The $x<3$ experiment

Patricia Solvignon
UNH/JLab

Next generation nuclear physics with JLab12 and EIC FIU
February 10-13, 2016

E12-11-112

Precision measurement of the isospin dependence in the 2 N and 3 N short range correlation region

Spokespeople: P. Solvignon (JLab/UNH), J. Arrington (ANL), D. Day (UVa), D. Higinbotham (JLab)

Main physics goals

Isospin-dependence

\checkmark Improved precision: extract $\mathrm{R}(\mathrm{T}=1 / \mathrm{T}=0)$ to 3.8%
\checkmark FSI much smaller (inclusive) and expected to cancel in ratio
3N SRCs structure (momentum-sharing and isospin)
Improved A-dependence in light and heavy nuclei
\checkmark Average of ${ }^{3} \mathrm{H},{ }^{3} \mathrm{He}-->\mathrm{A}=3$ "isoscalar" nucleus
\checkmark Determine isospin dependence --> improved correction for $\mathrm{N}>\mathrm{Z}$ nuclei, extrapolation to nuclear matter

Absolute cross sections (and ratios) for ${ }^{2} \mathbf{H},{ }^{3} \mathrm{H},{ }^{3} \mathrm{He}$: test calculations of FSI for simple, well-understood nuclei

Preliminary Results of E08-014

Search for three-nucleon short-range correlations in nuclei

Z. Ye,,${ }^{1,2}$ P. Solvignon, ${ }^{3,4}$ P. Aguilera, ${ }^{5}$ Z. Ahmed, ${ }^{6}$ H. Albataineh,,${ }^{7}$ K. Allada, ${ }^{8}$ B. Anderson, ${ }^{9}$ D. Anez, ${ }^{10}$ K.

ratio ${ }^{4} \mathrm{He} /{ }^{3} \mathrm{He}$

To be submitted to PRL

No hint of second plateau ?

E01-11-112 will perform the average of ${ }^{3} \mathrm{H},{ }^{3} \mathrm{He}-->\mathrm{A}=3$ "isoscalar" nucleus

Onset of Scaling for $2<x<3$

Accessing the components of the spectral function

Taking deuterium data will allow:

1. Direct measures of the spectral function in the isospin 1 channel:

$$
\frac{\left[\sigma\left({ }^{3} H e\right)-\sigma\left({ }^{3} H\right)\right] /\left[\sigma\left({ }^{3} H e\right)+\sigma\left({ }^{3} H\right)\right]}{\sigma\left({ }^{2} H\right)}
$$

2. Direct measures of the difference of the spectral function in $\mathrm{I}=1$ and $\mathrm{I}=0$ channels:

$$
\frac{\sigma\left({ }^{3} H e\right)-\sigma\left({ }^{3} H\right)}{\sigma\left({ }^{2} H\right)}
$$

These results will provide, in an independent way, a test of the observation of small values of (e, e'pp)/(e,e'pn) ratios.

Isospin study from ${ }^{3} \mathrm{He} /{ }^{3} \mathrm{H}$ ratio

Simple mean field estimates for $\mathbf{2 N}$-SRC

Isospin independent:
$\frac{\frac{\sigma_{3_{H e}} / 3}{\sigma_{3_{H}} / 3}=\frac{\left(2 \sigma_{p}+1 \sigma_{n}\right) / 3}{\left(1 \sigma_{p}+2 \sigma_{n}\right) / 3} \xrightarrow{\sigma_{p} \approx 3 \sigma_{n}} 1.40}{}$
$\mathrm{n}-\mathrm{p}(\mathrm{T}=\mathrm{o})$ dominance:

$$
\frac{\sigma_{3_{H}} / 3}{\sigma_{3_{H e}} / 3}=\frac{(2 p n+1 n q) / 3}{(2 p n+1 p p) / 3}=1.0
$$

Inclusive cross section calculation from M. Sargsian using AV18/UIX

3N-configuration

extremely large momentum

$$
\mathrm{p}_{3}=\mathrm{p}_{\mathrm{I}}+\mathrm{p}_{2}
$$

"Star-configuration"

$$
\mathrm{p}_{\mathrm{I}}=\mathrm{p}_{2}=\mathrm{p}_{3}
$$

(a) yields $\mathrm{R}\left({ }^{3} \mathrm{He} /{ }^{3} \mathrm{H}\right) \approx 3.0$ if nucleon \#3 is always the doubly-occurring nucleon (a) yields $\mathrm{R}\left({ }^{3} \mathrm{He} /{ }^{3} \mathrm{H}\right) \approx 0.3$ if nucleon \#3 is always the singly-occurring nucleon (a) yields $\mathrm{R}\left({ }^{3} \mathrm{He} /{ }^{3} \mathrm{H}\right) \approx 1.4$ if configuration is isospin-independent, as does (b)
$\mathrm{R} \neq 1.4$ implies isospin dependence AND non-symmetric momentum sharing

E12-11-112: kinematics

Beam current: $25 \mu \mathrm{~A}$, unpolarized, Raster interlock

Beam energy:

17.5 Days 4.4 GeV [main production]

Left HRS running (380 hours)

E12-11-112: kinematics

Beam current: $25 \mu \mathrm{~A}$, unpolarized, Raster interlock
Beam energy:
17.5 Days 4.4 GeV [main production]
I. 5 days 2.2 GeV [checkout+QE]

Left HRS running (380 hours)

Left+Right HRS running (about 1 day)

E12-11-112: kinematics

Beam current: $25 \mu \mathrm{~A}$, unpolarized, Raster interlock
Beam energy:
17.5 Days 4.4 GeV [main production]
I. 5 days 2.2 GeV [checkout+QE]

Right HRS running ("parasitic") Existing ${ }^{3} \mathrm{H}$ QE data limited $\mathrm{Q}^{2} \leq 0.9 \mathrm{GeV}^{2}$

Left HRS running (380 hours)

Left+Right HRS running (about 1 day)

E12-11-112: projected results

Isospin study of SRC

At $x>2,{ }^{3} \mathrm{He} /{ }^{3} \mathrm{H} \neq 1.4$ implies isospin dependence AND non-symmetric momentum sharing

Extraction of $\mathbf{G M}^{\mathbf{n}}$

In PWIA, ${ }^{3} \mathrm{He} /{ }^{3} \mathrm{H}$ with 1.5%
uncertainty corresponds to 3% on $G_{M^{n}}$

E12-11-112: Neutron Magnetic FF

World ${ }^{3} \mathrm{H}$ QE data:

$$
\mathrm{Q}^{2} \leq 0.9 \mathrm{GeV}^{2}
$$

This experiment:
$0.6,0.8,1.0,1.4,1.7$, $2.4,2.7$ and $3.0 \mathrm{GeV}^{2}$

In PWIA, ${ }^{\mathbf{3} H e} / \mathbf{3} \mathbf{H}$ with $\mathbf{1 . 5 \%}$ uncertainty corresponds to $\mathbf{3 \%}$ on $\mathbf{G m}^{\mathbf{n}}$

- Limited to $\mathrm{Q}^{2} \leq 1 \mathrm{GeV}^{2}$, where QE peak has minimal inelastic contribution
- This is the region with $\sim 8 \%$ discrepancy between the Ankin, Kubon data and the CLAS ratio and the Hall A polarized ${ }^{3} \mathrm{He}$ extraction.

Nuclear effects expected to be small, largely cancel in ratio

The Target System

- Main Body and Entrance Window: ASTM B209 AL 7075-T651
- Valve assy: SST 316 and 304
- 1090 Ci of T2 (0.1 g)
- ~200 psi at 295 K
- 25 cm long
- ID of 12.7 mm
- Volume $=34 \mathrm{cc}$
- Aluminum CF seals

Tritium Experiments scheduled to run in February 2017

Thank you

