Electron Ion Collider

Tagging Correlations at an EIC

Or Hen

** Your Design Here? **

What are Short-Range Correlation (SRC)

the

- Are close together (wave function overlap)
- Have high relative momentum and low c.m. momentum compared to

Fermi momentum (k_F)

Isospin Structure

A. Tang et al., PRL (2003);

E. Piasetzky et al., PRL (2006);

pp/np ratio increase with P_{miss}

I. Korover, N. Muangma, and O. Hen et al., Phys. Rev. Lett 113, 022501 (2014).

Pair density calculations:

Sargsian et al., PRC 71 044615 (2005)

Pair c.m. motion

"... high relative momentum and <u>low c.m.</u> momentum compared to the Fermi momentum (k_F) "

- Reconstructed total
 (c.m) pair momentum
 insensitive to FSI in
 the pair.
- Observed to be Gaussian in each direction.
- Small width, consistent with calculations.

Selectivity of SRC Pairs

- Extract the number of pp (np) SRC pairs in nuclei relative to ¹²C.
- Pair number increases very slowly with A
- consistent with ¹S₀ (³S₀)
 pairs creating SRCs.

C. Colle and O. Hen et al., Phys. Rev. C 92, 024604 (2015)

Selectivity of SRC Pairs

 Extract the number of pp (np) SRC pairs in nuclei relative to ¹²C.

• consistent with ${}^{1}S_{0}$ (${}^{3}S_{0}$) vairs creating SRCs.

C. Colle and O. Hen et al., Phys. Rev. C 92, 024604 (2015)

Selectivity in Light Nuclei

SRC pairs are consistent with Q = 0 back-to-back pairs

R. Wiringa et al., Phys. Rev. C 89, 024305 (2014).

T. Neff, H. Feldmeier and W. Horiuchi, Phys. Rev. C 92, 024003 (2015).

I. Korover, N. Muangma, and O. Hen et al., Phys. Rev. Lett 113, 022501 (2014).

Importance of SRC Properties

Exclusive 2N-SRC Studies 16 Brasil

From QE to DIS

O. Hen et al., Phys. Rev. C 85 (2012) 047301.

L. B. Weinstein, E. Piasetzky, D. W. Higinbotham, J. Gomez, O. Hen, R. Shneor, Phys. Rev. Lett. 106 (2011) 052301.

From QE to DIS

¹⁹⁷Au

EMC and SRC are probably both dominated by high momentum (high virtuality) nucleons in nuclei

- Not due to Fermi Motion
- Probably due to nucleon medium modification

- O. Hen et al., Int. J. Mod. Phys. E. **22**, 1330017 (2013).
- O. Hen et al., Phys. Rev. C **85** (2012) 047301.
- L. B. Weinstein, E. Piasetzky, D. W. Higinbotham, J. Gomez, O. Hen, R. Shneor, Phys. Rev. Lett. 106 (2011) 052301.

Tagged Structure Functions (JLab12)

Internal structure of SRC nucleons?

Focus on the deuteron:

(2) Infer its momentum from the recoil partner.

(1) Perform DIS off forward going nucleon.

Fixed Target Concept...

- High resolution spectrometers for d(e,e') measurement in DIS kinematics
- Large acceptance recoil proton \ neutron detector
- Long target + GEM detector – reduce random coincidence

Backward Kinematics:

Minimize Re-Scattering

A. V. Klimenko et al., PRC 73, 035212 (2006)

FSI:

- \triangleright Decrease with Q^2
- ➤ Increase with *W*′
- \triangleright Not sensitive to x'
- \triangleright Small for $\theta_{pq} > 107^{\circ}$

Building Large-Acceptance Detectors

Backward Angle Neutron Detector (BAND@Hall-B)

R&D @ MIT / Construction @ BATES

Kinematics and Uncertainties

- Tagging allows to extract the structure function in the nucleon reference frame: $x' = \frac{Q^2}{2(\overline{q} \cdot \overline{p})}$
- Expected coverage: x'~0.3 & 0.45(0.5) < x' < 0.55(0.7) @

 $W^2 > 4 [GeV/c]^2$

Scattered Electron

Knockout nucleon (/jet)

Spectator nucleon

Spectator Momentum = Beam/A + P_{initial}

Scattered Electron

Knockout nucleon (/jet)

Spectator nucleon

Spectator Momentum = Beam/A + P_{initial}

Signature of Correlations:

Spectator momentum > beam momentum

Note: Detection of recoils from NUCLEI is more complicated...

Spectator Momentum = Beam/A + P_{initial}

Signature of Correlations:

Spectator momentum > beam momentum

Collider Tagging Kinematics

Spectator Momentum

100 GeV d: $\gamma = 50$

Center of Mass			Lab	
P _z (CN GeV)		P _{perp} (CM) GeV/c	P _z (Lab) GeV/c	θ _p (Lab)
0		0	50	0
0.2		0	41	0
0.4		0	34	0
0.6		0	28	0
0.6		0.2	29	0.007
0.6		0.6	36	0.02

EIC/SRC Physics Shopping List?

- Proton / Neutron structure functions from low to high vitruality.
- NN Interactions at short distance (see Matt's talk).
- Polarization of SRC pairs.
- 2N-SRC IsoSpin structure at very high P_{miss}
- 2N-SRC dymanics in heavy, asymmetry, nuclei.
- 3N-SRC, #N-SRC???
- Your ideas here!

Need very versatile detectors!!

"What holds the nucleons of the atom together? In the past quarter century physicists have devoted a huge amount of experimentation and mental labor to this problem, probably more man hours than have been given to any other scientific question in the history of man kind" — Hans Bethe, Scientific American 1953

63 years later....

Did we solve the nuclear problem?? How about the 'partonic' problem??

