

#### Deeply Virtual Compton Scattering off <sup>4</sup>He:

#### New results and future perspectives

#### M. Hattawy

#### (On behalf of the CLAS collaboration)

Next generation nuclear physics with JLab12 and EIC

10-13 February 2016, Florida International University



# **DVCS off nuclei**

#### **Two DVCS channels are accessible with nuclear targets:**

#### $\Diamond \text{ Coherent DVCS: } e^{-}A \rightarrow e^{-}A \gamma$

- $\rightarrow$  Study the partonic structure of the nucleus.
- → One chiral-even GPD ( $H_A(x,\xi,t)$ ) is needed to parametrize the structure of the spinless nuclei (<sup>4</sup>He, <sup>12</sup>C, <sup>16</sup>O, ...).

#### ◊ Incoherent DVCS: e<sup>-</sup>A→e<sup>-</sup>N γ X

- → The nucleus breaks and the DVCS takes place on a nucleon.
- → Study the partonic structure of the bound nucleons (4 chiral-even GPDs are needed to parametrize their structure).







#### Nuclear spin-zero DVCS observables

#### The GPD H<sub>A</sub> parametrizes the structure of the spinless nuclei (<sup>4</sup>He,<sup>12</sup>C ...)

$$\begin{aligned} \mathcal{H}_{A}(\xi,t) &= Re(\mathcal{H}_{A}(\xi,t)) - i\pi Im(\mathcal{H}_{A}(\xi,t)) \\ Im(\mathcal{H}_{A}(\xi,t)) &= H_{A}(\xi,\xi,t) - H_{A}(-\xi,\xi,t) \\ Re(\mathcal{H}_{A}(\xi,t)) &= \mathcal{P}\int_{0}^{1} dx [H_{A}(x,\xi,t) - H_{A}(-x,\xi,t)] \begin{bmatrix} C^{+}(x,\xi) \end{bmatrix} \end{aligned}$$

→ Beam-spin asymmetry 
$$(A_{LU}(\phi))$$
 : (+/- beam helicity)

$$A_{LU}(\phi) = \frac{1}{P_B} \frac{N^+ - N^-}{N^+ + N^-}$$

$$= \frac{x_A(1 + \epsilon^2)^2}{y} s_1^{INT} \sin(\phi) \Big/ \Big[ \sum_{n=0}^{n=2} c_n^{BH} \cos(n\phi) + \frac{x_A^2 t(1 + \epsilon^2)^2}{Q^2} P_1(\phi) P_2(\phi) c_0^{DVCS} + \frac{x_A(1 + \epsilon^2)^2}{y} \sum_{n=0}^{n=1} c_n^{INT} \cos(n\phi) \Big]$$

e'

# EMC effect in 4He

- **EMC effect:** the modification of the PDF f<sub>2</sub> as a function of the longitudinal momentum carried by the struck parton.
  - Nuclear modifications of the DIS cross section measured by CERN, SLAC and JLab
     → Variations with the nuclear properties, i.e. mass & density
    - The origin of the EMC effect is still not fully understood, but possible explanations:
      - $\rightarrow$  Modifications of the nucleons themselves
      - $\rightarrow$  Effect of non-nucleonic degrees of freedom, e.g. pions exchange
      - $\rightarrow$  Modifications from multi-nucleon effects (binding, N-N correlations, etc...)
    - Clear explanations may arise from measuring the nuclear modifications via other reactions, like DVCS and DVMP ...



[J. Seely, A. Daniel, D. Gaskell, J. Arrington et al., Phys. Rev. Let.: PRL 103, 202301 (2009)]

#### **Theoretical predictions of the EMC in 4He**

#### **On-shell calculations:**

Off-shell calculations:



# Nuclear DVCS measurements: HERMES

- The exclusivity is ensured via cut on the missing mass of  $e\gamma X$  final state configuration.
- Coherent and incoherent separation depending on -t, i.e. coherent rich at small -t.
- Conclusions from HERMES: No enhancement of the nuclear asymmetry with respect to the free proton asymmetry.

In CLAS - E08-024, we measure EXCLUSIVE coherent and incoherent DVCS channels off <sup>4</sup>He

$$A_{LU}^{sin} = \frac{1}{\pi} \int_0^{2\pi} d\phi \, \sin\phi \, A_{LU}(\phi)$$



[ A. Airapetian, et al., Phys Rev. C 81 (2010) 035202]

# CLAS - E08-024 experimental Setup

# $e^{-4}He \rightarrow e^{-}$ (<sup>4</sup>He/pX) $\gamma$

#### 6 GeV, L. polarized

Beam polarization  $(P_B) = 83\%$ 

#### - CLAS:

- $\rightarrow$  Superconducting Torus magnet.
- $\rightarrow$  6 independent sectors:
  - $\rightarrow$  DCs track charged particles.
  - $\rightarrow$  CCs separate e<sup>-</sup>/ $\pi$ <sup>-</sup>.
  - $\rightarrow$  TOF Counters identify hadrons.
  - $\rightarrow$  ECs detect  $\gamma$ , e<sup>-</sup> and n [8°,45°].
- **IC**: Improves γ detection acceptance [4°,14°].
- **RTPC:** Detects low energy nuclear recoils.
- Solenoid: Shields the detectors from Møller electrons.
  Enables tracking in the RTPC.
- **Target:** <sup>4</sup>He gas @ 6 atm, 293 K



# **DVCS events selection (1/2)**

#### We select **COHERENT** events which have:

♦ Only one good electron, at least one photon and only one good <sup>4</sup>He.  $\diamond E\gamma > 2 \text{ GeV}, W > 2 \text{ GeV/c}^2 \text{ and } Q^2 > 1 \text{ GeV}^2.$ ♦ Exclusivity cuts (3 sigmas).

e<sup>4</sup>HeyX: Missing M<sup>2</sup>

- In BLUE, coherent events before all exclusivity cuts.
- In shaded BROWN, coherent DVCS events which pass all the other exclusivity cuts except the one on the quantity itself.





 $(\gamma,\gamma^*):(\gamma^*,^4\text{He})::\Delta\phi$ 





 $\theta(\gamma, e^4 HeX)$ 



# DVCS events selection (2/2)

#### We select **INCOHERENT** events which have:

- In BLUE, incoherent events before all exclusivity cuts.

- In shaded BROWN, incoherent DVCS events which

◊ Only one good electron, at least one photon and only one good p.
◊ Eγ > 2 GeV, W > 2 GeV/c<sup>2</sup> and Q<sup>2</sup> > 1 GeV<sup>2</sup>.
◊ Exclusivity cuts (3 sigmas).

pass all the other exclusivity cuts except the one on the quantity itself.

epγ: Missing M<sup>2</sup>







 $1200 \\ 1000 \\ 800 \\ 600 \\ 400 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ [deg.]$ 

 $\theta(\gamma, epX)$ 

 $(\gamma, \gamma^*)$ : $(\gamma^*, p)$  ::  $\Delta \phi$ 



# **Coherent beam-spin asymmetries**

- Due to statistical constraints, we construct 2D bins -t or  $x_B$  or  $Q^2$  versus  $\phi$
- Fit A<sub>LU</sub> signals:  $\alpha * \sin(\phi) / (1 + \beta * \cos(\phi) + \eta * \cos(2\phi))$



LT: S. Liuti and S. K. Taneja, PRC 72 (2005) 034902. HERMES: A. Airapetian, et al., Phys. Rev. C 81, 035202 (2010).

#### Incoherent beam-spin asymmetries

Q<sup>2</sup> of epy events



[1] LT: S. Liuti and S. K. Taneja.Phys. Rev., C72:032201, 2005.[2] A. Airapetian, et al., Phys Rev. C 81, 035202 (2010).

# **EMC ratio (1/2)**

♦ Comparing our measured incoherent asymmetries with the asymmetries measured in CLAS DVCS experiment on the proton.



 $\diamond$  The bound proton shows a lower asymmetry relative to the free one in the different bins in  $x_{_{\rm B}}$ .

At small -t, the bound proton shows lower asymmetry than the free one.
At high -t, the two asymmetries are compatible.

# EMC ratio (2/2)

◊ Comparing the coherent asymmetries to the free proton ones:



- → Consistent with the enhancement predicted by the Impulse approximation model [V. Guezy et al., PRC 78 (2008) 025211]
- $\rightarrow$  Does not match the inclusive measurement of HERMES.
- → Additional nuclear effects have to be taken into account in the nuclear spectral function calculations. [S. Liuti and K. Taneja. PRC 72 (2005) 032201]

#### Future perspectives and proposals using "CLAS12 + ALERT" experimental setup

K. Hafidi, N. Baltzell, G. Charles, R. Dupre, M. Hattawy, S. Joosten, A. El-Alaoui, W. Armstrong, A. Accardi, M. Amarian, S. Stepanyan, G. Dodge, Z. E. Meziani, M. Paolone

- Coherent and incoherent DVCS off <sup>4</sup>He.
- DVCS on deuterium and neutron.
- Tagged EMC.
- Coherent phi production on <sup>4</sup>He.
- → 300 mm long → 90 mm diameter Clear space Outer wall surrounded by a Kapton wall  $\rightarrow$  The drift time is short.  $\rightarrow$  Can be included in the trigger. Target  $\rightarrow$  Separate protons, deuterium, tritium, alpha, helium-3.  $\rightarrow$  Can be used for BoNuS12, Drift chamber tagged EMC and Scintillators array DVCS on He4... covered by a light proof layer

# **Conclusions**

- ♦ CLAS E08-024 experiment:
  - $\rightarrow$  The first exclusive measurement of DVCS off <sup>4</sup>He.
  - → The coherent DVCS shows a stronger asymmetry than the free proton as was expected from theory.
  - $\rightarrow$  We extracted EMC ratios and compared them with theoretical predictions.
  - $\rightarrow$  The bound proton has shown a different trend compared to the free one indicating the medium modifications of the GPDs.
- ♦ Perspectives:
  - $\rightarrow$  Final results soon
  - → We will need 12 GeV Jlab to obtain better statistics and wider kinematic coverage.

# 

# **Monte Carlo simulation**

#### **We use Monte Carlo for two goals:**

- Understanding the behavior of each particle type in our detectors
- Calculate the acceptance ratio for the purpose of the  $\pi^0$  background subtraction

#### **Simulation stages:**

- Event generator:  $e^{4}He\gamma$ ,  $e^{4}He\pi^{0}$ ,  $ep\gamma$  and  $ep\pi^{0}$  events are generated in their measured phase space ( $Q^2$ ,  $x_B$ , -t,  $\phi_h$ ) following this parametrization of the cross section.
- Simulation (GSIM): GEANT3, describes the detectors' response to the different particles.
- Smearing (GPP): Makes the simulation more realistic by smearing the positions, energies and times.
- **Reconstruction (RECSIS):** (ADCs, TDCs)  $\rightarrow$  physical quantities.



# **Background Subtraction**

 $\diamond$  With our kinematics, the main background comes from the exclusive  $\pi^0$  channel,

$$e^4He \to e^4He\pi^0 \to e^4He\gamma\gamma \qquad ep \to ep\pi^0 \to ep\gamma\gamma$$

in which one photon from  $\pi^0$  decay is detected and passes the DVCS selection.

 $\diamond$  We combine real data with simulation to compute the contamination of  $\pi^0$  to DVCS.



#### DVCS with Jlab 12

#### **CLAS12 detector**



High luminosity & large acceptance:

Concurrent measurement of deeply virtual exclusive,

semi-inclusive, and inclusive processes

#### **Design parameters of CLAS12**

|                                 | Forward            | Central            |
|---------------------------------|--------------------|--------------------|
|                                 | detector           | detector           |
| Angular range                   |                    |                    |
| Tracks                          | $5-40^{\circ}$     | $35 - 125^{\circ}$ |
| Photons                         | $2.5 - 40^{\circ}$ | n.a.               |
| Resolution                      |                    |                    |
| $\delta p/p$                    | < 1% @ 5 GeV/c     | 5% @ 1.5 GeV/c     |
| $\delta 	heta$                  | < 1 mr             | < 10-20 mr         |
| $\delta \phi$                   | < 3 mr             | < 5 mr             |
| Photon detection                |                    |                    |
| Energy                          | > 0.15 GeV         | n.a.               |
| $\delta 	heta$                  | 4 mr @ 1 GeV       | n.a.               |
| Neutron detection               |                    |                    |
| Efficiency                      | < 0.7              | under dev.         |
| Particle ID                     |                    |                    |
| $e/\pi$                         | Full range         | n.a.               |
| π/p                             | Full range         | < 1.25 GeV/c       |
| $\pi/K$                         | Full range         | < 0.65 GeV/c       |
| K/p                             | < 4 GeV/c          | < 1  GeV/c         |
| $\pi  ightarrow \gamma \gamma$  | Full range         | n.a.               |
| $\eta  ightarrow \gamma \gamma$ | Full range         | n.a.               |

#### **DVCS worldwide effort**



| JLAB               |                                                  |  |
|--------------------|--------------------------------------------------|--|
| Hall A             | Hall B                                           |  |
| p,n,d -DVCS: X-sec | p-DVCS: BSA,LTSA,<br>DSA, X-sec<br>Helium-4: BSA |  |

| CERN                                    |  |  |
|-----------------------------------------|--|--|
| COMPASS                                 |  |  |
| p-DVCS: X-sec,BSA,BCA,<br>tTSA,ITSA,DSA |  |  |

| DESY                                 |                     |  |
|--------------------------------------|---------------------|--|
| HERMES                               | H1/ZEUS             |  |
| p-DVCS<br>BSA,BCA, TTSA,<br>LTSA,DSA | p-DVCS<br>X-sec,BCA |  |

Promising future experiments with JLab upgrade and COMPASSII

# He-4 CFF extraction

 $A_{LU}(\phi) = \frac{\alpha_0(\phi) * Im(\mathcal{H}_A)}{\alpha_1(\phi) + \alpha_2(\phi)Re(\mathcal{H}_A) + \alpha_3(\phi)(Im(\mathcal{H}_A)^2 + Re(\mathcal{H}_A)^2)}$ 

$$\alpha_0(\phi) = a \sin(\phi)$$
  

$$\alpha_1(\phi) = b + c \cos(\phi) + d \cos(2\phi)$$
  

$$\alpha_2(\phi) = h + f \cos(\phi)$$
  
Expected to be small magnitude

Using the kinematical calculable factors
 (a, b, c, h and f) and the fitted coherent

 $p_0 * \sin(\phi) / (1 + p_1 * \cos(\phi))$ 

- → Extracted the real and the imaginary parts of the Compton form factor from ALU @ 90° vs. <-t>
- We have "significant" trends with t and xB



Suppressed by 2 orders of magnitude

