

(Tensor) Polarized Deuteron at an EIC

Next Gen. Physics @ JLab12/EIC Workshop February 12, 2016

Narbe Kalantarians Hampton University

Outline

- Background/Motivation
- Spin-1/Tensor-Polarization Concept
- Physics possibilities with an EIC

Why Deuteron?

- Relatively simple lab for nuclear physics
- Spin-1 system

M = 0

• Reasonably "easy" to polarize.

Spatial distribution depends on the spin state

 $M = \pm 1$

J. Carlson, R. Schiavalla Rev. Mod. Phys. **70** 743 (1998)

J.L. Forrest *et al.* Phys. Rev. **C54** 646 (1996)

Spin-1

Spin-1 system in a B-field leads to 3 sublevels via Zeeman interaction.

Vector polarization: $(n + - n^{-})$; $-1 < P_z < +1$ Tensor polarization: $(n + - n^{0}) - (n^{0} - n^{-})$; $-2 < P_{zz} < +1$ Normalization: $(n^{+} + n^{-} + n^{0}) = 1$

Some research has been done with deuteron beams (Thesis: V. Morozov)

Inclusive Scattering with Spin-1

5

Spin-1 => 4 more structure-functions: b_1, b_2, b_3, b_4

b_1^d

- Deuteron essentially combination of nuclear and quark physics.
- Measured via DIS, but dependent on deuteron spin-state.
- Allows for investigation of nuclear effects at parton level.

b_1^d

Hoodbhoy, Jaffe, Manohar (1989)

 b_1 vanishes in the absence of nuclear effects.

Details in S. Kumano's Talk

p,n in relative S-state Even accounting for D-state admixture, b_1^{d} expected to be very small.

Khan & Hoodbhoy, PRC 44 ,1219 (1991) : b₁ ≈ O(10⁻⁴) Relativistic convolution model with binding

Umnikov, PLB 391, 177 (1997) : b₁ ≈ O(10⁻³) Relativistic convolution with Bethe-Salpeter formalism

Experimental Method

Observable is the Normalized XS Difference: HERMES

HERMES Measurement: *b*₁^d

$$b_1 = -\frac{3}{2}F_1 A_{ZZ} \quad A_{ZZ} = \frac{1}{P_{ZZ}} \frac{2\sigma^1 - 2\sigma^0}{3\sigma^U}$$

Rising of b_1 as x->0 can be related to same mechanism responsible for nuclear shadowing.

Ashman, et al. PLB 206 364(1988)

Can also be described in models involving double-scattering of leptons

HERMES Details in C. Riedl's thesis.

Proposed measurements at JLab12 (E. Long's talk).

HERMES Measurement: b_2^d

 b_2 related to b_1 via Callan-Gross-type relation.

$$b_2 = 2xb_1\frac{1+R}{1+\gamma^2}$$

$$R = (1 + \gamma^2) \frac{F_2}{2xF_1} - 1$$

10

HERMES Close-Kumano Sum Rule

F.E.Close, S.Kumano, PRD42 2377 (1990)

If sea quark and antiquark tensor polarization vanishes i.e.

$$\int b_1(x)dx = 0$$

HERMES measurement:

c0.85 $b_1(x)dx = 0.0105 \pm 0.0034 \pm 0.0035$ $\int_{0.02}$ $c^{0.85}$ $b_1(x)dx = 0.0035 \pm 0.0010 \pm 0.0018$ 1.7 σ result, with Q²>1GeV² $J_{0.02}$

 2σ result, over measured range

PRL 95 242001 (2005)

Physics @ EIC w/ (Tens.) Pol. Deuteron Beam

Possibilities

- A_{ZZ} , b_1^{d} , not very easy: susceptible to backgrounds(A_{PV}) and FSIs.
- With spectator (nucleon) tagging, can access angular modulations, as well as minimizing FSIs.
- With exclusive channels (DVCS); can access information for sum rules, enhance b_1 .

Issues to Address:

- How well can polarization and beam stability be understood and controlled (Systematics)?
- Need to do simulation studies.

b_1^d Predictions

- Both models predict b_1 (rapidly) increasing as x->0: Double-scattering
- Errors for (HERMES) data shown are statistical only.

Predictions for b_2^{d} , $A_{2(zz)}^{d}$

Tens. Pol. Scattering at low x

L. Frankfurt, V. Guzey, M. Strikman Mod. Phys.Lett. A21(2006) 23-40

Exclusive

 $H_5 \rightarrow b_1$

Liuti, Kathuria, J.Phys.Conf.Ser. 543 (2014) Taneja,Kathuria,Liuti,Goldstein, PRD86 (2012)

$$H_{5}(x,\xi,t) = \frac{1}{2} \left(2f_{00}^{11} - f_{++}^{11} - f_{--}^{11} \right)$$

= $\int_{x}^{2} dz f_{D}^{l=2}(z) H\left(\frac{x}{z},\frac{\xi}{z},t\right) + c_{E} \frac{\sqrt{t_{0}-t}}{2M} E\left(\frac{x}{z},\frac{\xi}{z},t\right)$

GPD E makes b₁ increase!

(S. Liuti's talk).

16

16

b₁ in forward limit

 $b_1^d = H_5(x, 0, 0)$

Cross Section Calculation w/ Tagging

**Carried out by W. Cosyn, M. Sargisian, and C. Weiss (very much in progress)

 Cross-section for pol. Deuteron, w/ tagged nucleon -> 16 SFs sensitive to tensor pol.

 These all go like the deuteron S-D-wave interference and D-wave density so will be small.

• All have their own modulation with azimuthal angles like sin or $\cos(n\Phi_h - \Phi_{offset})$ -with 2 different offset angles.

• There is a $4\Phi_h$ modulation that does not appear in the unpolarized or vectorpolarized part of the cross section.

• Integrated over all tagged nucleons (inclusive) 4 of the structure functions survive, which can be related to SSFs b_{1-4} .

The (M)EIC at JLab (nka JLEIC)

See P. Nadel-Turonski's Talk

- 12 GeV CEBAF is a fullenergy lepton injector
 - Parallel running with fixed target possible
- Both the MEIC and CEBAF have a ~1.4 km circumference
- MEIC can store 20-100 GeV protons, or heavy ions up to 40 GeV/A.
- The stage II EIC will increase the energy to 250 GeV for protons and 20 GeV for electrons.
- Two detectors
 - IP2 could host ePHENIX

MEIC – design goals

Spin control for all light ions

- Figure-8 layout
- Vector- and tensor polarized deuterium

Full-acceptance detector

- Ring designed around detector requirements
- Detection of all fragments nuclear and partonic

P. Nadel-Turonski EICAC 2014

Stable concept – detailed design report released August 2012

Polarized Deuterons in Figure-8

- Maintaining pol. deuteron difficult with present tech., due to small magnetic moment.
- Figure-8 design allows one to control the stable spin orientation with a small spin rotation around a certain axis using magnetic inserts.
- Deuteron pol. is then stable and points along the rotation axis at the insert's location.
- Simulations in progress for MEIC (figure-8) concept.

Deuteron Beam Polarization Studies

- Studied deuteron spin manipulation with a 270 MeV vertically polarized beam stored in IUCF storage ring. Similar study done at COSY.
- Beam Fast RF cycled through 4 vertical polarization states (to reduce systematic errors).
- Spin-1 linear combination: Flip by bunches or extract at experiment.

Summary

- (Tensor) Polarized deuteron provides Spin-1 quark/nuclear system.
- Spin-1 introduces new observables of interests.
- HERMES measurement, complementary proposals at Jlab12.
- Access to lower x, with tensor polarized deuteron, could open new physics capabilities.
- Study underway for polarized deuteron beam for MEIC –(others interested welcome to join!).

*Many thanks to W. Cosyn, V. Morozov, S. Liuti, P. Nadel-Turonski C. Weiss

Support Slides

Spin-1 Structure Functions

Leading Twist: F_1, g_1, b_1

$$q^{0} = (q^{0}_{\uparrow} + q^{0}_{\downarrow}) = 2q^{0}_{\uparrow}$$
$$q^{1} = (q^{1}_{\uparrow} + q^{1}_{\downarrow}) = (q^{1}_{\uparrow} + q^{-1}_{\downarrow})$$

Nucleon
 Deuteron

$$F_1$$
 $\frac{1}{2} \sum_{q} e_q^2 [q_{\uparrow}^{1/2} + q_{\downarrow\uparrow}^{-1/2}]$
 g_1
 $\frac{1}{2} \sum_{q} e_q^2 [q_{\uparrow}^{1/2} - q_{\downarrow\uparrow}^{-1/2}]$
 b_1
 $\frac{1}{2} \sum_{q} e_q^2 [q_{\uparrow}^0 - q_{\downarrow\uparrow}^{-1/2}]$

 F_1 : quark distributions averaged over spin states g_1 : difference of distributions of quarks aligned/anti-aligned with nucleon b_1 : difference of helicity-0/helicity non-zero states of the *deuteron*

Spin-1 Structure Functions

Nucleon	Deuteron		
<i>b</i> ₁	$\frac{1}{2}\sum_{n}e_{q}^{2}[2q_{\uparrow}^{0}-(q_{\uparrow}^{1}+q_{\downarrow}^{-1})]$		
From reflection-symmetry	q		

Jiii ieliecuoli-symmetry

$$q^m_{\uparrow} = q_{\downarrow}^{-m}$$

 b_1 d.n.e for spin-1/2 and vanishes in absence of nuclear effects.

In relative S-state b_1 describes difference between helicity-0 and averaged nonzero.

$$q^{0} = (q^{0}_{\uparrow} + q^{0}_{\downarrow}) = 2q^{0}_{\uparrow}$$
$$q^{1} = (q^{1}_{\uparrow} + q^{1}_{\downarrow}) = (q^{1}_{\uparrow} + q^{-1}_{\downarrow})$$

 b_1 depends on spin-averaged distributions

$$rac{1}{2}\sum_{q}e_{q}^{2}[q^{0}-q^{1}]$$
Hoodbhoy,Jaffe, Manohar (1989)

Spin-1 Structure Functions

Leading Twist: *F*₁,*g*₁,*b*₁

b₂: related to b_1 by relation similar to Callan-Gross. **b**₄: kinematically suppressed at longitudinal polarization. Also, leading twist. **b**₃: higher twist, similar to g_2 .

HERMES Measurement: Azz^d

- 27.6 GeV longitudinally polarized positron beam
- Internal tensor polarized d_2 gas target; $P_{zz} \sim 0.8$ (negligible P_z), dilution ~ 0.9 .
- 1 month of data taking.

Tensor spin asymmetry

$$A_{ZZ} = \frac{1}{P_{ZZ}} \frac{2\sigma^1 - 2\sigma^0}{3\sigma^U}$$

Proposal To Determine b_1^d at JLab

- Measurement at Jlab 12GeV could be complementary to HERMES.
- Advantage would be higher luminosity: ~10³⁵cm⁻²s⁻¹ compared to ~10³¹cm⁻²s⁻¹.
- Some research has been done tensor polarizing solid deuteron (ND₃) target via NMR*: P_{zz}~0.2, dilution~0.24,0.36.
- Submitted at PAC 40; Conditionally approved.

OAM Sum Rule

- OAM obtained from A_{UT} (vector pol.)
- Small, hatched area, for ratio, experimental (1109.6197[hep-ph])
- *b*^{*d*} adds complementary information.
- Further development in progress.

$$b_1^d = H_5(x, 0, 0)$$

S. K. Taneja, K. Kathuria, S. Liuti, G. R. Goldstein Phys.Rev. D. 86 036008 29

(S. Liuti's talk).

MEIC accelerator parameters

		50 × 5 GeV²		100 × 5 GeV ²		
		Proton	Electron	Proton	Electron	
Beam energy	GeV	50	5	100	5	
Collision frequency	MHz	748.5	748.5	748.5	748.5	
Particles per bunch	10 ¹⁰	0.21	2.2	0.42	2.5	
Beam Current	А	0.25	2.6	0.5	3	
Polarization	%	~80	>70	~80	>70	
Energy spread	10-4	~3	7.1	~3	7.1	
RMS bunch length	mm	10	7.5	10	7.5	
Horizontal emittance, normalized	µm rad	0.3	54	0.4	54	
Vertical emittance, normalized	µm rad	0.06	5.4	0.04	5.4	
Horizontal and vertical β*	cm	10 and 2	10 and 2	10 and 2	10 and 2	
Vertical beam-beam tune shift		0.015	0.014	0.014	0.03	
Laslett tune shift		0.053	<0.0005	0.03	<0.001	
Distance from IP to 1 st quad	m	7 (downstream) 3.5 (upstream)	3	7 (downstream) 3.5 (upstream)	3	
Lumថាពេងថៃអូ តូតនៅ@*charge effects ណាះ ² នៅsumes conv2រ4នៃរៅនា ³ êlectron cooling 8.3 x 10 ³³						
Red indicates parameters specific to the full-acceptance detector30						

EIC Staging

Already the first stage of an EIC gives access to sea quarks and gluons

Need polarization and good acceptance to detect spectators & fragments

An EIC aims to study the <u>sea quark and</u> <u>gluon-dominated</u> matter.

MEIC – full-acceptance detector ᠾᠲᠾ᠆ᢕ Ψ **Design goals:** Ion detector region 3000. 1.1 D (m) β. (m), β. (m) B_x B, D_{s} 1.0 0.9 2500. 1. Detection/identification of complete final state 0.80.72000. 0.6 2. Spectator p_{τ} resolution << Fermi momentum 1500. 0.5 0.41000. 0.3 3. Low-Q² electron tagger for photoproduction 0.2 500. 0.1 0.0 0.0 -0.1 50. 10. 20. 30. 40. 60. (from GEANT4, top view) s (m) IP FP far forward low-Q² n, γ hadron detection е large-aperture ion guads electron detection ~60 mrad bend electron quads small-diameter electron quads 50 mrad beam p (crab) crossing angle central detector **Roman pots** Thin exit Fixed with endcaps windows trackers 4 m inner coil RICH reshold EM calorimete barrel DIRC + TOF TORCH? nkov 1 m Ion quadrupoles Endca 1 m Tracking 2 Tm <u>calorim</u> dipole СЧ СЧ **Electron quadrupoles EM** calorimeter Trackers and "donut" calorimeter EM 32