Nuclear Measurements in SoLID?

Zein-Eddine Meziani Temple University

- The SoLID physics program in Hall A at JLab uses nuclear targets to study nucleon structure however nuclear targets are being considered
 - PVDIS uses a deuterium target (inclusive)
 - SIDIS uses a polarized ³He to a probe neutron TMDs (semiinclusive)
 - Exclusive production of vector mesons as a probe to gluons uses a hydrogen target but we also want to consider nuclear targets

Why SoLID?

 Pursuit of multidimensional observables and rare processes not easily accessible due to luminosity and acceptance demands

The driving science program encompasses

- 3-Dimensional Imaging in Momentum Space
- Parity Violation Deep Inelastic Scattering
- J/Psi Electroproduction at Threshold
- Time-like Compton Scattering
- Di-Hadrons
- SSA

.

Overview of SoLID

Solenoidal Large Intensity Device

• Full exploitation of JLab 12 GeV Upgrade

A Large Acceptance detector and can Handle High Luminosity (10³⁷-10³⁹)

Take advantage of latest development in detectors and data acquisitions

- Reach ultimate precision for SIDIS (TMDs), providing three-dimensional imaging of nucleon in momentum space
- PVDIS in high-x region providing sensitivity to new physics at 10-20 TeV, and QCD
- Threshold J/ ψ , probing strong color field in the nucleon, trace anomaly

•5 highly rated experiments approved

Three SIDIS experiments, one PVDIS, one J/ ψ production

Run group experiments: di-hadron, Inclusive-SSA, TCS and more coming...

•Strong collaboration (250+ collaborators from 70+ institutes, 13 countries)

SoLID-Spin: SIDIS on ³He/Proton @ 11 GeV

JLab 12: Multi-Halls TMD Program

Hall A/SoLID Hall B/CLAS12 Hall C/SHMS High Lumi and General survey, acceptance - 4D L-T studies, medium precise $\pi^+/\pi^$ luminosity ratios U ³He, NH₃ \mathbf{g}_1 Hall A/SBS High x - Q², 2-3D H_2/D_2 , $H_2 D_2$ NH₃/ND₃, HD **9**_{1T} n

Semi-Inclusive DIS (SIDIS)

> TMDs - rich quantum correlations:

> Two scales, two planes and flavor tagging:

Two scales (theory-QCD TMD factorization):
 high Q - localized probe
 Low p_T - sensitive to confining scale

 Two planes: angular modulation to separate TMDs

$$\begin{aligned} A_{UT}(\varphi_h^l, \varphi_S^l) &= \frac{1}{P} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}} \\ &= A_{UT}^{Collins} \sin(\phi_h + \phi_S) + A_{UT}^{Sivers} \sin(\phi_h - \phi_S) \\ &+ A_{UT}^{Pretzelosity} \sin(3\phi_h - \phi_S) \end{aligned}$$

Leading-Twist TMD PDFs

Confined motion in a polarized nucleon

Quantum correlation between hadron spin and parton motion:

Sivers effect – Sivers function

Hadron spin influences parton's transverse motion

Quantum correlation between parton spin and hadronization:

Collins effect – Collins function

Parton's transverse spin influence its hadronization

JLab12 and COMPASS for valence, EIC covers the sea and gluon!

Separation of Collins, Sivers and pretzelocity Asymmetries through Polarization/Angular Dependence

At Leading twist:

$$A_{UT}(\varphi_h^l, \varphi_S^l) = \frac{1}{P} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$$

= $A_{UT}^{Collins} \sin(\phi_h + \phi_S) + A_{UT}^{Sivers} \sin(\phi_h - \phi_S)$
+ $A_{UT}^{Pretzelosity} \sin(3\phi_h - \phi_S)$

$$A_{UT}^{Collins}(x,z,P_h,Q^2) \propto \left\langle \sin(\phi_h + \phi_s) \right\rangle_{UT} \propto h_1(x,k_T,Q^2) \otimes H_1^{\perp}(z,p_T,Q^2)^{\times} \\ A_{UT}^{Sivers} \propto \left\langle \sin(\phi_h - \phi_s) \right\rangle_{UT} \propto f_{1T}^{\perp} \otimes D_1$$

hadron plane

 ϕ_h

 $A_{UT}^{Pretzelosity} \propto \left\langle \sin(3\phi_h - \phi_S) \right\rangle_{UT} \propto h_{1T}^{\perp} \otimes H_1^{\perp}$

High precision multi-dimension mapping $(x,Q^2,z \text{ and } P_T) \rightarrow \text{very high statistics}$ needed

Large angular coverage and precision measurement is essential

3-D imaging in momentum: Sivers Function

Alexei Prokudin

M. Anselmino et al., J. Phys. Conf. Ser. 295, 012062 (2011), arXiv: 1012.3565.

Projected Sivers Function

TMDs: Access Quark Orbital Angular Momentum

- TMDs : Correlations of transverse motion with quark spin and orbital motion
- Without OAM, off-diagonal TMDs=0, no direct model-independent relation to the OAM in spin sum rule yet
- Sivers Function: QCD lensing effects
- In a large class of models, such as light-cone quark models Pretzelosity: ΔL=2 (L=0 and L=2 interference, L=1 and -1 interference) Worm-Gear: ΔL=1 (L=0 and L=1 interference)
- SoLID with trans. polarized $n/p \rightarrow$ quantitative knowledge of OAM

Proton PVDIS: d/u at high x

(high power liquid hydrogen target)

$$A_{PV} = \frac{G_F Q^2}{\sqrt{2}\pi\alpha} [a(x) + f(y)b(x)] \qquad \text{Broken SU(6):} \quad d/u \sim 1/2$$

$$Broken SU(6): \quad d/u \sim 0$$

Perturbative QCD:
$$d/u \sim 1/5$$

$$a^P(x) \approx \frac{u(x) + 0.91d(x)}{u(x) + 0.25d(x)}$$

Projected 12 GeV d/u extractions

- <u>3 JLab 12 GeV experiments</u>:
- CLAS12 BoNuS spectator tagging

 $\mathbf{CII}(\mathbf{C})$.

1/1 1/2

- BigBite DIS ³H/³He ratio
- SoLID PVDIS ep
- The SoLID extraction of d/u is directly from ep DIS:
 - No nuclear corrections
 - No assumption of charge symmetry

Novel Isovector EMC Effect

u and *d* quarks can be modified differently in symmetric vs. asymmetric nuclei

- NuTeV sensitive to this effect anomaly could be hinting new aspect of modification
- Cloet et al. make predictions based on mean field calculations which give reasonable reproductions of SFs
- PVDIS ⁴⁸Ca could also probe this few percent effect in a₂, larger at larger x

With SoLID - Arrington, Beminiwattha, Riordan

- 60 days at 80 μ A 11 GeV get \sim 1% stat uncertainties across a broad range of x several sigma test of CBT model
- Planning for proposal going to next PAC
- Provides direct, new ,and useful constraints in a sector where there is little data
- Not accessible with EIC

J/w @ SoLID

Threshold J/Ψ production, probing strong color field in the nucleon, QCD trace anomaly (important to proton mass budget)

 $e p \rightarrow e' p' J/\psi(e^- e^+)$ $\gamma p \rightarrow p' J/\psi(e^- e^+)$

Imaginary part: related to the total cross section through optical theorem

Real part: contains the conformal (trace) anomaly

PR12-12-06: Near Threshold J/ Ψ Electroproduction

- Measure the *t* dependence and energy dependence of J/ψ cross sections near threshold
 - Probe the nucleon strong fields in a non-perturbative region
 - Search for a possible enhancement of the cross section close to threshold
 - Shed some light on the conformal/trace anomaly

Establish a baseline for *J/ψ* production in the JLab energy range!

Bonuses:

- Photoproduction data
- Decay angular distribution of J/ ψ
- Interference with Bethe-Heitler term (real vs. imaginary)

Future Plans:

- Search for J/ ψ -Nuclei bound states
- J/ ψ medium modification 2/17/16 PR12-12-006, ATHENNA Collaboration, Newport News

Projection of Differential and Total Cross Section

Luminosity 1.2*10³⁷/cm²/s, 11GeV 3uA e- on 15cm LH2 50 Days

No competition in statistics

Study the threshold behavior of cross section with high precision **could shed light on the conformal anomaly**

Two goals to use coherent production of ϕ on ⁴He

- Although the J/ Ψ or Υ are better gluonic probes, we can use the ϕ to probe the gluon density in ⁴He at JLab
 - Is the diffraction minimum for the charge and gluon distributions the same?
 - If we do not observe a diffraction minimum how is it filled, what are the mechanisms?
 - Are the exchanged gluons probing more then one nucleon at a time?

 Search for bound states near threshold, strong threshold interactions effects might be seen and studied.

Coherent ϕ electroproduction cross-section off ⁴He

• CLAS12:

 a new recoil nucleon/nuclei detector (ALERT detector) is being developed for use with a ⁴He target.

Summary

- SoLID has a robust science program which is growing beyond its original scope of TMDs, PVDIS and Threshold J/Ψ production.
- Ideas to use nuclei are emerging among them
 - Isovector EMC effect
 - Accessing nuclei gluon GPDs with phi and perhaps J/Ψ
 - Investigating possible quarkonium-nucleus bound states
 - Hadronization

12 GeV Upgrade: Extraordinary opportunity to do the ultimate PVDIS Measurement

SOLID with the 12 GeV Upgrade

charge

symmetry

violation

0.61 0.63

4 months

at 11 GeV

0.8

0.67

0.6

SOLID New Physics Sensitivity

Qweak and SOLID will expand sensitivity that will match high luminosity LHC reach with complementary chiral and flavor combinations

> SoLID ~ 10 times improvement over 6 GeV result

Jlab 6-GeV PVDIS results Wang *et al.*, Nature 506, No. 7486, 67 (2014)