

The x<3 experiment

Patricia Solvignon UNH/JLab

Next generation nuclear physics with JLab12 and EIC FIU February 10-13, 2016

E12-11-112

Precision measurement of the isospin dependence in the 2N and 3N short range correlation region

Spokespeople: P. Solvignon (JLab/UNH), J. Arrington (ANL), D. Day (UVa), D. Higinbotham (JLab)

Main physics goals

Isospin-dependence

- ✓ Improved precision: extract R(T=1/T=0) to 3.8%
- \checkmark FSI much smaller (inclusive) and expected to cancel in ratio

3N SRCs structure (momentum-sharing and isospin)

Improved A-dependence in light and heavy nuclei

✓ Average of ³H, ³He --> A=3 "isoscalar" nucleus
✓ Determine isospin dependence --> improved correction for N>Z nuclei, extrapolation to nuclear matter

Absolute cross sections (and ratios) for ²H, ³H, ³He: test calculations of FSI for simple, well-understood nuclei

ONIVERSITY of New Hampshire

Preliminary Results of E08-014

Search for three-nucleon short-range correlations in nuclei

Z. Ye,^{1,2} P. Solvignon,^{3,4} P. Aguilera,⁵ Z. Ahmed,⁶ H. Albataineh,⁷ K. Allada,⁸ B. Anderson,⁹ D. Anez,¹⁰ K.

E01-11-112 will perform the average of ³H, ³He --> A=3 "isoscalar" nucleus

MPSHIRE

Onset of Scaling for 2<x<3

Accessing the components of the spectral function

Taking deuterium data will allow:

PSHIRE

1. Direct measures of the spectral function in the isospin 1 channel:

$$\frac{\left[\sigma(^{3}He) - \sigma(^{3}H)\right] / \left[\sigma(^{3}He) + \sigma(^{3}H)\right]}{\sigma(^{2}H)}$$

2. Direct measures of the difference of the spectral function in I=1 and I=0 channels:

$$\frac{\sigma(^{3}He) - \sigma(^{3}H)}{\sigma(^{2}H)}$$

These results will provide, in an independent way, a test of the observation of small values of (e,e'pp)/(e,e'pn) ratios.

Isospin study from ³He/³H ratio

Simple mean field estimates for 2N-SRC

Isospin independent:

APSHIRE

$$\frac{\sigma_{{}^{3}He}/3}{\sigma_{{}^{3}H}/3} = \frac{(2\sigma_{p} + 1\sigma_{n})/3}{(1\sigma_{p} + 2\sigma_{n})/3} \xrightarrow{\sigma_{p} \approx 3\sigma_{n}}{1.40}$$

n-p (T=0) dominance:

3N-configuration

(a) yields $R(^{3}He/^{3}H) \approx 3.0$ if nucleon #3 is always the doubly-occurring nucleon (a) yields $R(^{3}He/^{3}H) \approx 0.3$ if nucleon #3 is always the singly-occurring nucleon (a) yields $R(^{3}He/^{3}H) \approx 1.4$ if configuration is isospin-independent, as does (b)

R ≠ 1.4 implies isospin dependence AND non-symmetric momentum sharing

of New Hampshir

E12-11-112: kinematics

Beam current: 25 µA, unpolarized, Raster interlock Beam energy: 17.5 Days 4.4 GeV [main production]

MPSHIRE

Jefferson Lab⁸

E12-11-112: kinematics

MPSHIRE

E12-11-112: kinematics

Beam current: 25 µA, unpolarized, Raster interlock Beam energy: 17.5 Days 4.4 GeV [main production] 1.5 days 2.2 GeV [checkout+QE]

> Right HRS running ("parasitic") Existing ³H QE data limited Q² ≤ 0.9 GeV²

> > Left HRS running (380 hours)

Left+Right HRS running (about 1 day)

MPSHIRE

Jefferson Lab

10

E12-11-112: projected results

PSHIRE

In PWIA, ³He/³H with 1.5% uncertainty corresponds to 3% on G_M^n

Jefferson Lab 🕕

E12-11-112: Neutron Magnetic FF

In PWIA, ³He/³H with 1.5% uncertainty corresponds to 3% on G_Mⁿ

Limited to Q² ≤ 1 GeV², where QE peak has minimal inelastic contribution
This is the region with ~8% discrepancy between the Ankin, Kubon data and the CLAS ratio and the Hall A polarized ³He extraction.

Nuclear effects expected to be small, largely cancel in ratio

PSHIRE

From D. Meekins (JLab)

Jefferson Lab

13

The Target System

Tritium Experiments scheduled to run in February 2017

Thank you

