

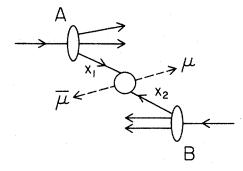
Next Generation Nuclear Physics with JLab12 and EIC Florida International University February 10, 2016

Pion structure from leading neutron electroproduction

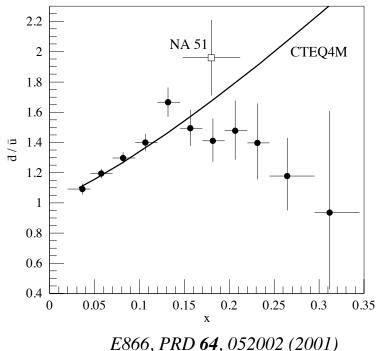
Wally Melnitchouk

with Chueng Ji (NCSU), Josh McKinney (UNC), Nobuo Sato (JLab), Tony Thomas (Adelaide)

- Large flavor asymmetry in proton sea suggests important role of chiral symmetry in high-energy reactions
 - \rightarrow Drell-Yan process



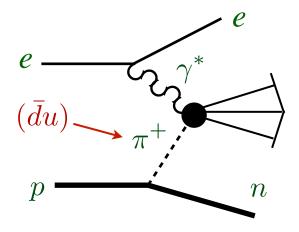
 $\frac{d^2\sigma}{dx_b dx_t} = \frac{4\pi\alpha^2}{9Q^2} \sum_q e_q^2 \left(q(x_b)\bar{q}(x_t) + \bar{q}(x_b)q(x_t)\right)$



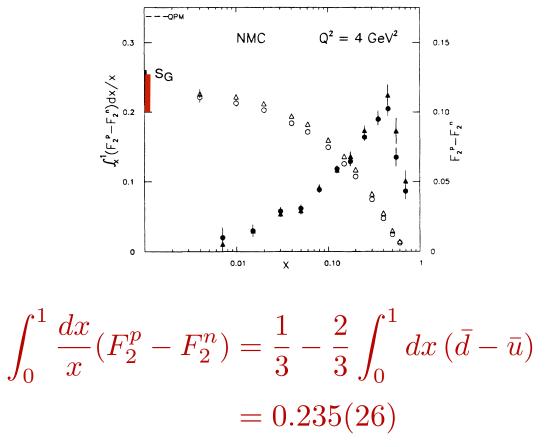
• for
$$x_b \gg x_t$$

$$\frac{\sigma^{pd}}{2\sigma^{pp}} \approx \frac{1}{2} \left(1 + \frac{\bar{d}(x_t)}{\bar{u}(x_t)} \right) \longrightarrow \int_0^1 dx \, (\bar{d} - \bar{u}) = 0.118 \pm 0.012$$

- Large flavor asymmetry in proton sea suggests important role of chiral symmetry in high-energy reactions
 - \rightarrow Sullivan process in DIS

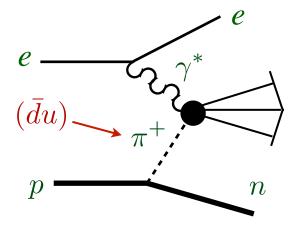


Sullivan, PRD 5, 1732 (1972)



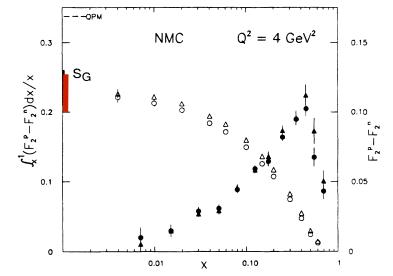
NMC, PRD 50, 1 (1994)

- Large flavor asymmetry in proton sea suggests important role of chiral symmetry in high-energy reactions
 - \rightarrow Sullivan process in DIS



Sullivan, PRD 5, 1732 (1972) Thomas, PLB **126**, 97 (1983) Miller, Kumano, Strikman, Weiss, ...

connection with QCD?



$$(\bar{d} - \bar{u})(x) = \frac{2}{3} \int_{x}^{1} \frac{dy}{y} f_{\pi}(y) \ \bar{q}^{\pi}(x/y)$$

pion light-cone momentum distribution in nucleon

$$f_{\pi}(y) = \frac{3g_{\pi NN}^2}{16\pi^2} y \int dt \frac{-t \ \mathcal{F}_{\pi NN}^2(t)}{(t - m_{\pi}^2)^2}$$

Connection with QCD

- Chiral expansion of moments of $f_{\pi}(y)$
 - → model-independent leading nonanalytic (LNA) behavior

$$\langle x^{0} \rangle_{\bar{d}-\bar{u}} \equiv \int_{0}^{1} dx \, (\bar{d}-\bar{u}) = \frac{2}{3} \int_{0}^{1} dy \, f_{\pi}(y)$$

$$= \frac{2g_{A}^{2}}{(4\pi f_{\pi})^{2}} m_{\pi}^{2} \log(m_{\pi}^{2}/\mu^{2}) + \text{ terms analytic in } m_{\pi}^{2}$$

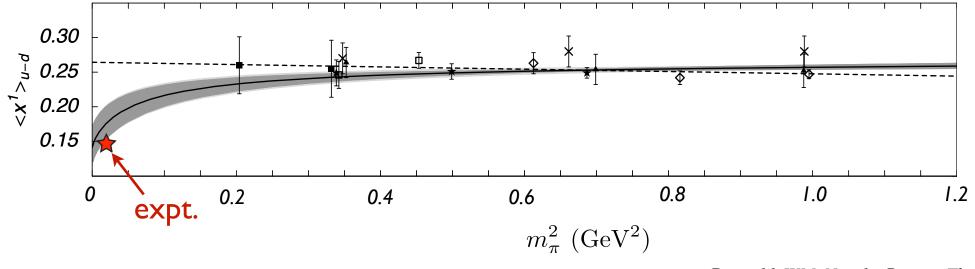
$$Theorem WM Steffer$$

Thomas, WM, Steffens PRL **85**, 2892 (2000)

- \rightarrow can <u>only</u> be generated by pion cloud
- \rightarrow nonzero π cloud contribution <u>predicted</u> by QCD!

Connection with QCD

Nonanalytic behavior vital for chiral extrapolation of lattice data



Detmold, WM, Negele, Renner, Thomas PRL 87, 172001 (2001)

 \rightarrow allows lattice QCD calculations (at unphysical m_{π}) to be reconciled with experiment

Chiral effective theory

Effective low-energy theory of pions & nucleons

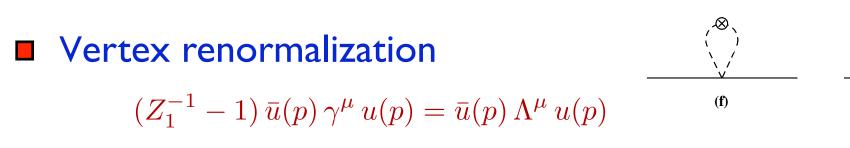
- Iowest order approximation of chiral perturbation theory Lagrangian
- \rightarrow cf. pseudoscalar (PS) Lagrangian

$$\mathcal{L}_{\pi N}^{\mathrm{PS}} = -g_{\pi NN} \, \bar{\psi}_N \, i\gamma_5 \vec{\tau} \cdot \vec{\pi} \, \psi_N + \sigma NN \, \operatorname{term}_{Weinberg, \, PRL \, 18, \, 88 \, (1967)}$$
gives the classic "Sullivan" result

- full PV theory more complicated!

Chiral effective theory

- Pion cloud corrections to electromagnetic N coupling
 - \rightarrow N rainbow (c), π rainbow (d), Kroll-Ruderman (e), π bubble (f), π tadpole (g)



- \rightarrow taking "+" components: $Z_1^{-1} 1 \approx 1 Z_1 = \frac{M}{p^+} \bar{u}(p) \Lambda^+ u(p)$
- \rightarrow e.g. for N rainbow contribution,

$$\Lambda^N_\mu = -\frac{\partial \hat{\Sigma}}{\partial p^\mu}$$

C. Ji, WM, Thomas, PRD 88, 076005 (2013)

(e)

(b)

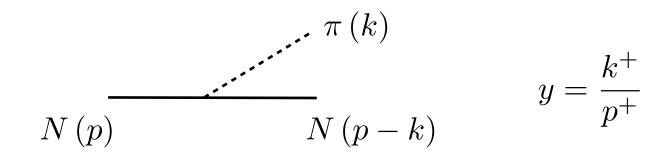
(**d**)

(g)

(a)

(c)

Each diagram can be represented by $N \rightarrow N\pi$ "splitting function" $f_i(y)$ (light-cone momentum distribution function)



• Vertex renormalization is k^+ moment of $f_i(y)$

$$1 - Z_1^i = \int dy \, f_i(y)$$

Summary of splitting functions:

$$1 - Z_1^i = \int dy \, f_i(y)$$

where

Summary of splitting functions:

$$1 - Z_1^i = \int dy \, f_i(y)$$

$$f_{\pi}(y) = f^{(\text{on})}(y) + f^{(\delta)}(y)$$

$$f_{N}(y) = f^{(\text{on})}(y) + f^{(\text{off})}(y) - f^{(\delta)}(y)$$

$$f_{\text{KR}}(y) = f^{(\text{off})}(y) - 2f^{(\delta)}(y)$$

$$f_{\text{tad}}(y) = -f_{\text{bub}}(y) = 2f^{(\text{tad})}(y)$$

with components

$$f^{(\text{on})}(y) = \frac{g_A^2 M^2}{(4\pi f_\pi)^2} \int dk_\perp^2 \frac{y(k_\perp^2 + y^2 M^2)}{\left[k_\perp^2 + y^2 M^2 + (1-y)m_\pi^2\right]^2}$$

on-shell contribution equivalent to PS ("Sullivan")

Summary of splitting functions:

$$1 - Z_1^i = \int dy \, f_i(y)$$

where

e
$$f_{\pi}(y) = f^{(\text{on})}(y) + f^{(\delta)}(y)$$

 $f_{N}(y) = f^{(\text{on})}(y) + f^{(\text{off})}(y) - f^{(\delta)}(y)$
 $f_{\text{KR}}(y) = f^{(\text{off})}(y) - 2f^{(\delta)}(y)$
 $f_{\text{tad}}(y) = -f_{\text{bub}}(y) = 2f^{(\text{tad})}(y)$

with components

$$f^{(\text{on})}(y) = \frac{g_A^2 M^2}{(4\pi f_\pi)^2} \int dk_\perp^2 \frac{y(k_\perp^2 + y^2 M^2)}{\left[k_\perp^2 + y^2 M^2 + (1-y)m_\pi^2\right]^2}$$
$$f^{(\text{off})}(y) = \frac{g_A^2 M^2}{(4\pi f_\pi)^2} \int dk_\perp^2 \frac{y}{k_\perp^2 + y^2 M^2 + (1-y)m_\pi^2}$$

N rainbow & KR contain new off-shell contribution

Summary of splitting functions:

$$1 - Z_1^i = \int dy \, f_i(y)$$

e
$$f_{\pi}(y) = f^{(\text{on})}(y) + f^{(\delta)}(y)$$

 $f_{N}(y) = f^{(\text{on})}(y) + f^{(\text{off})}(y) - f^{(\delta)}(y)$
 $f_{\text{KR}}(y) = f^{(\text{off})}(y) - 2f^{(\delta)}(y)$
 $f_{\text{tad}}(y) = -f_{\text{bub}}(y) = 2f^{(\text{tad})}(y)$

with components

$$\begin{split} f^{(\text{on})}(y) &= \frac{g_A^2 M^2}{(4\pi f_\pi)^2} \int dk_\perp^2 \frac{y(k_\perp^2 + y^2 M^2)}{\left[k_\perp^2 + y^2 M^2 + (1-y)m_\pi^2\right]^2} \\ f^{(\text{off})}(y) &= \frac{g_A^2 M^2}{(4\pi f_\pi)^2} \int dk_\perp^2 \frac{y}{k_\perp^2 + y^2 M^2 + (1-y)m_\pi^2} \\ f^{(\delta)}(y) &= \frac{g_A^2}{4(4\pi f_\pi)^2} \int dk_\perp^2 \log\left(\frac{k_\perp^2 + m_\pi^2}{\mu^2}\right) \delta(y) \end{split}$$

singular y = 0 contribution only in PV theory

KR needed for gauge invariance

$$(1 - Z_1^{\pi}) + (1 - Z_1^{\text{KR}})$$

= $(1 - Z_1^N)$

Summary of splitting functions:

$$1 - Z_1^i = \int dy \, f_i(y)$$

e
$$f_{\pi}(y) = f^{(\text{on})}(y) + f^{(\delta)}(y)$$

 $f_{N}(y) = f^{(\text{on})}(y) + f^{(\text{off})}(y) - f^{(\delta)}(y)$
 $f_{\text{KR}}(y) = f^{(\text{off})}(y) - 2f^{(\delta)}(y)$
 $f_{\text{tad}}(y) = -f_{\text{bub}}(y) = 2f^{(\text{tad})}(y)$

with components

$$f^{(\text{on})}(y) = \frac{g_A^2 M^2}{(4\pi f_\pi)^2} \int dk_\perp^2 \frac{y(k_\perp^2 + y^2 M^2)}{[k_\perp^2 + y^2 M^2 + (1 - y)m_\pi^2]^2}$$
$$f^{(\text{off})}(y) = \frac{g_A^2 M^2}{(4\pi f_\pi)^2} \int dk_\perp^2 \frac{y}{k_\perp^2 + y^2 M^2 + (1 - y)m_\pi^2}$$
$$f^{(\delta)}(y) = \frac{g_A^2}{4(4\pi f_\pi)^2} \int dk_\perp^2 \log\left(\frac{k_\perp^2 + m_\pi^2}{\mu^2}\right) \delta(y)$$
$$f^{(\text{tad})}(y) = -\frac{4}{g_A^2} f^{(\delta)}(y)$$

tadpole & bubble equal & opposite $(1 - Z_1^{tad}) = -(1 - Z_1^{bub})$

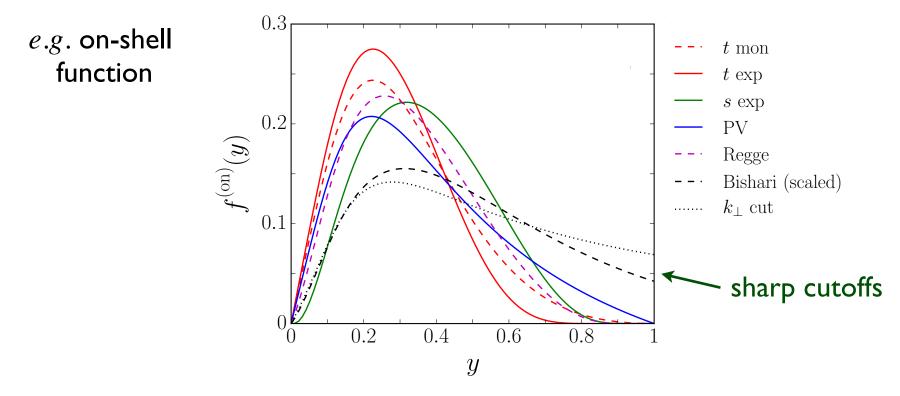
UV regularization

- For point-like nucleons and pions, integrals divergent
- Finite size of nucleon provides natural scale to regularize integrals, but does not prescribe form of regularization
 - → freedom in choosing regularization prescription (long-distance physics independent of choice!)

${\cal F}=\Theta(\Lambda^2-k_{\perp}^2)$	k_{\perp} cutoff
$\mathcal{F} = \left(\frac{\Lambda^2 - m_\pi^2}{\Lambda^2 - t}\right)$	monopole in $t \equiv k^2 = -\frac{k_\perp^2 + y^2 M^2}{1-y}$
$\mathcal{F} = \exp\left[(t - m_{\pi}^2)/\Lambda^2\right]$	exponential in t
$\mathcal{F} = \exp\left[(M^2 - s)/\Lambda^2\right]$	exponential in $s = \frac{k_{\perp}^2 + m_{\pi}^2}{y} + \frac{k_{\perp}^2 + M^2}{1-y}$
$\mathcal{F} = \left[1 - \frac{(t - m_{\pi}^2)^2}{(t - \Lambda^2)^2}\right]^{1/2}$	Pauli-Villars
$\mathcal{F} = y^{-\alpha_{\pi}(t)} \exp\left[(t - m_{\pi}^2)/\Lambda^2\right]$	Regge

UV regularization

Detailed shape of splitting function depends on regularization, but common general features



If "bare" nucleon has symmetric sea, then only pion coupling diagrams contribute

 $\bar{d} - \bar{u} = [f_{\pi^+} + f_{\text{bub}}] \otimes \bar{q}_{\pi}$

- Pion cloud corrections to electromagnetic N coupling
 - \rightarrow N rainbow (c), π rainbow (d), Kroll-Ruderman (e), π bubble (f), π tadpole (g)

■ Vertex renormalization $(Z_1^{-1} - 1) \bar{u}(p) \gamma^{\mu} u(p) = \bar{u}(p) \Lambda^{\mu} u(p)$ → taking "+" components: $Z_1^{-1} - 1 \approx 1 - Z_1 = \frac{M}{p^+} \bar{u}(p) \Lambda^+ u(p)$ → e.g. for N rainbow contribution, $\partial \hat{\Sigma}$ contribute to

$$\Lambda^N_\mu = -\frac{\partial \Sigma}{\partial p^\mu}$$

(b)

(d)

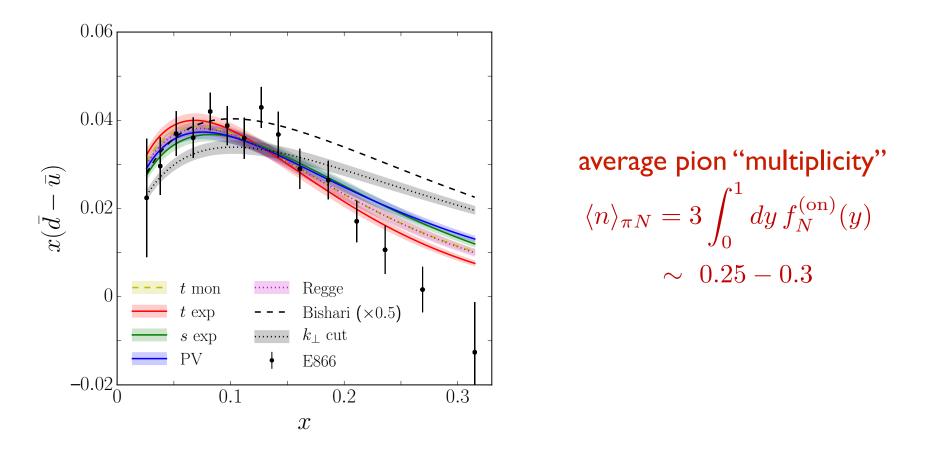
(a)

(c)

(e)

 $\overline{d} - \overline{u}$

E E866 $\bar{d} - \bar{u}$ data can be fitted with range of regulators

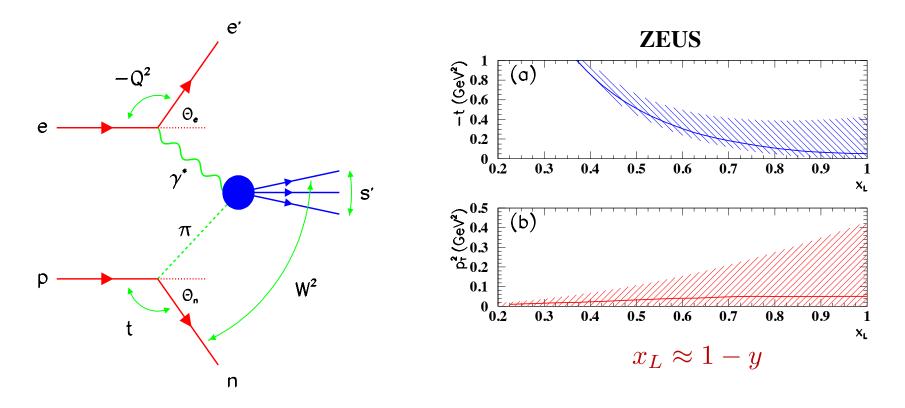


- → with exception of k_{\perp} cutoff and Bishari models, all others give reasonable fits, $\chi^2 \lesssim 1.5$
- \rightarrow large-x asymmetry to be probed by FNAL SeaQuest expt.

- E866 $\bar{d} \bar{u}$ data can be fitted with range of regulators
- Is pion cloud the only explanation for the asymmetry?
 - → are there other data that can discriminate between different mechanisms?
 - → semi-inclusive production of "leading neutrons" (LN) at HERA!

Leading neutron production at HERA

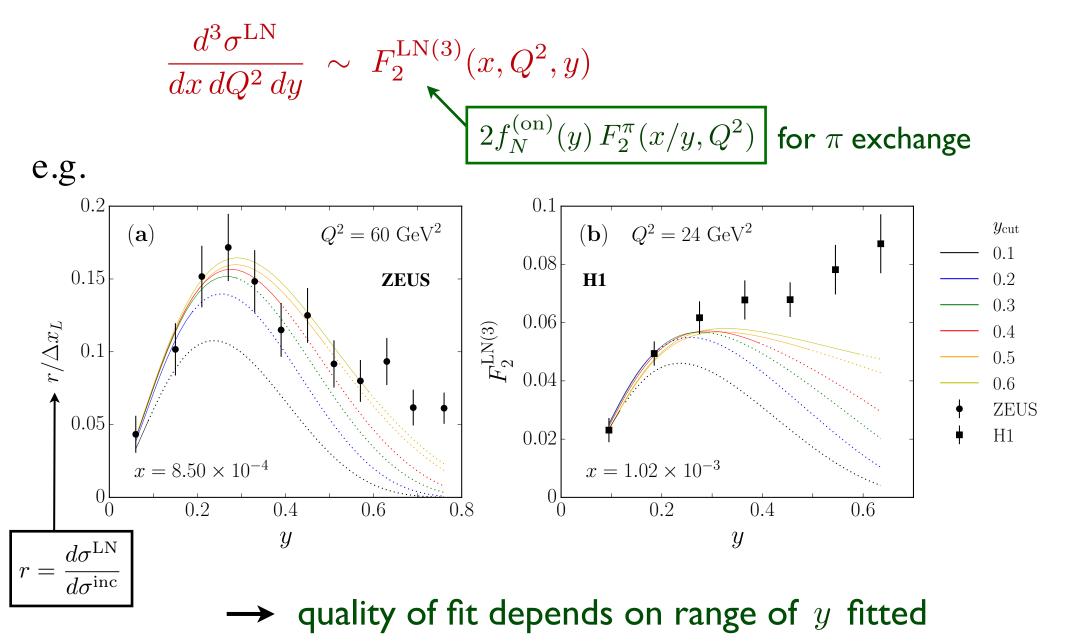
■ ZEUS & H1 collaborations measured spectra of neutrons produced at very forward angles, $\theta_n < 0.8 \text{ mrad}$



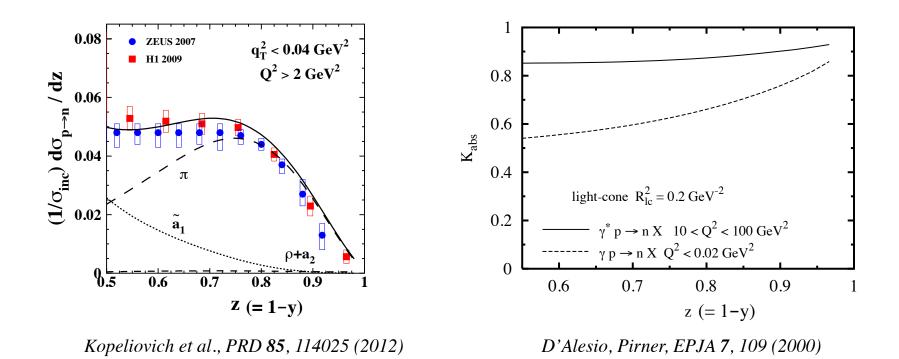
- → can data be described within same framework as E866 flavor asymmetry?
- → simultaneous fit never previously been performed!

Leading neutron production at HERA

Measured LN differential cross section (integrated over p_{\perp})



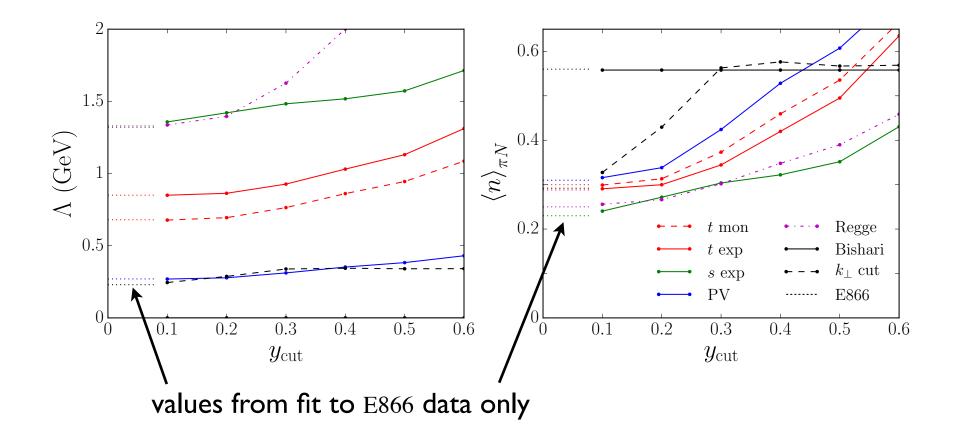
Leading neutron production at HERA At large y non-pionic mechanisms contribute (e.g. heavier mesons, absorption)



To reduce model dependence, fit the value of y_{cut} up to which data can be described in terms of π exchange

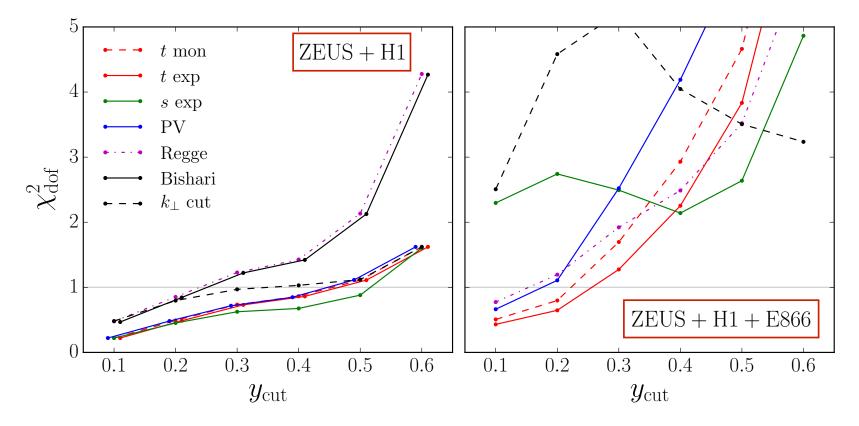
Leading neutron production at HERA

Fit requires higher momentum pions with increasing y_{cut}



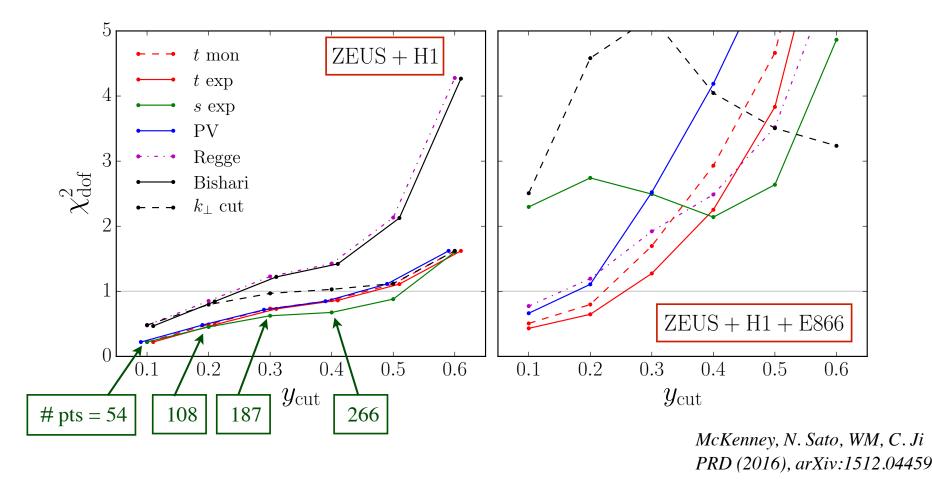
 \rightarrow larger values of $y_{\rm cut}$ more in conflict with E866 data

Leading neutron production at HERA Combined fit to HERA LN and E866 Drell-Yan data



McKenney, N. Sato, WM, C. Ji PRD (2016), arXiv:1512.04459

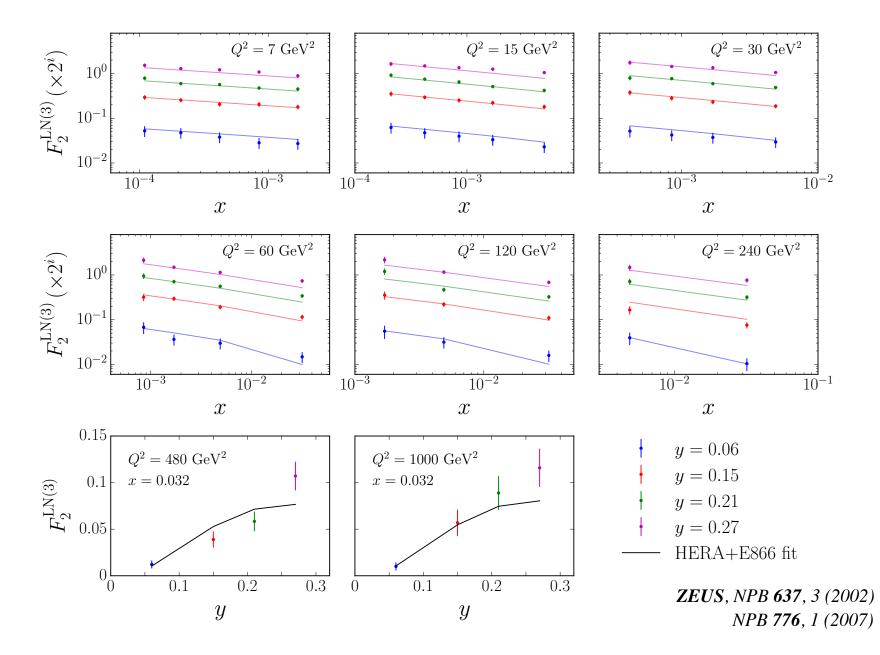
Leading neutron production at HERA Combined fit to HERA LN and E866 Drell-Yan data



 best fits for largest number of points afforded by t-dependent exponential (and t monopole) regulators

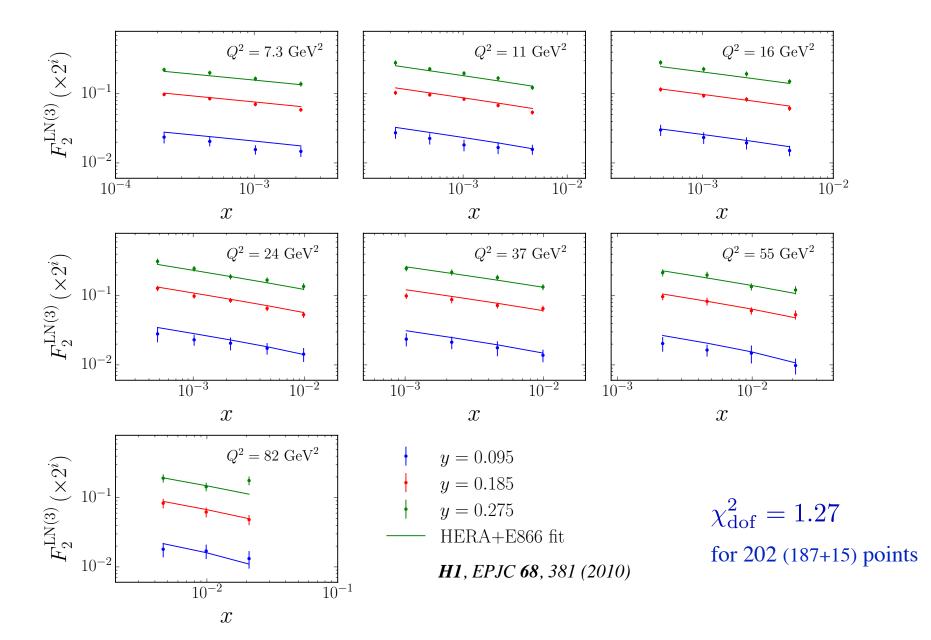
Leading neutron production at HERA

Fit to ZEUS LN spectra for $y_{cut} = 0.3$ (*t*-dependent exponential)

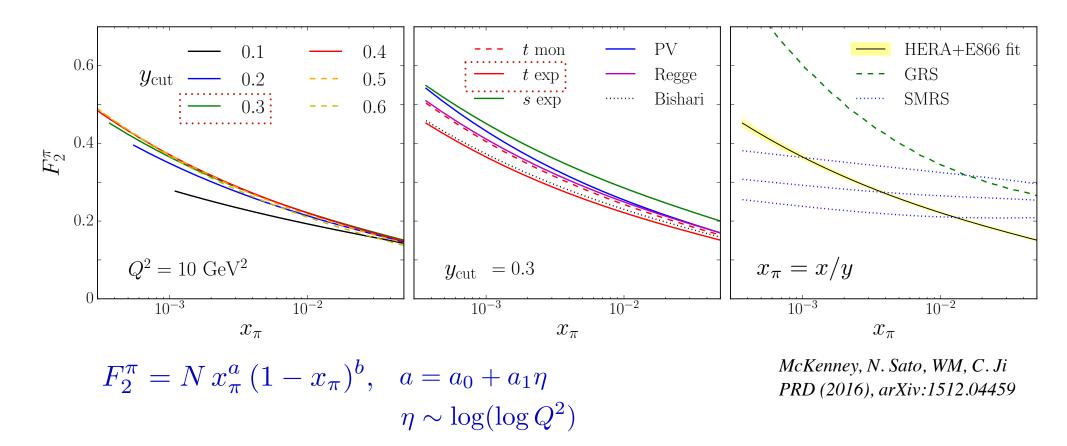


Leading neutron production at HERA

Fit to H1 LN spectra for $y_{cut} = 0.3$ (*t*-dependent exponential)

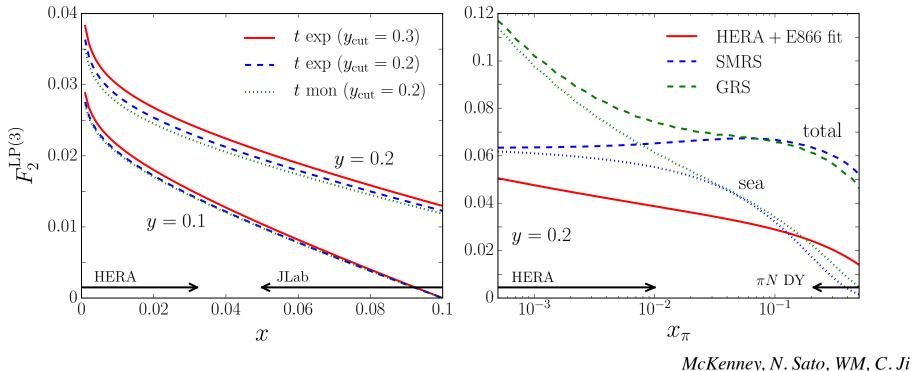


Extracted pion structure function



- → stable values of F_2^{π} at $4 \times 10^{-4} \lesssim x_{\pi} \lesssim 0.03$ from combined fit
- → shape similar to GRS fit to πN Drell-Yan data (for $x_{\pi} \gtrsim 0.2$), but smaller magnitude

Predictions at TDIS kinematics



McKenney, N. Sato, WM, C. Ji PRD (2016), arXiv:1512.04459

-> JLab TDIS experiment can fill gap in x_{π} coverage between HERA and πN Drell-Yan kinematics

Outlook

- Combined analysis can be extended by including also πN Drell-Yan data
 - \rightarrow constrain large- x_{π} region $(x_{\pi} \gtrsim 0.2)$

- Generalize parametrization by fitting individual pion valence and sea quark PDFs, rather than F_2^{π}
- Ultimate goal will be to use all data sensitive to pion structure (including TDIS, EIC?) to constrain pion PDFs over full range $10^{-4} \lesssim x_{\pi} \lesssim 1$