Next Generation Nuclear Physics with JLab12 and EIC 10–13 February 2016 Florida International University

Nuclear Gluons with Charm at EIC*

*Probing High-x Gluons in Nuclei via Open Charm Production

> Charles Hyde Old Dominion University

Gluons at Large-x in (e,e')?

O Gluons are a low x phenomenon

- ~50% of gluon momentum sum rule is at x > 0.1
- $g(x) \approx d(x)$ quarks at $x \ge 0.3$ (within errors)

10-13 Feb 2016

EMC Effect': Anti-Shadowing

 \bigcirc

 Anti-shadowing is not anti-quarks! FermiLab Drell-Yan E722

Anti-shadowing is glue

Gluons and Charm @ JLab 12 GeV

• First CLAS12 experiment, circa FY17+

- $e + p \rightarrow e' + X, \qquad E_e = 11 \text{ GeV}$
- $\circ e + p \rightarrow e' + p + (J/\Psi \rightarrow e^+e^-)$
 - Gluon GPD at $x_g = (M_{J/\Psi})^2 / (W^2 M^2) > 0.5$ for $Q^2 \ge 1 \text{ GeV}^2$
 - LHCb resonance in $p \times J/\Psi$ channel: PRL 115, 072001 (2015)

• *CLAS12* forward tagger $W \le 4.5 \text{ GeV}$ for $Q^2 << 1 \text{ GeV}^2$

- Time-like Compton scattering (TCS) up to $M(J/\Psi)$ approved for CLAS12, SoLID (Hall A)
- TCS discussions for Halls C & D

10-13 Feb 2016

Nuclear gluons with charm at EIC JLab FY16 LDRD Project LD1601

- E. Chudakov, D. Higinbotham, C. H., S. Furletov, Yu.
 Furletova, D. Nguyen, M. Stratmann, M. Strikman, C. Weiss.
- https://wiki.jlab.org/nuclear_gluons/index.php/Main_Page
- Investigate feasibility of direct measurements (with EIC@JLab) of nuclear gluons at $x_{glue} \ge 0.1$, via open-charm (open-beauty) production.
- Simulation codes under development
 - Analytic codes,
 - MC + fragmentation via HVQDIS, PYTHIA...
 - Detector Simulations in GEMC/GEANT4
 - Initial results

Gluons & Nuclear Binding

- Shadowing (coherent gluons 0 from NN, NNN ...)
 - ALICE data: 0 ultra-peripheral $AA \rightarrow AA J/\Psi$
 - x = 0.001 0.01
- Expectation of gluonic 0 anti-shadowing at $x \approx 0.1$

Tagging Photon-Gluon Fusion via Open Charm Production

$$F_{2}^{h}(x,Q^{2}) = \int_{ax}^{1} \frac{dx'}{x'} x' G(x') \hat{F}_{g}^{h}(x/x',Q^{2},m_{h}^{2},\mu^{2})$$

coefficient function

$$a = 1 + \frac{4m_h^2}{Q^2}$$

sets limit of x' integral

C.Hyde, Next Gen. Nucl. Phys.

10-13 Feb 2016

0

0

0.2

0.4

x'

0.6

0.8

Total Open-Charm Rates @ EIC

Open Charm Reconstruction

- $\circ \quad c \rightarrow D^{\circ} \rightarrow \pi^{+} K^{-}$
- $\circ \quad c \rightarrow D^{*+} \rightarrow \pi^{+}_{slow} + D^{0} \rightarrow \pi^{+} K^{-}$

ZEUS, $Q^2 \ge 1.5 \text{ GeV}^2$ • Luminosity 80 / pb

EIC Luminosity
 10-100 / fb/yr
 (10³³ - 10³⁴ / cm²/s)

10-13 Feb 2016

C.Hyde, Next Gen. Nucl. Phys.

EIC Kinematic Distributions

- Yu. Furletova
- Charm and Beauty events are different from inclusive DIS!

EIC Charm Reconstruction

• S. Furletov

• HVQDIS + PYTHIA

Secondary Vertex ($D^0 \rightarrow \pi K$)

• S. Furletov

- Pythia simulation
- EIC Kinematics 10 x 100 GeV²

10-13 Feb 2016

C.Hyde, Next Gen. Nucl. Phys.

LDRD Next Steps

- Kinematic Distributions
 & Reconstruction Efficiencies differential in x_{glue}
 - Which performance characteristics (and which portions of detector) are crucial to charm and beauty reconstruction
- O Vertex Tracker
 - Design and performance (Yu. Furletova)

S. Furletov 12 Feb 2016 10x100 GeV²

EIC @ JLab Vertex Tracker

- Initial concept, implementation in GEMC and event simulation
 - O Yu. Furletova, 10 Feb 2016
- Central beam pipe concept
 C.H., Z. Zhao→GEMC 12 Feb 2016

Conclusions

- Exciting program to probe gluon structure on nuclei
 - Important driver for EIC Detector design
 - 80 m long detector:
 - From 0° electron tagger & Compton Polarimeter to ion far-forward spectrometer & neutron ZDC

