

Hadronization in the Pure Energy Loss Framework

Raphaël Dupré

IPN Orsay CNRS-IN2P3 Université Paris-Sud

Unité mixte de recherche

CNRS-IN2P3 Université Paris-Sud

91406 Orsay cedex Tél.: +33 1 69 15 73 40 Fax: +33 1 69 15 64 70 http://ipnweb.in2p3.fr

Motivations

Understand the hadronization process

- Measuring the characteristic times
- Measuring parton energy loss in QCD medium
- Understanding the pre-hadron structure

Characterization of the QCD medium

- Using parton energy loss (q hat)
 - BDMPS & Kopeliovich et al.
- Characterize both cold and hot nuclear matter
- Understand QCD evolution in medium

Reduce systematic effects on measurements where attenuation needs to be corrected

- Lepton scattering is a unique process for its control over the initial state
- Neutrino experiments
- Nucleon structure in nuclei

Theoretical Models

Important modeling questions are

- Absorption mainly due to parton energy loss or hadron absorption?
- Is there a modification of the evolution in medium?
- If yes, is it sizable in cold nuclear matter or only seen in hot nuclear matter?

Many models exist with different hypothesis

- Some pure models (either parton energy loss or hadron absorption)
- Mixed models (with all possible combinations represented in the literature)

The General Picture

Energy Loss MC Simulation

- Nuclear Fermi-motion of the nucleons
- PYTHIA Monte-Carlo
 - Simulation of the electron-nucleon scattering
- Parton Energy Loss
 - Based on Salgado&Wiedmann calculation
 - Simulating nuclear material using realistic density profile
 - Assuming fragmentation will occur outside the nuclei
- Back to PYTHIA
 - Fragmentation of the partons
- Basic acceptance cuts
 - Allows more precise comparison with data

Fermi-motion

- Fermi-motion can mimic the expected effects again!
- But not at HERMES energy!

Attenuation for HERMES

- Good description with qhat = 0.36 GeV²/fm
 - Single parameter model
- Not consistent with observed transverse momentum?
 - Of the order of 0.03 GeV²

Transverse Momentum

Can be implemented in many ways

- No transverse momentum added
- Constant addition based on q hat
- BDMPS formula
- Event by event adapted from SW

Transverse Momentum

- How do we got from Lx0.36 to ~0.03?
 - Reduction by z square (\sim 0.1)
 - Reduction due to lower parton energy
 - Reduction due to absorption
- It matches data for all kinetic variables

Cronin Effect

Effect too small in simulation

- Problem with simulation?
 - But ΔP_{T} is correct
- Issue with FF in PYTHIA?
- Some contamination from target fragmentation?

Cronin Effect

A. Airapetian *et al.* Nucl.Phys., B780 (2007) 1.

Cronin effect or target fragmentation?

- Effect is smaller at higher z
- Small effect for anti-p

The Electron Ion Collider

- Project of electron ion collider (EIC)
 - JLab and RHIC projects s~1000GeV² and more
 - Low to no attenuation region \rightarrow centered on ΔP_T^2 measurement
 - Isolate energy loss effects and eventually modification of FF
 - Access to heavy flavor for comparison with Heavy Ion Collisions

Heavy Flavors

Q2 evolution

- The Q2 dependence permit to measure any modification of the DGLAP evolution in medium
- The Q2 variation is a very important tool to constrain energy loss calculations.

Flavor scaling of ΔPT2

- Work from Domdey et al. leads to a simple scaling of pQCD in-medium energy loss between quark flavors
- Can be easily measured at any EIC energy

Summary

- Hadronization in CNM at high energy is a way to access nuclear gluons
- The MC simulation helps disentangle effects
- Energy loss models can describe the attenuation with qhat~0.36 GeV2/fm
- Transverse momentum naturally goes down to reasonable value when taking attenuation and e-loss effects into account
- EIC will be able to isolate energy loss very well
 - Extend to heavier hadrons and larger Q² to test pQCD applicability
 - Of particular interest since surprising heavy flavor behavior in AA