# Momentum Sharing in Asymmetric Fermi-Systems



Or Hen MIT









What are Short-Range Correlation (SRC)

- Are close together (wave function overlap)
- Have high relative momentum and low c.m. momentum compared to the Fermi momentum (k<sub>F</sub>)









#### Breakup the pair => Detect both nucleons => Reconstruct 'initial' state







## Isospin Structure





A. Tang et al., PRL (2003);

E. Piasetzky et al., PRL (2006);

R. Shneor et al., PRL (2007)



np fraction

# Isospin Structure





O. Hen et al., Science 364 (2014) 614

### **Bottom Line:**

- np-SRC dominance observed in
   A = 4 208 nuclei.
- Strong indication for Tensor force dominance at short distance



# Universal structure of nuclear momentum distributions





### **Kinetic Energy Sharing**





### Kinetic Energy Sharing in Asymmetric Nuclei



### Kinetic Energy Sharing in Asymmetric Nuclei



### **Calculations** *Predict* Correlations wins





VMC Calculations: R. Wiringa et al., Phys. Rev. C 89, 024305 (2013)

# 🛲 Paring in asymmetric nuclei (JLab12)

### (e,e'p) studies of high-momentum nucleons



- Minority move faster?
- Minority have larger pairing probability?
- Dynamics of pairing with symmetry?

New targets (<sup>3</sup>H, <sup>48</sup>Ca) allow studying the nuclear asymmetry dependence of the the proton (/neutron) momentum distribution.



## New Data from CLAS (Before 12GeV)





Open (e,e') trigger, Large-Acceptance, Low luminosity (~10<sup>34</sup> cm<sup>-2</sup> sec<sup>-1</sup>)





#### Extract the asymmetry dependence of the fraction of highmomentum nucleons in nuclei







#### Extract the asymmetry dependence of the fraction of highmomentum nucleons in nuclei



## New Data from CLAS (Before 12GeV)





Open (e,e') trigger, Large-Acceptance, Low luminosity (~10<sup>34</sup> cm<sup>-2</sup> sec<sup>-1</sup>)



### **Extracting NEUTRONS from CLAS**





### Mew (Forthcoming) Data from CLAS





### New (Forthcoming) Data from CLAS



#### Extract TOF Resolution



Mew (Forthcoming) Data from CLAS



## Calculating different ratios for $^{12}C$ :

low

 $\frac{\frac{12C(e, e'p)/\sigma_p}{12C(e, e'n)/\sigma_n}\Big|_{P_{miss} < 0.25} = 1.09 \pm 0.12$ 



<u>Current Status</u>: Finalizing analysis for <sup>12</sup>C. Doing a 'blind' analysis of the heavy nuclei



### What's Coming?

- A(e,e'n) Low and High P<sub>miss</sub>
- A(e,e'np) and A(e,e'pn)
- A(e,e'ppp) and (e,e'npp)
   [See Erez's talk]







- A(e,e
- A(e,e [See E



CALM

AND

STAY

TUNED











Mii

\*Me at this point of the talk



# Who Cares?







# Who Cares?





# Two-component interacting Fermi systems

The contact term







A concept developed for a <u>dilute</u> two-component Fermi systems with a short-range interaction.

dilute 
$$\equiv r_{eff} << a, d$$
  
Distance between fermions

S. Tan Annals of Physics 323 (2008) 2952, ibid 2971, ibid 2987





A concept developed for a <u>dilute</u> two-component Fermi systems with a short-range interaction.

dilute 
$$\equiv r_{eff} \ll a, d$$

Distance between fermions

These systems have a high-momentum tail:

$$n(k) = C / k^4$$
 for  $k > k_F$ 

S. Tan Annals of Physics 323 (2008) 2952, ibid 2971, ibid 2987



A concept developed for a <u>dilute</u> two-component Fermi systems with a short-range interaction.

dilute 
$$\equiv r_{eff} << a, d$$

Distance between fermions

These systems have a high-momentum tail:

$$n(k) = C / k^4 \text{ for } k > k_F$$

C is the contact term

Tan's Contact term:

- 1. Measures the number of SRC different fermion pairs.
- 2. Determines the thermodynamics through a series of universal relations.

S. Tan Annals of Physics 323 (2008) 2952, ibid 2971, ibid 2987

![](_page_28_Figure_0.jpeg)

![](_page_28_Picture_2.jpeg)

Two spin-state mixtures of ultra-cold <sup>40</sup>K and <sup>6</sup>Li atomic gas systems.

=> extracted the contact and verified the universal relations

![](_page_28_Figure_5.jpeg)

![](_page_29_Picture_0.jpeg)

![](_page_29_Picture_2.jpeg)

Two spin-state mixtures of ultra-cold <sup>40</sup>K and <sup>6</sup>Li atomic gas systems.

=> extracted the contact and verified the universal relations

What About a *Nuclear* Contact ?

Stewart et al. PRL 104,

#### Nucleons in a nucleus

![](_page_30_Picture_1.jpeg)

#### Ultra-cold atoms in a trap

 $\rho = 10^{21} \,\mathrm{m}^{-3}$ 

![](_page_31_Picture_0.jpeg)

## $\sigma_1 \approx 1 \text{ person/m}^2$

![](_page_32_Picture_0.jpeg)

![](_page_32_Picture_1.jpeg)

### $\sigma_1 \approx 1 \text{ person/m}^2$

### $\sigma_2 \approx 1 \text{ person/km}^2$

 $\sigma_1 / \sigma_2 \approx 10^6$ 

![](_page_33_Picture_0.jpeg)

![](_page_33_Picture_2.jpeg)

### Are nuclei dilute? (i.e. r<sub>eff</sub> << a,d)

$$d = \left(\frac{\rho}{2}\right)^{-1/3} \approx 2.3 \text{ fm}$$

$$r_{eff} \approx \frac{\hbar}{2 \cdot m_{\pi} \cdot c} \approx 0.7 \text{ fm [Tensor force]}$$

 $a({}^{3}S_{1}) = 5.42 \text{ fm}$ [The high-momentum tail is predominantly  ${}^{3}S_{1}({}^{3}D_{1})$ ]

![](_page_34_Picture_0.jpeg)

![](_page_34_Picture_2.jpeg)

### Are nuclei dilute? (i.e. r<sub>eff</sub> << a,d)

$$d = \left(\frac{\rho}{2}\right)^{-1/3} \approx 2.3 \text{ fm}$$

$$r_{eff} \approx \frac{\hbar}{2 \cdot m_{\pi} \cdot c} \approx 0.7 \text{ fm}$$
 [Tensor force]  
 $a({}^{3}S_{1}) = 5.42 \text{ fm}$ 

$$r_{eff}(0.7 \text{ fm}) < d(2.3 \text{ fm}), a(5.4 \text{ fm})$$

![](_page_35_Picture_0.jpeg)

![](_page_35_Picture_2.jpeg)

# Is there 1/k<sup>4</sup> scaling regardless?

 $1.5k_F < k < 3k_F$   $n_A(k) = a_2(A/d) \cdot n_d(k)$ Constant
Deuteron
Momentum
Distribution

![](_page_35_Picture_5.jpeg)

![](_page_36_Picture_0.jpeg)

![](_page_36_Picture_2.jpeg)

![](_page_36_Figure_4.jpeg)

![](_page_37_Picture_0.jpeg)

![](_page_37_Picture_2.jpeg)

$$n_A(k) = a_2(A/d) \cdot n_d(k)$$

15k - k - 3k

# Why 1/k4?

Effect of the one pion exchange (OPE) contribution to the tensor potential acting in second order

$$(-B - H_0) |\Psi_D\rangle = V_T |\Psi_S\rangle$$
$$V_{00} = V_T (-B - H_0)^{-1} V_T$$

O. Hen et al. Phys. Rev. C 92, 045205 (2015)

![](_page_37_Figure_9.jpeg)

![](_page_38_Picture_0.jpeg)

![](_page_38_Picture_2.jpeg)

![](_page_38_Figure_4.jpeg)

![](_page_39_Picture_0.jpeg)

![](_page_39_Picture_2.jpeg)

![](_page_39_Figure_4.jpeg)

![](_page_40_Picture_1.jpeg)

Finding the same dimensionless interaction strength

![](_page_40_Figure_3.jpeg)

Stewart et al. Phys. Rev. Lett. **104**, 235301 (2010) Kuhnle et al. Phys. Rev. Lett. **105**, 070402 (2010)

![](_page_41_Picture_1.jpeg)

Finding the same dimensionless interaction strength

![](_page_41_Figure_3.jpeg)

Stewart et al. Phys. Rev. Lett. **104**, 235301 (2010) Kuhnle et al. Phys. Rev. Lett. **105**, 070402 (2010)

![](_page_42_Picture_1.jpeg)

#### **Equal contacts** for equal interactions strength!

![](_page_42_Figure_3.jpeg)

For Nuclei:  

$$k_F \approx 1.27 \text{ fm}^{-1}$$
  
 $a \approx 5.4 \text{ fm}$   
=> ( $k_Fa$ )<sup>-1</sup> ≈ 0.15

| Nucleus             | $rac{C}{k_F A}$ |
|---------------------|------------------|
| $^{12}\mathrm{C}$   | $3.04\pm0.49$    |
| $^{56}$ Fe          | $3.33\pm0.54$    |
| $^{197}\mathrm{Au}$ | $3.30\pm0.53$    |

 $\frac{C}{k_{E} \cdot A} = a_2(A) \cdot R_d$ 

O. Hen et al. Phys. Rev. C **92**, 045205 (2015) Stewart et al. Phys. Rev. Lett. **104**, 235301 (2010) Kuhnle et al. Phys. Rev. Lett. **105**, 070402 (2010)

![](_page_43_Picture_1.jpeg)

**Atomic Gas** → <sup>6</sup>Li Atoms Nuclei <sup>67</sup>Cu*,* <sup>197</sup>Au 3 12**C** k<sub>F</sub> ≈ 1.6 eV/c Nuclei 2  $\rho \approx 10^{21} \text{ m}^{-3}$ k<sub>F</sub> ≈ 2.5×10<sup>8</sup> eV/c ρ ≈ 10<sup>44</sup> m<sup>-3</sup> -0.5 0.5 () (k<sub>\_</sub>a)<sup>-1</sup>

At unitary (i.e. (k<sub>F</sub>a)<sup>-1</sup> ≈ 0) the SRC probability is ~20% for both systems

![](_page_43_Picture_4.jpeg)

![](_page_43_Picture_5.jpeg)

O. Hen et al. Phys. Rev. C **92**, 045205 (2015) Stewart et al. Phys. Rev. Lett. **104**, 235301 (2010) Kuhnle et al. Phys. Rev. Lett. **105**, 070402 (2010)

![](_page_44_Picture_0.jpeg)

# $(2-3) \cdot \rho_0$

 $ho_0$ 

![](_page_44_Picture_3.jpeg)

![](_page_45_Picture_0.jpeg)

# The group

![](_page_45_Picture_2.jpeg)

• <u>MIT:</u>

![](_page_45_Picture_4.jpeg)

Barak Schmookler

![](_page_45_Picture_6.jpeg)

Navaphon (Tai) Muangma

**Reynier Torres** 

- Or Hen
- Shalev Gilad
- + Looking for two new postdocs! WE ARE EXPANDING!

• <u>Tel-Aviv:</u>

![](_page_45_Picture_13.jpeg)

Erez Cohen

![](_page_45_Picture_15.jpeg)

**Meytal Duer** 

lgor Korover

- Eli Piasetzky
- <u>ODU:</u>

![](_page_45_Picture_20.jpeg)

- Mariana Khachatryan
- Larry Weinstein
- Many theory friends <sup>(C)</sup>

![](_page_46_Picture_0.jpeg)

# **Questions?**

Thank You!

# Thank You!

# **Questions?**

\*What I would be doing today if I was in Boston....