectator momenta (300–560 MeV).
- Deuteron wave function: $\Phi_D(p) = \Phi_D^{\rm NR}(p) \sqrt{\frac{M_D}{2(M_D E_s)}}$ Obeys baryon number conservation $\int \alpha |\Phi_D(p)|^2 d^3p = 1$

Parametrization of the off-shell rescattering amplitude

Three approaches:

■ no off-shell FSI: off-shell rescattering amplitude is zero

$$f_{X'N,XN}^{\rm off}\equiv 0$$

maximum off-shell FSI: off-shell amplitude is taken equal to the on-shell one

$$f_{X'N,XN}^{\mathrm{off}} = f_{X'N,XN}^{\mathrm{on}}$$

• fitted off-shell FSI: off-shell amplitude is parametrized as the on-shell one with a suppression factor dependent on (x, Q^2)

$$f_{X'N,XN}^{\text{off}} = f_{X'N,XN}^{\text{on}} e^{-\mu(x,Q^2)t}$$

Comparison with BONuS

- BONuS experiment (JLab CLAS): lower spectator momenta
 S. Tkachenko et al., Phys.Rev. C89 (2014) 045206,
 N. Baillie et al., Phys. Rev. Lett. 108, 142001 (2012)
- Detector efficiency varied with p_s , data normalized to a Monte Carlo with plane-wave model.
- Normalization compared to model can be consequence of overall normalization and difference between used parametrization of F_2 and "real" $F_2\,n$
- Refit normalization for each Q^2 , W, p_s setting to our FSI calculations with rescattering parameters obtained from the Deeps data.