SRCs in x>1 Inclusive Processes

Nadia Fomin University of Tennessee

Next generation nuclear physics with JLab12 and EIC February 10-13, 2016 FIU, Miami, FL

High momentum nucleons – where do they come from?

Independent Particle Shell Model :

$$S_{\alpha} = 4\pi \int S(E_m, p_m) p_m^2 dp_m \delta(E_m - E_{\alpha})$$

Proton E_m, p_m distribution modeled as sum of independent shell contributions (arbitrary normalization)

Independent Particle Shell Model :

$$S_{\alpha} = 4\pi \int S(E_m, p_m) p_m^2 dp_m \delta(E_m - E_{\alpha})$$

- For nuclei, S_α should be equal to 2*j*+1
 => number of protons in a given orbital
- However, it as found to be only ~2/3 of the expected value
- The bulk of the missing strength it is thought to come from **short range correlations**

High momentum nucleons

- Short Range Correlations

High momentum tails in A(e,e'p)

- E89-004: Measure of ³He(e,e'p)d
- Measured far into high momentum tail: Cross section is ~5-10x expectation

Difficulty

 High momentum pair can come from SRC (initial state)

OR

 Final State Interactions (FSI) and Meson Exchange Contributions (MEC)

Short Range Correlations

- To experimentally probe SRCs, must be in the high-momentum region (x>1)
- To measure the relative probability of finding a correlation, ratios of heavy to light nuclei are taken
- In the high momentum region, FSIs are thought to be confined to the SRCs and therefore, cancel in the cross section ratios
 - L. L. Frankfurt and M. I. Strikman, Phys. Rept. 76, 215(1981).
 - J. Arrington, D. Higinbotham, G. Rosner, and M. Sargsian (2011), arXiv:1104.1196
 - L. L. Frankfurt, M. I. Strikman, D. B. Day, and M. Sargsian, Phys. Rev. C 48, 2451 (1993).
 - L. L. Frankfurt and M. I. Strikman, Phys. Rept. 160, 235 (1988).
 - C. C. degli Atti and S. Simula, Phys. Lett. B 325, 276 (1994).
 - C. C. degli Atti and S. Simula, Phys. Rev. C 53, 1689 (1996).

 $\frac{1}{A}\frac{\sigma_A}{\tau} = a_2(A)$

1.4<x<2 => 2 nucleon correlation

2.4<x<3 => 3 nucleon correlation

Previous measurements

1.4<x<2 => 2 nucleon correlation

2.4<x<3 => 3 nucleon correlation

Kinematic cutoff is A-dependent

- For heavy nuclei, the minimum momentum changes \rightarrow heavier recoil system requires less kinetic energy to balance the momentum of the struck nucleon
- Larger fermi momenta for $A>2 \rightarrow MF$ contribution persists for longer

E02-019: 2N correlations in A/D ratios

Jlab E02-019

Why not more than two nucleons in a correlation?

$$\sigma(x, Q^2) = \sum_{j=1}^A A \frac{1}{j} a_j(A) \sigma_j(x, Q^2)$$
$$= \frac{A}{2} a_2(A) \sigma_2(x, Q^2) +$$
$$\frac{A}{3} a_3(A) \sigma_3(x, Q^2) + \dots$$

Further evidence of multi-nucleon correlations

- Excellent agreement for x≤2
- Very different approaches to 3N plateau, later onset of scaling for E02-019
- Very similar behavior for heavier targets

Have we actually seen 3N SRC in ratios?

Douglas W. Higinbotham1 and Or Hen2

E08-014: Study Q² dependence of 3N SRC

More results in D. Day's and P. Solvignon's talks

Plot courtesy of Z. Ye

Look at nuclear dependence of NN SRCs

Α	$\theta_e = 18^{\circ}$
$^{3}\mathrm{He}$	$2.14{\pm}0.04$
$^{4}\mathrm{He}$	$3.66{\pm}0.07$
Be	$4.00 {\pm} 0.08$
\mathbf{C}	$4.88 {\pm} 0.10$
$\mathbf{C}\mathbf{u}$	$5.37 {\pm} 0.11$
Au	$5.34 {\pm} 0.11$
$\langle Q^2 \rangle$	$2.7 \ {\rm GeV}^2$
x_{\min}	1.5

Look at nuclear dependence of NN SRCs

Both driven by a similar underlying cause? Separation Energy

For SRCs, a linear relationship with $\langle \epsilon \rangle$ is less suggestive

S.A. Kulagin and R. Petti, Nucl. Phys. A 176, 126 (2006)

Two Hypotheses (that remain)

0. Both quantities are functions of nuclear density - data rules it out

- 1. Both quantities reflect *virtuality* of the nucleons (*L. Weinstein et al, PRL* 106:052301,2011)
 - **a**₂ measures the relative high momentum tail good for testing virtuality
 - dR_{EMC}/dx relevant quantity
- 2. EMC effect is driven by "local density"
 - SRCs are sensitive to high density configurations, but MUST remove the center of mass motion smearing to get R_{2N}
 - measure of correlated pairs relative to the deuteron
 - EMC effect samples **all** the nucleons, whereas R_{2N} is only sensitive to *np* pairs, a subset of all possible NN configurations

The data show a weak preference for "local density" hypothesis

$(a_2 = \sigma_A / \sigma_D)!$ = Relative #of SRCs

Two hypotheses

- 2. A measure of "*local density*" *R*_{2N}
 - measure of correlated pairs relative to the deuteron
 - Only sensitive to np pairs, scale by N_{total}/N_{iso} .

- 1. Both quantities reflect *virtuality* of the nucleons (*L. Weinstein et al, PRL 106:052301,2011*)
 - a₂ is a measure of high momentum nucleons relative to the deuteron

New Data are helping and more data will help even further

The rest of 6 GeV inclusive data

x > 1: Nuclear PDFs

Overlapping nucleons \rightarrow enhancement of F_2 structure function

Small effect, possible contribution to EMC effect?

Noticeable effect at x>1

How do we get to SFQ distributions

$$F_{2}^{TMC}(x,Q^{2}) = \frac{x^{2}}{\xi^{2}r^{3}}F_{2}^{(0)}(\xi) + \frac{6M^{2}x^{3}}{Q^{2}r^{4}}h_{2}(\xi) + \frac{12M^{4}x^{4}}{Q^{4}r^{5}}g_{2}(\xi)$$

Measured structure function
$$h_{2}(\xi,Q^{2}) = \int_{\xi}^{1} du \frac{F_{2}^{(0)}(u,Q^{2})}{u^{2}}$$
$$g_{2}(\xi,Q^{2}) = \int_{\xi}^{1} dv(v-\xi)\frac{F_{2}^{(0)}(v,Q^{2})}{v^{2}}$$

• We want $F_2^{(0)}$, the scaling limit (Q² $\rightarrow \infty$) structure function as well as its Q² dependence

Schienbein et al, J.Phys, 2008

How do we get to SFQ distributions

$$F_2^{TMC}(x,Q^2) = \frac{x^2}{\xi^2 r^3} F_2^{(0)}(\xi) + \frac{6M^2 x^3}{Q^2 r^4} h_2(\xi) + \frac{12M^4 x^4}{Q^4 r^5} g_2(\xi)$$

Produced a fit to the data for $F_2^{0}(\xi, Q^2=7)$

"Super-fast quarks"

• With all the tools in hand, we apply target mass corrections to the available data sets

• With the exception of low Q^2 quasielastic data – E02-019 data can be used for SFQ distributions

N. Fomin et al, PRL 105, 212502 (2010)

Next: Replace Q² dependent fit with nonsinglet QCD evolution

$$\frac{\partial q_i^{\pm}(x)}{\partial \ln \mu^2} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} P_{\pm}\left(\frac{x}{z}\right) q_i^{\pm}(z).$$

By definition, the result is only physical for $x \le 1$

Fix: use x_D , rather than x_p

Current Status

$$\frac{\partial q_i^{\pm}(x)}{\partial \ln \mu^2} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} P_{\pm}\left(\frac{x}{z}\right) q_i^{\pm}(z).$$

By definition, the result is only physical for $x \le 1$

Fix: use x_D , rather than x_p

Rescale F₂⁰ fit with xdependent correction to match high Q² data

Current Status

- Non-singlet QCD evolution appears to work for nuclear structure functions
 - Higher twist contributions appear to persist to tens of GeV²

Ratio fit to 1+C/Q²

Summary

- SRCs have been under the microscope for many decades – 6GeV era at Jlab has yielded interesting data
- 12 GeV experiments continue the search
- New results in the next few years!

Coming very soon: [Jlab E12-11-112]

- Quasielastic electron scattering with ³H and ³He
- Study isospin dependence of 2N and 3N correlations
- Test calculations of FSI for well-understood nuclei

Jlab E12-06-105

- short-range nuclear structure
 - Isospin dependence
 - A-dependence
- Super-fast quarks

Q² dependence features

In progress

$$F_2(x, Q^2) = F_2^{LT}(x, Q^2) \times [1 + \frac{C(x)}{Q^2}]$$

 $\mathcal{C}(x) = \mathcal{C}_1 x^{\mathcal{C}_2} (1 + \mathcal{C}_3 x)$