Tagged Deep Inelastic Scattering: Exploring the Meson Cloud of the Nucleon

Dipangkar Dutta Mississippi State University

Next generation nuclear physics with JLab12 and EIC FIU, Feb 10-13, 2016

Outline

1. Introduction

- Mesonic content of nucleons

2. Tagged structure functions

- Sullivan process and access to meson cloud of nucleon
- New experiment at JLab12
- 3. Tagged DIS at an EIC
- 3. Summary

Substantial theoretical developments, but...

Mississippi State U.

D. Dutta

FIU, February 2016

There is no direct measurement of magnitude of mesonic content of nucleons.

In the valance region data comes from pionic Drell-Yan experiments

Pion structure function extracted from data disagree with calculations.

There is no direct measurement of magnitude of mesonic content of nucleons.

Re-analysis after including the gluonic contributions,

L. Chang, C. Mexrag, H. Moutarde, C. D. Roberts, J. Rodriguez-Quintero, P. C. Tandy, Phys. Lett. B420, 267 (2014)

Mississippi State U.

D. Dutta

In the valance region data comes from pionic Drell-Yan experiments

Pion structure function extracted from data disagree with calculations.

FIU, February 2016

Gluonic contribution also needed to explain the drop in koan/pion ratio at large x.

Same Dyson-Schwinger Eq. based calculations with the gluonic contributions can explain the kaon/pion ratio from pionic Drell-Yan experiment.

Points to the need for more precise data

C. Chen, L. Chang, C. D. Roberts, S. Wan and H.-S. Zong, in preparation (2016).

Outline

1. Introduction

- Mesonic content of nucleons

2. Tagged structure functions

- Sullivan process and access to meson cloud of nucleon
- New experiment at JLab12
- 3. Tagged DIS at an EIC
- 3. Summary

Deep-inelastic Scattering off a virtual-meson cloud is possible experimental technique.

Measuring the contribution to DIS from the Sullivan process is a direct measurement of the mesonic content of the nucleon

Scattering off a virtual-pion target was used to measure the pion structure function at low-x.

Spectator Tagging can be used to tag the "meson cloud" target.

Almost-free neutron structure function studied with spectator tagging, technique successfully used by BoNuS

PRL 108, 142001 (2012); PRC 89, 045206 (2014)

Spectator Tagging can be used to tag the "meson cloud" target.

DIS event – reconstruct x, **Q**², **W**², also M_X of recoiling hadronic system

$$R^{T} = \frac{d^{4}\sigma(ep \rightarrow e^{'}Xp^{'})}{dxdQ^{2}dzdt} / \frac{d^{2}\sigma(ep \rightarrow e^{'}X)}{dxdQ^{2}} \Delta z \Delta t \sim \frac{F_{2}^{T}(x,Q^{2},z,t)}{F_{2}^{p}(x,Q^{2})} \Delta z \Delta t.$$

Spectator Tagging will provide the first measurement of tagged structure functions.

DIS event – reconstruct x, Q^2 , W^2 , also M_X of recoiling hadronic system

$$F_2^T(x,Q^2,z,t) = \frac{R^T}{\Delta z \Delta t} F_2^p(x,Q^2).$$

Phenomenological models can be used to interpret the measured tagged structure function.

$$F_2^{(\pi N)}(x) = \int_x^1 dz \, f_{\pi N}(z) \, F_{2\pi}\left(\frac{x}{z}\right),$$
$$f_{\pi N}(z) = \frac{1}{M^2} \int_0^\infty dk_\perp^2 \, f_{\pi N}(z, k_\perp^2).$$

$$f_{\pi N}(z) = c_I \frac{g_{\pi NN}^2}{16\pi^2} \int_0^\infty \frac{dk_\perp^2}{(1-z)} \frac{G_{\pi N}^2}{z \ (M^2 - s_{\pi N})^2} \left(\frac{k_\perp^2 + z^2 M^2}{1-z}\right),$$

light cone momentum distribution of pions in the nucleon, G_{π_N} is the parametrization of the momentum dependence of the π NN vertex function

T. J. Hobbs, T. Londergan, W. Melnitchouk, et al. (2014, in preparation); H. Holtmann, A. Szczurek and J. Speth, Nucl. Phys. A 596, 631 (1996); W. Melnitchouk and A. W. Thomas, Z. Phys. A 353, 311 (1995)

Mississippi State U.

D. Dutta

The tagged structure functions can provide the magnitude of the mesonic content of the nucleon.

T. J. Hobbs, T. Londergan, W. Melnitchouk, et al. (2014, in preparation); H. Holtmann, A. Szczurek and J. Speth, Nucl. Phys. A 596, 631 (1996); W. Melnitchouk and A. W. Thomas, Z. Phys. A 353, 311 (1995)

For a signal to accidental ratio of 1/10 we can measure the mesonic content by tagging 150 - 400 MeV/c protons.

T. J. Hobbs, T. Londergan, W. Melnitchouk, et al. (2014, in preparation); H. Holtmann, A. Szczurek and J. Speth, Nucl. Phys. A 596, 631 (1996); W. Melnitchouk and A. W. Thomas, Z. Phys. A 353, 311 (1995)

Pion contributions dominate at JLab kinematics.

T. J. Hobbs, T. Londergan, W. Melnitchouk, et al. (2014, in preparation); H. Holtmann, A. Szczurek and J. Speth, Nucl. Phys. A 596, 631 (1996); W. Melnitchouk and A. W. Thomas, Z. Phys. A 353, 311 (1995)

B. Kopeliovich, I. Potashnikova (2015), Rho, Regge

Tagged structure functions can also be used to extract the pion structure function.

20/33

Tagged structure functions can also be used to extract the pion structure function.

Pion flux is largest uncertainty, ~10-20%

Tagged structure functions can also be used to extract the pion structure function.

It requires extrapolation to the pion pole

low momentum protons helps cover a range of low |t|

Ratio of off-shell to on-shell pion EM form factors

Pion's valence-quark GPDs in unified Dyson-Schwinger Equation framework:

virtuality-independent form factor implies virtuality-independent pion structure function

This ensures small uncertainty in extrapolation to the pion pole -within ~5% at JLab kinematics

TDIS is a new experiment to probe the mesonic content of the nucleon.

TDIS is a new experiment to probe the mesonic content of the nucleon.

Mississippi State U.

D. Dutta

FIU, February 2016

24/33

The conceptual design for a radial TPC has been optimized for the TDIS experiment.

RTPC

5 cm radius of inner electrical wire grid 10 cm radius of middle electrical wire grid 15 cm radius of GEM foil 15.6 cm radius of U&V readout strips (1mm x 21.25 mm, with 1mm pitch)

Expected resolution ~ 300um,

p2ds

ntries 23298

9.859

69.92

lean

RMS x

RMS v

Readout electronics at the end(s) of the

() Me/V 350

Womentum 250 200

Proton 10

100

Photo Protons from ²H

X (mm)

Y (mm)

50

X (mm)

180

140

120

Proton Angle (deg.)

160

n2d

92.8

28.63

52.91

The conceptual design for a radial TPC has been optimized for the TDIS experiment.

Radial Dist from Beam Axis (mm)

The TDIS experiment will measure tagged structure functions for protons and neutrons

proton target

Colored lines are pion contribution for different bins in p_{proton}

Data for 200 < p_{proton} <250 MeV/c are representative to show uncertainty

The TDIS experiment will measure tagged structure functions for protons and neutrons

Full momentum range (collected simultaneously) - all momentum bins in MeV/c

run at lower luminosity due to larger background

Colored lines are expected *total* Delta and rho contribution for $250 < p_{proton} < 400$ MeV/c.

Data for pion contribution are representative to show uncertainty

FIU, February 2016

The TDIS experiment will also extract the pion structure function.

- Large x structure of the pion is of particular recent interest, verify resummed Drell-Yan results O^2 range will check evolution
- Q² range will check evolution
- Large x, low Q complementary to HERA low x, high Q

- Low t extrapolation to the pion pole

Will also measure n, p (π -, π ⁰) difference - look for isospin dependence

Mississippi State U.

Outline

1. Introduction

- Mesonic content of nucleons

2. Tagged structure functions

- Sullivan process and access to meson cloud of nucleon
- New experiment at JLab12
- 3. Tagged DIS at an EIC
- 3. Summary

D. Dutta

TDIS experiments at an EIC would cover a large kinematic range.

Simulated uncertainty for: 5 GeV e⁻ on 25 GeV p spectator neutron tagging & luminosity = 10³² cm⁻²s⁻¹ (for 10⁶ s)

 $Q^2 > 1 GeV^2$

R. J. Holt & P. Reimer, AIP Conf. Proc. 588, 234 (2001)

TDIS experiments at an EIC would cover a large kinematic range.

Simulated uncertainty for: 5 GeV e⁻ on 25 GeV p spectator neutron tagging & luminosity = 10³² cm⁻²s⁻¹ (for 10⁶ s)

Forward neutron angle < 50 mrad

with forward protons detection kaon structure can be studied

with ²H, ⁴He beams, pion structure in nuclear medium can be studied.

K. Park working on simulation suite for tagged measurements at EIC

R. J. Holt & P. Reimer, AIP Conf. Proc. 588, 234 (2001)

0.4

0.5

 X_{π}

0.6

0.7

0.8

0.9

Mississippi State U.

0

0.1

0.2

0.3

1.15

1.1

1.05

0.95

0.9

0.85

1

D. Dutta

FIU, February 2016

Summary

- 1. Tagged DIS: Spectator tagging, provide new tools to study the structure of nucleons.
- 2. Spectator tagging can provide access to the mesonic content of the nucleon structure and the pion structure function.
- 3. A new experiments at JLab have been proposed to take advantage of these new avenues during the 12 GeV era.
- 4. These studies can be extended to a wide range of complimentary kinematics at an EIC.

This work is supported by US Dept. Of Energy under contract # DE-FG02-07ER41528