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• formulate the NN interaction on the light front	


• solve the Weinberg equation for the deuteron 	


• prescription from FS 81 review constructs LF wave function from NR wf:	


• how good is this approx at recoil momenta few hundred MeV?	


• can we get the LF wf from NN potentials?	


• Nuclear Many Body LF wave function inc. Correlations -Miller & Machleidt 
PRC60, 035202	


• Relevance of LF wave functions for quasi-elastic scattering

J R Cooke nucl-th/0112029 , Cooke & Miller PRC66, 034002	

Miller, Prog. Nuc. Part. Phys. 45, 83	
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stimulated by Ellie Long Proposal on Tensor asymmetries	

work with John Terry  REU   
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Light front quantization, Infinite momentum frame
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P� is LF Hamiltonian, get from Lagrangian.
LF Schroedinger eq. P�| Di = MD| Di Rest frame
One boson exchange

Solve

T T

Weinberg equation= Lippmann-Schwinger eq with extra 
factor (~1) in Green’s function

Usual Feynman diagram with recoil



Miller & Machleidt PRC 60,035202
⇡, ⌘, ⇢,!, a0,� exchangewith extra factor inG

P!"P0
!!N "#J !4.3"

in which P0
!(N) is the kinetic contribution to the P! opera-

tor, giving (p!
2#m2)/p# for the minus-momentum of free

fermions. The operator J is the sum of three terms of Eqs.
!2.18"–!2.20":

J#v 1#v 2#v 3 . !4.4"

The operator v 1 gives all of the single meson-nucleon vertex
functions. The operator v 2 accounts for instantaneous fer-
mion exchanges: meson emission followed by instantaneous
fermion propagation !propagator is $#/2p#" followed by an-
other meson emission. The operator v 3 accounts for the in-
stantaneous propagation of vector mesons.
We shall proceed towards an approximate solution of Eq.

!4.1", in two stages. We shall first consider the nucleons only
part of the Hilbert space. This involves the assumption that

FIG. 1. Phase shifts % and mixing parameters & of neutron-proton scattering for partial waves with J'2 and laboratory kinetic energies
T lab'300MeV. The solid line is the prediction by the LF OBEP presented in Sec. III and the dotted line the one by Potential B of
Brockmann and Machleidt (32). The open circles represent the multi-energy np analysis by the Nijmegen group (45) and the solid dots are
the VPI analysis SM97 (46).
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BD = 2.245MeV

NN scattering

quires knowledge of M* which, in turn, is determined from
G via Eqs. !5.8" and !5.9". In practice, one starts out with an
educated guess for M*, solves Eq. !5.5" for G and uses this
G to calculate a new M* from Eqs. !5.8" and !5.9". The
procedure is then repeated starting with the new M*. This is
reiterated until the calculated M* reproduces accurately the
starting M*.

B. Results

The formalism of the previous section is used to calculate
the energy per nucleon in nuclear matter as a function of
density, Eq. !5.11". Our result is plotted in Fig. 2 by the solid
line. The curve saturates at E/A!"14.71MeV and kF
!1.37 fm"1, and predicts an incompressibility of K
!180MeV at the minimum. These predictions agree well
with the empirical values E/A!"16#1 MeV, kF!1.35
#0.05 fm"1, and K!210#30MeV #52$.
To get a better idea of the quality of our predictions, it is

useful to compare with the results from alternative relativis-
tic approaches. Brockmann and Machleidt #32$ predict E/A
!"13.6MeV, kF!1.37 fm"1, and K!250MeV at satura-
tion, using the equal-time formalism and their ‘‘Potential
B.’’ The greatest difference occurs for the incompressibility
which is predicted smaller by the LF Brueckner theory im-
plying a softer equation of state. This can be partially attrib-
uted to the medium effect that comes from the meson propa-
gators in the LF approach and that is absent in the equal time
!ET" approach. Recall that in the LF formalism the momen-
tum transfer between two nucleons exchanging a meson is

q!!q0 ,q"!!E!"E ,k!"k", !5.16"

where E and E! are nucleon on-mass-shell energies #more
explanations can be found below Eq !3.22"$, implying the
meson propagators

i
q2"m%

2 !
i

!E!"E "2"!k!"k"2"m%
2 , !5.17"

while in the ET formalism no energy is transfered, thus,

q!!0,q"!!0,k!"k", !5.18"

and the propagators are

i
"q2"m%

2 !
i

"!k!"k"2"m%
2 . !5.19"

In nuclear matter, the free-space LF meson propagators Eq.
!5.17" are replaced by

i
!E!*"E*"2"!k!"k"2"m%

2 , !5.20"

while the ET propagators undergo no changes. The medium
effect on the LF meson propagators enhances them off-shell
which leads to more binding energy. This is demonstrated in
Fig. 2 where the difference between the dotted and solid
curve is generated by the medium effect on the meson propa-
gators.
There is another difference that arises from a technical

issue in the solution of the transcendental equation for the G
matrix. We obtain new values of the mean fields M*(kF)
!MN$US!718MeV and UV!165MeV. The mean field
potentials obtained here from the G matrix are considerably
smaller than those of mean field theory in which the potential
is used. We discuss the implications for nuclear deep inelas-
tic scattering in Sec. VII.
The most important medium effect in relativistic ap-

proaches to nuclear matter comes from the use of in-medium
Dirac spinors representing the nucleons in nuclear matter
!‘‘Dirac effect’’". This effect !and the medium effect on me-
son propagators" is absent in the conventional !nonrelativis-
tic" Brueckner calculation which yields the dashed curve in
Fig. 2. Characteristic for all predictions using conventional
Brueckner theory is that the saturation density is predicted
too high and, thus, they all fail to explain nuclear saturation
correctly.
The effect that is generated by the in-medium Dirac

spinors is strongly density dependent !due to the density de-
pendence of M*" shifting the saturation curve towards lower
densities such that nuclear saturation is predicted at the cor-
rect density !solid and dotted curves in Fig. 2". The effect
from the in-medium Dirac spinors is, of course, largest for &
and ' exchange for which the LF and ET formalisms predict
essentially the same. However, ( and ) also contribute to the
medium effect and, here, we have differences between LF
and ET. The general underlying reason for this difference is
that for derivative coupling, implying a momentum depen-
dence of the meson-nucleon vertex, the difference in the mo-
mentum transfer !!meson momentum" between LF and ET
#Eqs. !5.16" and !5.18", above$ creates a difference in the
vertices !and OBE amplitudes"—besides the one in the me-
son propagators. The ) includes the tensor coupling
i( f )/2M ) &*+q+ and the LF OBE amplitude is given in Eq.

FIG. 2. Energy per nucleon in nuclear matter E/A !in units of
MeV", as a function of density expressed by the Fermi momentum
kF !in units of fm"1". The solid line is our prediction using light-
front Brueckner theory. The dotted curve is obtained when the me-
dium effect on meson propagation is omitted. The dashed line is the
result from conventional !nonrelativistic" Brueckner theory. The
box describes the area in which nuclear saturation is expected to
occur empirically.
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Nuclear Matter Saturation 



The real problem- Bethe Salpeter Eq.  (BSE)

KK
G K is sum of irred. 	


diagrams

Reduce to 3 dimensions:

ET: integrate over k0. Ignore k0 except in G. Sets relative time to 0.

LF: Integrate over k�. Ignore k� except in G. Sets relative ⌧ =0

3 dimensional version of G is gET (Blankenbecler Sugar) or gLF (Weinberg)

T=

No relation between wave functions in principle
   Puts BOTH  particles on mass shell

Spectator on-shell- Gross equation- one particle off  mass 
shell 

G depends on 4-momenta-product of two Feynman propagators

k2 �m2 6= 0



• How bad is the problem?	


• Is D non-relativistic?	


• Is 3He non-relativistic?	


• Answer by using solutions of Bethe-S eqn.
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Relation between equal-time and light-front wave functions
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The relation between equal-time and light-front wave functions is studied using models for which the four-
dimensional solution of the Bethe-Salpeter wave function can be obtained. The popular prescription of defining the
longitudinal momentum fraction using the instant-form free kinetic energy and third component of momentum
is found to be incorrect except in the nonrelativistic limit. One may obtain light-front wave functions from
rest-frame, instant-form wave functions by boosting the latter wave functions to the infinite momentum frame.
Despite this difficulty, we prove a relation between certain integrals of the equal-time and light-front wave
functions.
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I. INTRODUCTION

Light-front hadronic wave functions are used to interpret
a variety of high-energy hadronic processes and experimen-
tally observable quantities, including electromagnetic form
factors [1–4], estimates of weak decay rates [5,6], quark
recombination in heavy-ion collisions [7–9], coherent pion
production of dijets [10–12], single-spin asymmetries in
semi-inclusive deep inelastic scattering [13,14], computing
various high-energy scattering amplitudes using the color
dipole approach [15–18], computing the cross sections for
electromagnetic production of vector mesons [19–21], and
heavy-quark fragmentation in the quark-gluon plasma [22].
The common feature of all of these processes is that the
observed matrix elements involve a correlation function in
which a quark removed at a point is replaced by one separated
from the first by a lightlike separation: !z + !t = 0. In
this case, the front-form time t + z = 0 is a constant, and
it is therefore natural to simplify a four-dimensional problem
into a three-dimensional problem [involving the coordinates
(t − z, x, y)]. Therefore, it is useful to understand how to
obtain light-front wave functions from a fundamental point
of view.

There is a large body of knowledge regarding techniques,
models, and insights related to the equal-time rest-frame
(ETRF) formalism. For example, spectroscopy is typically
handled using this formalism. It is therefore natural to try
to relate the ETRF wave function with the light-front wave
function. One popular method uses a recipe to convert
the spatial momenta of the constituents, ki , into light-front
momenta (xi, ki⊥). To be concrete, consider a bound state
composed of two equal-mass constituents without spin. In this
case, the ETRF wave function depends on the momentum
k of one constituent. The recipe for converting the ETRF
wave function to a light-front wave function is to introduce

*miller@phys.washington.edu
†bctiburz@umd.edu

the longitudinal momentum fraction by the relation

x = k+

P + = Ek + k3

2Ek
= 1

2
+ k3

2
√

k2
⊥ + (k3)2 + m2

, (1)

where the single-particle energy is given by

Ek =
√

k2 + m2, (2)

and P + is the plus component of the total momentum, P , of
the bound state.1 Using the recipe in Eq. (1) on a function of
the single-particle energy invokes the change of variables

f (k2 + m2) −→ f

[
k2

⊥ + m2

4x(1 − x)

]

.

The latter form looks like the argument of a light-front
wave function. The recipe for constructing a light-front wave
function from an ETRF wave function often also includes
a Jacobian factor,

√
J =

√
∂k3/∂x, to preserve the wave-

function normalization.
The relation in Eq. (1), however, appears to neglect any

binding effect. While it is true in general that the plus
momentum is additive [23], P + =

∑
i k

+
i , the energy of the

bound state is not, P 0 ̸=
∑

i Eki
. This leads one to suspect

that there is nothing fundamental about making light-front
wave functions by following the popular recipe. In fact,
the issue can be resolved, because the formal relationship
between the ETRF and the light-front wave functions has
been known for a long time. Both involve energy integrals of
the four-dimensional Bethe-Salpeter wave function, #(k, P ):
over k0 in the case of the ETRF, and over k− in the case of
the light-front formulation. Given the covariant wave function

1For any Lorentz four-vector Aµ, we define light-cone coordinates,
A±, by A± = A0 ± A3. Readers who employ a factor of 1/

√
2 to

define their light-cone coordinates should note that only one equation
in this work depends on the choice of convention. This equation is an
intermediate step appearing in Eq. (59).
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FIG. 2. Bethe-Salpeter equation for a point interaction. The state
is bound by the infinite chain of bubbles.

One can obtain the simplest soluble BSE by choosing a
pointlike interaction for the kernel K(k, k′; P ) in Eq. (6),
namely, K(k, k′; P ) = g, where g is a coupling constant. The
two scalar particles that make up the scalar bound state thus
interact infinitely many times according to the BSE to bind the
state. For the pointlike interaction, a bubble chain is generated
by the BSE and is shown in Fig. 2. With this choice of
interaction, the bound-state equation simplifies tremendously.
Because the kernel is independent of momentum, the only k′

dependence that remains in Eq. (6) is in !(k′, P ), and this
quantity is subsequently integrated over all k′. The integration
merely produces a constant that can be absorbed into the
overall normalization of the wave function. Thus, we are left
with the solution

!(k, P ) = ig G(k, P − k), (22)

where a proportionality constant is set to unity. The Bethe-
Salpeter equation for the vertex "(k, P ) also determines
the mass, M2 = P 2, of the bound state via the consistency
equation

1 = ig

∫
d4k

(2π )4
G(k, P − k). (23)

For simplicity, we do not discuss the necessary regularization
and treat the coupling g as a renormalized parameter.

The single-particle propagator has the basic Klein-Gordon
form, so the two-particle disconnected propagator is a product
of these Klein-Gordon propagators. By virtue of Eq. (22), the
covariant Bethe-Salpeter wave function is

!(k, P ) = −ig[k2 − m2 + iε]−1[(P − k)2 − m2 + iε]−1.

(24)

Here we have labeled the constituent mass by m. This is
a four-dimensional analog of the usual Schrödinger wave
function. There is, however, an important distinction. We also
know the time dependence of the wave function—the time evo-
lution governed by the Hamiltonian operator is automatically
included because of the necessity of covariance. Moreover,
we know from the Poincaré algebra that there are other
dynamical operators besides the energy. As to which operators
are kinematical depends upon the form of dynamics chosen.

A. Rest-frame wave functions

We shall next compute the instant-form wave function using
Eq. (21) as evaluated in the rest frame. Given our solution to the
BSE [Eq. (24)], we can carry out this projection onto the initial
surface. The integration can be done using the residue theorem
bearing in mind the four poles of the integrand: k0 = ±Ek ∓ iε
and M ± Ek ∓ iε. We find

ψIF(k, 0) = −2g

M

√
k2 + m2

M2 − 4(k2 + m2)
. (25)

Notice the wave function is manifestly rotationally invariant.
This is indicative of the kinematic nature of the generators of
rotations in the instant form.

In the front form of dynamics, one is interested in the
properties of physical states along the advance of a wave front
of light. The objects of front-form dynamics are the light-cone
wave functions which are projections onto the initial surface
x+ = 0. In analogy with the instant form, one refers to x+

as light-cone time and its Fourier conjugate k− as light-front
energy. In the front form, the energy is a dynamical operator
along with two rotation operators corresponding to two inde-
pendent rotations of the wave front of light. In contrast with
the instant form, light-front Lorentz boosts are kinematical.
We use Eq. (17) and work in the hadronic rest frame, P⊥ = 0,
to define ψLF(x, k⊥), with x = k+

1 /P + = k+/P +. The light-
cone wave function corresponding to Eq. (24) is found by
contour integration of Eq. (17) to be

ψLF(x, k⊥) = −g
θ [x(1 − x)]

M2 − k2
⊥+m2

x(1−x)

. (26)

Note that the full rotational symmetry of the rest-frame wave
function is not manifest.

We now inquire as to how the IF and LF wave functions
are related to each other. In the literature, the rest frame IF
wave function is converted into the rest frame the light-cone
wave function by introducing an auxiliary variable, x, using
Eq. (1). This variable has a physical interpretation as the
fractional plus component of momentum in the center of mass
system of two free particles. Inverted, this relation between x
and k3 reads [31]

k3 =
(

x − 1
2

) √
k2

⊥ + m2

x(1 − x)
. (27)

Simple algebra yields the relation

4(k2 + m2) = k2
⊥ + m2

x(1 − x)
, (28)

from which we deduce

ψIF(k, 0) → ψIF(x, k⊥) = − g

M

√
k2

⊥ + m2

x(1 − x)
1

M2 − k2
⊥+m2

x(1−x)

.

(29)

This bears a resemblance to the front-form wave function in
the rest frame [Eq. (26)], but the instant-form wave function
carries an additional factor of Ek/M . This is a clear and major
difference. One cannot interpolate between the instant form
and the light-front form of the wave function.

One suspects that the two forms become equivalent in
the nonrelativistic limit. This limit is defined by replacing√

k2 + m2 with m, so that Eq. (1) becomes

x → 1
2

+ k3

2m
. (30)

In the nonrelativistic limit, we write the bound-state mass in
terms of the constituent masses and a small binding energy
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Are light front or equal time wave 
functions relevant?

• Light front wave functions - on-mass shell  ki2  =m2	


• Same for equal time wave functions	


• Answer this question through explicit example - point 
interaction model used above	


• Space-like Form factors -use of light front wave functions 
gives exact results-   GAM Phys.Rev. C80 (2009) 045210	


• What about quasi-elastic scattering?

Mismatch!



?

1

quasi-elastic scattering

D
k

k+q
�⇤(q)

Q2

⌫2
<< 1

Spectator on-mass-shell

k2 �m2 6= 0

on mass-shell

Three calculations
1. Exact
2. On- shell k2 = m2 in 4-momentum conservation delta function
3. As in 2, Bjorken limit

No three dimensional	

 wave function  is applicable



Q2=1 GeV2

Q2=5 GeV2
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low energy NP



Model exact cross	

sections 
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On mass-shell

On mass-shell w. scaling
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Low Q, x=1(Long’s )exp’t
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can us standard wave functions



Low Q, x=1.5
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spectator on-shell is ok



Low Q, x=0.5
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Non-relativistic approximation
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Summary

• formulate the NN interaction on the light front - get from BSE	


• solve Weinberg equation for the deuteron -done	


• prescription from FS 81 review constructs LF wave function from NR wf: study 
with exact solutions of BSE	


• how good is this approx at recoil momenta few hundred MeV?-seems ok up to 
about 250-300 MeV more study needed	


• can we get the LF wf from NN potentials?-seems ok	


• Relevance of LF wave functions- OK for space-like form factors	


• Quasi-elastic at Q^2< 15 GeV^2, LF wave function No Good, Need spectator wf  
if x is not very near 1	


• Non-relativistic  approximation is not good except in narrow range of x, depends 
on k_perp



Spares follow
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Extra factor is  close to unity for D wave function 

G ⇠ 1

↵(1� ↵)

d2p?d↵

P 2 � p2
?+m2

↵(1�↵)

define pz :

p2? +m2

4↵(1� ↵)
= p2? + p2z +m2

= ~p 2
+m2

G ⇠ m2

p
~p 2

+m2

d3p

p2i � p2
Usual propagatorwith extra factor
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Solves LF Schroedinger eq (LFSSE)	


⇥
P�
0 + V (P�)

⇤
| Di = P�| Di P� = 2m�B rest frame

1 2

3 4

V (P�) =
= g2

1

P� � k�3 � k�2 � k�⇡⇡

 Computed B depends on magnetic quantum number!

Manifest rotational invar. broken

Solve LSSE using transformation from ↵ to kz:

↵ =

k+

P+ =

k+

2M�B =

1
2

p
~k2+m2+kzp

~k2+m2

Solve w. rot. inv. in ? plane (polar coords)

Different meson propagator than Machleidt Miller



• Chiral Lagrangian with	


• Two meson exchange!	


• Explicit P- dependence

⇡, ⌘, ⇢,!, �,�

PI ,2
! ! f ,i "" #

$1 ,$2"% ,& ,' ,( ,) ,*
g$1

g$2

#2M
ū!kf ,+ f ",$2

-$,$1
u!ki ,+ i"

2!2%"3!k f$ki$

#./0 f
† T$2

T$1
/0 i

1! d2km!dkm
$2!km

$"

2km
$!q1$q2$

#.a$2
!k f!km"2!k f

$!km
$"

$a$2
† !km!k f "2!km

$!k f
$"1F$2

!q2"

#.a$1
!km!ki"2!km

$!ki
$"

$a$1
† !ki!km"2!ki

$!km
$"1F$1

!q1". !30"

Note that the momenta q1 and q2 are implicitly functions
of the momenta k f , km , and ki . The contact interaction
given by Eq. !28" in momentum space can be obtained
from Eq. !30" by replacing 2(p$)-$/2p$ with s$ /M and
restricting the allowed values of the $’s to be consistent with
Eq. !28".

D. Feynman rules for nucleon-nucleon potentials

Now that we have the one-meson-exchange and two-
meson-exchanges expressed in momentum space, we are
now ready to write out the Feynman rules for diagrams in
our model. We denote a ‘‘normal’’ nucleon propagator by a
solid line with an arrow, an instantaneous nucleon propagator
by a solid line with a stroke across it, mesons of all types by
a dashed line, and energy denominator terms by a vertical,
light, dotted line. For simplicity, we consider the only dia-
grams where a meson emitted by one nucleon is absorbed by
the other nucleon. We follow the approach outlined in Ref.
.201 to derive the rules:

!1" Overall factor of

4M 2(! ,$!P f!Pi"

2!2%"3!k1 f$ k2 f
$ k1i

$k2i
$
.

!2" Conserve p! and p$ momentum.
!3" Factor of 2(qi)/qi for each internal line, including any

instantaneous nucleon lines.
!4" Factor of 1/(P!!# iqi

!) for each energy denominator.
!5" Each meson connects the two nucleons, and each end

of a meson line has a factor of g$,$T$F$(q). The indices of
the isospin factors on each end of the meson are contracted
together. The Lorentz indices of the gamma matrices are con-
tracted with !g34 for the vector mesons.

!6" For each contact vertex, multiply by a factor of 1/M .
If the vertex is a %!% vertex, replace the T%T%"0 i0 j
with ( i , j .

!7" Factor of (k”$M )/2M"#+u(k ,+) ū(k ,+) for each
propagating nucleon and -$/2 for an instantaneous nucleon.

!8" Integrate with

4M 2! d2k!dk$

2!2%"3

over any internal momentum loops.
!9" Put the spinor factors for nucleon 1 and 2 between

ūu’s and the isospin factors between the initial and final state
isospin.

E. Nucleon-nucleon potentials

The meson exchange potentials have the same basic form
as in Refs. .19,201; however, we must include the contact
interaction and instantaneous nucleon propagators for the
nuclear model used here. First, we discuss how to include the
contact diagrams from the standpoint of the Bethe-Salpeter
equation, then we begin to calculate the light-front poten-
tials.

1. The Bethe-Salpeter equation and chiral symmetry

The kernel of the Bethe-Salpeter equation .38–421 for
this nuclear model is richer than the one presented in Refs.
.201 for the Wick-Cutkosky model. This is due mainly to the
presence of the contact interactions which are generated by
the chirally invariant coupling of the pion to the nucleon.
Several of the lowest-order pieces of the full kernel K are
shown in Fig. 1. !Note that for Feynman diagrams, it is use-
ful to combine the ‘‘normal’’ nucleon propagator with the
instantaneous nucleon propagator .43–451, and denote the
combination with a solid line." Each of these Feynman dia-
grams is covariant. This means that we may choose any of
the diagrams from K to construct a new kernel K!, and the
infinite series of potential diagrams ‘‘physically equivalent’’
to K! will also be covariant .19,201. The equivalence permits
us to apply arguments about the symmetries of the Bethe-
Salpeter equation to light-front dynamics .43–451. In prac-
tice, this covariance means that when deciding which two-
meson-exchange potentials to include for calculating the
deuteron wave function, we may neglect the crossed dia-
grams. Although including only the box and contact two-
meson-exchange diagrams may affect the exact binding en-
ergy calculated, we should find a partial restoration of
rotational invariance. We reiterate that the focus of this work
is on understanding the effects of the breaking of rotational
invariance and how to restore it; our goal is not precise
agreement with experimental results.
We also want to keep the potentials chirally symmetric as

well. Whereas Lorentz symmetry is maintained by using a
kernel with any Feynman diagrams !with potentially arbi-
trary coefficients", chiral symmetry relates the strength of the
%% contact interaction to the strength of the pion-nucleon
coupling.

FIG. 1. The first several terms of the full kernel for the Bethe-
Salpeter equation of the nuclear model with chiral symmetry.
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here do not have full rotational invariance, the approach
must be modified. The symmetry properties of helicity ma-
trix elements are rederived in Ref. !33" without assuming full
rotational invariance. These results allow a modified version
of Machleidt’s approach to be combined with the exploita-
tion of parity #using the transformation from light-front co-
ordinates to equal-time coordinates$ discussed in Refs.
!19,20". In particular, the potentials are initially calculated in
the !pET ,% ,M ,&1 ,&2' basis, although the relations in Ref.
!33" are used to transform to the !pET ,J ,M ,L ,S' basis to
solve for the wave functions. In general, the potentials con-
nect states with different values of J. Once the symmetries
have been explicitly expressed, we can discretize the Schrö-
dinger equation as done in Ref. !20,33". We can choose
which truncation of the light-front nucleon-nucleon #LFNN$
potential to use in the Schrödinger equation, however, differ-
ent truncations of the potential give rise to different wave
functions.
Note that the transformations applied to the potential in

order to simplify the solution of the wave functions. Once
the wave functions are obtained, we may apply the inverse of

the transformations to the wave functions to express them in
the helicity basis (!p! ,p!,&1 ,&2') or in the light-front spin
basis (!p! ,p!,m1 ,m2') !33".

III. FORM FACTORS OF THE DEUTERON

In the previous section, we discussed how to derive sev-
eral deuteron wave functions for different truncations of the
LFNN potential. In this section, we use those wave functions
to solve for the matrix elements of the deuteron current op-
erator, which is used to calculate the deuteron electromag-
netic and axial form factors.
We outline the covariant theory of the electromagnetic

form factors for spin-1 objects, such as the deuteron. Then
we recall the features of light-front calculations #including
the breaking of rotational invariance$ of the form factors.
After that, we review the covariant and light-front tools for
calculating axial form factors. The formalism is then applied
to calculate the electromagnetic and axial currents and form
factors for the light-front deuteron wave functions.

FIG. 3. The TME potentials
for #a$ VTME:M #the Mesa poten-
tial$, #b$ VTME:SB #the stretched
box potential$, #c$ VTME:SBI #the
stretched instantaneous potential$,
and #d$ VTME:SBII #the stretched
double instantaneous potential$.
Note that the graphs on the right
side are obtained from the graphs
on the left side by 1↔2.

JASON R. COOKE AND GERALD A. MILLER PHYSICAL REVIEW C 66, 034002 #2002$

034002-8

A. Electromagnetic form factors

1. Covariant theory

In the one-photon-exchange approximation, shown in Fig.
5, the amplitude of the scattering process ed→ed is just the
contraction of the electron and deuteron current matrix ele-
ments, multiplied by the photon propagator,

!p!,"!! j#
e !p ,"$

1
q2

!k!,m!!Jd
#!k ,m$, %34&

where j#
e is the electron current operator. From Lorentz co-

FIG. 4. The TME potentials
that include the contact interaction
for %a& VTME:C %the contact poten-
tial&, %b& VTME:SBC %the stretched
contact potential&, %c& VTME:SBIC
%the stretched instantaneous con-
tact potential&, and %d& VTME:SBCC
%the stretched double contact po-
tential&. Note that the graphs on
the right side are obtained from
the graphs on the left side by
1↔2.

FIG. 5. The Feynman diagram for one-photon-exchange
electron-deuteron scattering.
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Restoring Rot. Inv.

This implies that for our model, using the !-" plus !-#
mesa potential $which we denote by !-("-#)] should par-
tially restore the rotational invariance of the deuteron, as-
suming that the breaking of rotational invariance is due pri-
marily to the one-pion-exchange potential. Note that since
we solve for the deuteron wave function self-consistently
and to all orders for our potentials, we do not expect to find
exactly the same result as Ref. $69%.
The first thing to notice about the data in Table II is that

the results are essentially the same regardless of if arbitrary
angular momentum is used or if the potential is restricted to
the J!1 sector. The same result is also seen in the pion-only
model $46%. It means that the wave functions are numerically
approximate to angular momentum eigenstates.
Next we notice the splittings between masses and D-state

percentages for the m!0 and m!1 states. This implies that
the states do not transform correctly under rotations. All of
the two-meson-exchange potentials used reduce the splittings
by similar amounts, by about 60% for the binding energy and
by about 70% for the percent D state. Note also that the mass
splittings for the pion-only model were much larger $46%.
Examining the effects of the individual two-meson-

exchange potentials, we see that !-("-#) potential does re-
duce the mass splitting, but it does not fully remove it. This
is expected since the OME potential includes more than just
the pion potential, and the potential is relativistic.
Next, we compare the ncTME and ncTPE potentials to the

TME and TPE potentials. The nonchiral potentials reduce the
binding energy more than the chiral potentials, as we ex-
pected from our experience from the pion-only model. How-
ever, unlike for the pion-only model, we find that the chiral
and nonchiral potential have fairly similar effects $46%.
Finally, notice that the mass splitting for the TPE potential

is much smaller than for the other two-meson-exchange po-
tentials. By itself, this does not imply that the rotational
properties of the deuteron calculated with that potential are
significantly better than those from other two-meson-
exchange potentials. The individual potentials that make up
the TME potential are fairly large in magnitude, but vary in
sign. This means that using any subset of those potentials

may result in either a larger or smaller mass splitting. In this
case, it is smaller. To investigate this further, we examine the
currents for the TME and TPE deuteron wave function in
Sec. III.
To verify that our results are independent of the value of

f " , we recalculate the deuteron properties for each of the
potentials with f "!1.2815. The results are summarized in
Table III, and the binding energies are shown in Fig. 9. The
change in f " increases the binding of the states, but the rest
of the results are qualitatively the same.
We note that we have not analyzed what effect varying the

"-nucleon coupling constants has on computing the scatter-
ing T!0 scattering phase shifts. A poor representation of the
data could cause our computed deuteron form factors to dis-
agree with observations $70%.

B. Deuteron form factors

We use the deuteron wave functions obtained for the
light-front nucleon-nucleon potential in Sec. II to calculate

TABLE III. The values of the binding energy, percentage of the wave function in the D state, and the
percentage of the wave function in the J!1 state for the m!0 and m!1 states for different potentials. The
" coupling constant factor is f "!1.2815, distinguishes this table from Table II.

Potential Binding Energy &MeV' D state &%' J!1 &%'
m!0 m!1 Diff m!0 m!1 m!0 m!1

OME only "3.3500 "4.4546 1.1046 3.09 3.97 99.99 99.96
OME
#!-("-#) Mesa "3.6331 "3.2408 "0.3923 3.10 3.85 99.99 99.95
OME
#ncTME "1.3766 "0.9901 "0.3865 2.67 2.64 99.99 99.97
OME
#ncTPE "1.6532 "1.4693 "0.1839 2.81 2.88 99.99 99.97
OME
#TME "1.8617 "1.6032 "0.2585 2.85 3.05 99.99 99.96
OME
#TPE "2.1915 "2.2137 0.0222 2.95 3.23 99.99 99.97

FIG. 9. The values of the binding energy for the m!0 and m
!1states for different nucleon-nucleon light-front potentials. The "
coupling constant factor is f "!1.2815.
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Restoring RI in form factors

• Rotational invariance gives angular condition FS	


• Angular condition is upheld better when Deut is 
computed using only one meson exchange OME 
potentials than two meson exchange TME	


• However, form factors do not depend much on 
choice of bad currents



small for I (1)
! , ! is also small for the total current, meaning

that the total current transforms well under rotations. Thus,
in spite of the fact that ! is approximately the same size as
the current matrix elements for I (2)

! , the deuteron electro-
magnetic form factors should not depend too strongly on the
choice of the bad matrix element. This is especially true for
the form factors calculated with the OME wave function.
We calculate the form factors A, B, T20 , and FA using the

OME wave function, and show the results in Fig. 14. The
definitions of the bad matrix elements are given in Secs.
III A 4 and III B. In general, the form factors do not depend
strongly on which matrix element is chosen as bad, in agree-
ment what what we predicted in the previous paragraph. The
only exception is for the B form factor, and to a lesser extent
the FA form factor, near where they cross zero. This is not

too surprising, since a small constant shift in any function
near a zero crossing has a large effect in a logarithmic plot.
Also, we note that the FFS and CCKP choices of the bad
matrix element give the same value for B.
We also use the OME!TME wave function to calculate

the form factors A, B, T20 , and FA , which we show in Fig.
15. We argued earlier that these electromagnetic form factors
depend more strongly on which matrix element is chosen as
bad as those calculated with the OME wave function, and
that dependence is clear in this figure. At low momentum
transfers, the dependence on the change is fairly small, but as

FIG. 13. The matrix elements for F1I (1)m!m
! , F2I (2)m!m

! , and
Im!m

! calculated with the OME wave functions. The Gari:1985
nucleon isoscalar form factors are used for F1 and F2.

FIG. 15. The form factors A, B, T20 , and FA calculated using
the various choices of the bad matrix element. The definitions of the
bad matrix elements are given in Secs. III A 4 and III B. The
OME!TME wave function is used, along with the Lomon nucleon
form factors for the electromagnetic form factors, and the Liesen-
feld nucleon form factor for the axial form factor.

FIG. 12. The matrix elements of I (5)m!m
! , the deuteron axial

current including the nucleon axial form factor, calculated with the
wave function from the "a# OME, "b# OME!TME, "c# OME
!TPE, and "d# Bonn potentials.

FIG. 14. The form factors A, B, T20 , and FA calculated using
the various choices of the bad matrix element. The OME wave
function is used, along with the Lomon nucleon form factors for the
electromagnetic form factors, and the Liesenfeld nucleon form fac-
tor for the axial form factor.
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small for I (1)
! , ! is also small for the total current, meaning

that the total current transforms well under rotations. Thus,
in spite of the fact that ! is approximately the same size as
the current matrix elements for I (2)

! , the deuteron electro-
magnetic form factors should not depend too strongly on the
choice of the bad matrix element. This is especially true for
the form factors calculated with the OME wave function.
We calculate the form factors A, B, T20 , and FA using the

OME wave function, and show the results in Fig. 14. The
definitions of the bad matrix elements are given in Secs.
III A 4 and III B. In general, the form factors do not depend
strongly on which matrix element is chosen as bad, in agree-
ment what what we predicted in the previous paragraph. The
only exception is for the B form factor, and to a lesser extent
the FA form factor, near where they cross zero. This is not

too surprising, since a small constant shift in any function
near a zero crossing has a large effect in a logarithmic plot.
Also, we note that the FFS and CCKP choices of the bad
matrix element give the same value for B.
We also use the OME!TME wave function to calculate

the form factors A, B, T20 , and FA , which we show in Fig.
15. We argued earlier that these electromagnetic form factors
depend more strongly on which matrix element is chosen as
bad as those calculated with the OME wave function, and
that dependence is clear in this figure. At low momentum
transfers, the dependence on the change is fairly small, but as

FIG. 13. The matrix elements for F1I (1)m!m
! , F2I (2)m!m

! , and
Im!m

! calculated with the OME wave functions. The Gari:1985
nucleon isoscalar form factors are used for F1 and F2.

FIG. 15. The form factors A, B, T20 , and FA calculated using
the various choices of the bad matrix element. The definitions of the
bad matrix elements are given in Secs. III A 4 and III B. The
OME!TME wave function is used, along with the Lomon nucleon
form factors for the electromagnetic form factors, and the Liesen-
feld nucleon form factor for the axial form factor.

FIG. 12. The matrix elements of I (5)m!m
! , the deuteron axial

current including the nucleon axial form factor, calculated with the
wave function from the "a# OME, "b# OME!TME, "c# OME
!TPE, and "d# Bonn potentials.

FIG. 14. The form factors A, B, T20 , and FA calculated using
the various choices of the bad matrix element. The OME wave
function is used, along with the Lomon nucleon form factors for the
electromagnetic form factors, and the Liesenfeld nucleon form fac-
tor for the axial form factor.
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Restoring? RI in form factors

the momentum transfer increases, so does the dependence.
The axial form factor is not affected as strongly, primarily
because each wave function generates an axial current which
violates the angular condition by approximately the same
amount.
Since there are many different models of the nucleon elec-

tromagnetic form factors, we calculate the deuteron electro-
magnetic form factors using each of them to see what effect
the differences have. The results are shown in Fig. 16. At low
momentum transfers, all the nucleon form factors give close
to the same results. However, when the momentum transfers
is large, we find a large spread in the values due to nucleon
form factors. In fact, this spread is larger than the spread of
values obtained from using different bad matrix elements
with the OME!TME wave functions. In other words, in
order to obtain accurate results for momentum transfers over
2 GeV2, it is more important to determine which nucleon
form factor to use than when bad matrix to use.
Finally, in Fig. 17, we compare the A, B, T20 , and FA

form factors for the OME and OME!TME wave functions
to experimental data. The bad component was chosen ac-
cording to FFS, and the nucleon form factors of Lomon were
used for A, B, and T20 , while the Liesenfeld axial nucleon
form factor was used for FA . The data for A is from: Bucha-
nan et al. !71", Elias et al. !72", Galster et al. !73", Platchkov
et al. !74", Abbott et al. !75", and Alexa et al. !1"; the data
for B is from: Buchanan et al. !71", Auffret et al. !76", and
Bosted et al. !77"; and the data for T20 is from: Schulze et al.
!78", Gilman et al. !79", Boden et al. !80", Garcon et al.
!81", Ferro-Luzzi et al. !82", Bouwhuis et al. !83", and Ab-
bott et al. !84".
There is a rather large difference between the form factors

calculated with the OME and OME!TME wave functions.
This difference is due primarily to the fact that the OME
wave functions are more deeply bound than the OME

!TME wave functions, and it can be reduced by choosing a
different sigma coupling constant f # for the OME and
OME!TME potentials. However, for our analysis of rota-
tional invariance, it is important to keep f # fixed.
The difference between the calculated form factors and

the data is also quite large. This is not unexpected, since in
our model of the current, meson exchange currents are not
included. It is known that these can have a large effect on the
form factors at large momentum transfers !55,85,86". Includ-
ing these effects could bring the form factors into better
agreement with the data. However, we emphasize again that
agreement with the data is not a priority of this work. Our
goal is to gain a better understanding of the breaking of
rotational invariance by the light front, and how to restore
that invariance. Only after we have that understanding can
we pursue accurate calculation of the form factors with light-
front dynamics.

V. CONCLUSIONS

The issue of rotational invariance in light-front dynamics
with a fixed-front orientation must be addressed before one
attempts to use light-front dynamics for high-precision cal-
culations. In this paper, we find ways to quantify the level to
which rotational invariance is broken. We used light-front
dynamics to obtain new light-front nucleon-nucleon one-
meson-exchange $OME% and two-meson-exchange $TME%
potentials. In addition, we examined the rotational properties
of wave functions for potentials truncated to different orders.
In Sec. II, we derive OME and TME potentials for a

model Lagrangian for nuclear physics which includes chiral
symmetry. The deuteron form factors are derived for the
wave functions associated with the potentials in Sec. III. Sec-
tion IV describes our results, starting with the calculation of
the binding energies and wave functions for the m"0 and
m"1 states of the deuteron. We find that the splitting be-
tween the m"0 and m"1 states was smaller for the OME

FIG. 16. The electromagnetic form factors A, B, and T20 calcu-
lated using the various choices of the nucleon isoscalar form fac-
tors. The OME wave function is used, along with the FFS choice of
the bad deuteron current matrix. The axial form factor is not shown
since its dependence on different form factors is trivial.

FIG. 17. The A, B, T20 , and FA form factors for the OME and
OME!TME potentials, along with data. See the accompanying text
for an explanation of the data.
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the momentum transfer increases, so does the dependence.
The axial form factor is not affected as strongly, primarily
because each wave function generates an axial current which
violates the angular condition by approximately the same
amount.
Since there are many different models of the nucleon elec-

tromagnetic form factors, we calculate the deuteron electro-
magnetic form factors using each of them to see what effect
the differences have. The results are shown in Fig. 16. At low
momentum transfers, all the nucleon form factors give close
to the same results. However, when the momentum transfers
is large, we find a large spread in the values due to nucleon
form factors. In fact, this spread is larger than the spread of
values obtained from using different bad matrix elements
with the OME!TME wave functions. In other words, in
order to obtain accurate results for momentum transfers over
2 GeV2, it is more important to determine which nucleon
form factor to use than when bad matrix to use.
Finally, in Fig. 17, we compare the A, B, T20 , and FA

form factors for the OME and OME!TME wave functions
to experimental data. The bad component was chosen ac-
cording to FFS, and the nucleon form factors of Lomon were
used for A, B, and T20 , while the Liesenfeld axial nucleon
form factor was used for FA . The data for A is from: Bucha-
nan et al. !71", Elias et al. !72", Galster et al. !73", Platchkov
et al. !74", Abbott et al. !75", and Alexa et al. !1"; the data
for B is from: Buchanan et al. !71", Auffret et al. !76", and
Bosted et al. !77"; and the data for T20 is from: Schulze et al.
!78", Gilman et al. !79", Boden et al. !80", Garcon et al.
!81", Ferro-Luzzi et al. !82", Bouwhuis et al. !83", and Ab-
bott et al. !84".
There is a rather large difference between the form factors

calculated with the OME and OME!TME wave functions.
This difference is due primarily to the fact that the OME
wave functions are more deeply bound than the OME

!TME wave functions, and it can be reduced by choosing a
different sigma coupling constant f # for the OME and
OME!TME potentials. However, for our analysis of rota-
tional invariance, it is important to keep f # fixed.
The difference between the calculated form factors and

the data is also quite large. This is not unexpected, since in
our model of the current, meson exchange currents are not
included. It is known that these can have a large effect on the
form factors at large momentum transfers !55,85,86". Includ-
ing these effects could bring the form factors into better
agreement with the data. However, we emphasize again that
agreement with the data is not a priority of this work. Our
goal is to gain a better understanding of the breaking of
rotational invariance by the light front, and how to restore
that invariance. Only after we have that understanding can
we pursue accurate calculation of the form factors with light-
front dynamics.

V. CONCLUSIONS

The issue of rotational invariance in light-front dynamics
with a fixed-front orientation must be addressed before one
attempts to use light-front dynamics for high-precision cal-
culations. In this paper, we find ways to quantify the level to
which rotational invariance is broken. We used light-front
dynamics to obtain new light-front nucleon-nucleon one-
meson-exchange $OME% and two-meson-exchange $TME%
potentials. In addition, we examined the rotational properties
of wave functions for potentials truncated to different orders.
In Sec. II, we derive OME and TME potentials for a

model Lagrangian for nuclear physics which includes chiral
symmetry. The deuteron form factors are derived for the
wave functions associated with the potentials in Sec. III. Sec-
tion IV describes our results, starting with the calculation of
the binding energies and wave functions for the m"0 and
m"1 states of the deuteron. We find that the splitting be-
tween the m"0 and m"1 states was smaller for the OME

FIG. 16. The electromagnetic form factors A, B, and T20 calcu-
lated using the various choices of the nucleon isoscalar form fac-
tors. The OME wave function is used, along with the FFS choice of
the bad deuteron current matrix. The axial form factor is not shown
since its dependence on different form factors is trivial.

FIG. 17. The A, B, T20 , and FA form factors for the OME and
OME!TME potentials, along with data. See the accompanying text
for an explanation of the data.
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quires knowledge of M* which, in turn, is determined from
G via Eqs. !5.8" and !5.9". In practice, one starts out with an
educated guess for M*, solves Eq. !5.5" for G and uses this
G to calculate a new M* from Eqs. !5.8" and !5.9". The
procedure is then repeated starting with the new M*. This is
reiterated until the calculated M* reproduces accurately the
starting M*.

B. Results

The formalism of the previous section is used to calculate
the energy per nucleon in nuclear matter as a function of
density, Eq. !5.11". Our result is plotted in Fig. 2 by the solid
line. The curve saturates at E/A!"14.71MeV and kF
!1.37 fm"1, and predicts an incompressibility of K
!180MeV at the minimum. These predictions agree well
with the empirical values E/A!"16#1 MeV, kF!1.35
#0.05 fm"1, and K!210#30MeV #52$.
To get a better idea of the quality of our predictions, it is

useful to compare with the results from alternative relativis-
tic approaches. Brockmann and Machleidt #32$ predict E/A
!"13.6MeV, kF!1.37 fm"1, and K!250MeV at satura-
tion, using the equal-time formalism and their ‘‘Potential
B.’’ The greatest difference occurs for the incompressibility
which is predicted smaller by the LF Brueckner theory im-
plying a softer equation of state. This can be partially attrib-
uted to the medium effect that comes from the meson propa-
gators in the LF approach and that is absent in the equal time
!ET" approach. Recall that in the LF formalism the momen-
tum transfer between two nucleons exchanging a meson is

q!!q0 ,q"!!E!"E ,k!"k", !5.16"

where E and E! are nucleon on-mass-shell energies #more
explanations can be found below Eq !3.22"$, implying the
meson propagators

i
q2"m%

2 !
i

!E!"E "2"!k!"k"2"m%
2 , !5.17"

while in the ET formalism no energy is transfered, thus,

q!!0,q"!!0,k!"k", !5.18"

and the propagators are

i
"q2"m%

2 !
i

"!k!"k"2"m%
2 . !5.19"

In nuclear matter, the free-space LF meson propagators Eq.
!5.17" are replaced by

i
!E!*"E*"2"!k!"k"2"m%

2 , !5.20"

while the ET propagators undergo no changes. The medium
effect on the LF meson propagators enhances them off-shell
which leads to more binding energy. This is demonstrated in
Fig. 2 where the difference between the dotted and solid
curve is generated by the medium effect on the meson propa-
gators.
There is another difference that arises from a technical

issue in the solution of the transcendental equation for the G
matrix. We obtain new values of the mean fields M*(kF)
!MN$US!718MeV and UV!165MeV. The mean field
potentials obtained here from the G matrix are considerably
smaller than those of mean field theory in which the potential
is used. We discuss the implications for nuclear deep inelas-
tic scattering in Sec. VII.
The most important medium effect in relativistic ap-

proaches to nuclear matter comes from the use of in-medium
Dirac spinors representing the nucleons in nuclear matter
!‘‘Dirac effect’’". This effect !and the medium effect on me-
son propagators" is absent in the conventional !nonrelativis-
tic" Brueckner calculation which yields the dashed curve in
Fig. 2. Characteristic for all predictions using conventional
Brueckner theory is that the saturation density is predicted
too high and, thus, they all fail to explain nuclear saturation
correctly.
The effect that is generated by the in-medium Dirac

spinors is strongly density dependent !due to the density de-
pendence of M*" shifting the saturation curve towards lower
densities such that nuclear saturation is predicted at the cor-
rect density !solid and dotted curves in Fig. 2". The effect
from the in-medium Dirac spinors is, of course, largest for &
and ' exchange for which the LF and ET formalisms predict
essentially the same. However, ( and ) also contribute to the
medium effect and, here, we have differences between LF
and ET. The general underlying reason for this difference is
that for derivative coupling, implying a momentum depen-
dence of the meson-nucleon vertex, the difference in the mo-
mentum transfer !!meson momentum" between LF and ET
#Eqs. !5.16" and !5.18", above$ creates a difference in the
vertices !and OBE amplitudes"—besides the one in the me-
son propagators. The ) includes the tensor coupling
i( f )/2M ) &*+q+ and the LF OBE amplitude is given in Eq.

FIG. 2. Energy per nucleon in nuclear matter E/A !in units of
MeV", as a function of density expressed by the Fermi momentum
kF !in units of fm"1". The solid line is our prediction using light-
front Brueckner theory. The dotted curve is obtained when the me-
dium effect on meson propagation is omitted. The dashed line is the
result from conventional !nonrelativistic" Brueckner theory. The
box describes the area in which nuclear saturation is expected to
occur empirically.
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