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Main physics goals
Isospin-dependence

✓ Improved precision: extract R(T=1/T=0) to 3.8%
✓ FSI much smaller (inclusive) and expected to cancel in ratio

3N SRCs structure (momentum-sharing and isospin)

Improved A-dependence in light and heavy nuclei
✓ Average of 3H, 3He --> A=3 “isoscalar” nucleus
✓ Determine isospin dependence --> improved correction for N>Z nuclei, 
extrapolation to nuclear matter

Absolute cross sections (and ratios) for 2H, 3H, 3He: test calculations of FSI for 
simple, well-understood nuclei

 Spokespeople: P. Solvignon (JLab/UNH), J. Arrington (ANL), D. Day (UVa), D. Higinbotham (JLab)
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with the explanation provided in a recent comment [27]261

which examined the impact of the CLAS momentum res-262

olution and concluded that the observed 3N-SRC plateau263

was likely the result of large bin-centering corrections.264

We do not see any indication of a plateau in the 3N-265

SRC region, with the 4He/3He ratio increasing with x266

(except for x ⇡ 3 where the 3He elastic contribution de-267

creases the ratio). However, while the scaling picture is268

a simple and robust way to test for 2N-SRCs, it is less269

clear how well it can indicate the presence of 3N-SRCs.270

For 2N-SRCs, one can predict a priori where the plateau271

should be observed since for any given Q

2, a value of x272

can be selected that corresponds to a minimum nucleon273

momentum that is above the Fermi momentum, thus sup-274

pressing the mean-field contributions. For 3N-SRCs, it275

is not clear what value of x and Q

2 is required to sup-276

press 2N-SRC contributions. Thus, larger Q

2 values may277

well be required to see identical behavior from 3He and278

heavier nuclei.279

For 2N-SRCs, the plateau must disappear as the280

deuteron cross section falls to zero as one approaches281

x = MD/Mp ⇡ 2, causing the ratio to rise sharply to282

infinity. For both the data and our simple cross section283

model, based on a simple deuteron momentum distribu-284

tion, this does not occur until x ⇡ 1.9, yielding a clear285

plateau for 1.5 < x < 1.9. For 3He, our simple cross286

section model yields a rapid fallo↵ of the 3He cross sec-287

tion starting near x ⇡ 2.5. More importantly, the rise288

in the cross section ratio sets in at lower x values as Q

2
289

increases, potentially eliminating the benefit of larger Q

2
290

values associated with an earlier start of the plateau in291

x. The rise at x > 2.5 and Q

2 dependence observed in292

our model are qualitatively consistent with the observed293

Q

2 dependence of the data, shown in Figure 2.294
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FIG. 1. (Color online) The 4He/3He cross section ratio for297

Q

2
> 1.4 GeV2 (23o and 25o scattering), along with results298

from CLAS [12] and Hall C (E02-019) [14]. Uncertainties299

include statistical and systematic uncertainties; the 7% nor-300

malization uncertainty is not included. We do not remove the301

elastic e-3He contribution, which yields a decrease in the ratio302

at x ⇡ 3.303
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FIG. 2. (Color online) The 4He/3He (top) and 12C/3He (bot-
tom) cross section ratios at 21, 23, and 25 degrees, along with
results from CLAS [12] and Hall C (E02-019) [14] measure-
ments. The solid lines correspond to a simple cross section
model based on parameterized momentum distributions.

One can think of the rise in the ratio as x ! 3 as304

coming from the di↵erence between stationary 3N-SRC305

in 3He and moving SRCs in heavier nuclei. This violates306

the naive scaling picture, which predicts a plateau, and is307

consistent with the observation that the large-x increase308

in the ratio is larger for 12C/3He. However, it does not309

indicate that 3N-SRCs are not important in this region;310

even if the cross section is dominated by 3N-SRCs, the311

simple ratio of inclusive scattering need not show the312

plateau predicted by the naive SRC model. Thus, it ap-313

pears that the direct comparison of inclusive scattering314

of 3He and heavier nuclei does not provide a su�ciently315

sensitive way to observe the contribution of 3N-SRCs.316

The absolute cross sections for scattering from 3He,317

4He and 12C at a scattering angle of 25� are shown in318

Fig. 3. For 3He, the deviation of the 3He cross section319

from the exponential fallo↵ with x is clear for x > 2.5,320

yielding the increase in the 4He/3He ratios shown above.321

We have performed high-statistics measurements of the322

4He/3He and 12C/3He cross section ratios, confirming323

the results of the low-statistics measurements form Hall324

C [14] and showing a clear disagreement with the CLAS325

data [12] which was presumably limited at large x by the326
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One can think of the rise in the ratio as x ! 3 as304

coming from the di↵erence between stationary 3N-SRC305

in 3He and moving SRCs in heavier nuclei. This violates306

the naive scaling picture, which predicts a plateau, and is307

consistent with the observation that the large-x increase308

in the ratio is larger for 12C/3He. However, it does not309

indicate that 3N-SRCs are not important in this region;310

even if the cross section is dominated by 3N-SRCs, the311

simple ratio of inclusive scattering need not show the312

plateau predicted by the naive SRC model. Thus, it ap-313

pears that the direct comparison of inclusive scattering314

of 3He and heavier nuclei does not provide a su�ciently315

sensitive way to observe the contribution of 3N-SRCs.316

The absolute cross sections for scattering from 3He,317

4He and 12C at a scattering angle of 25� are shown in318

Fig. 3. For 3He, the deviation of the 3He cross section319

from the exponential fallo↵ with x is clear for x > 2.5,320

yielding the increase in the 4He/3He ratios shown above.321

We have performed high-statistics measurements of the322

4He/3He and 12C/3He cross section ratios, confirming323

the results of the low-statistics measurements form Hall324

C [14] and showing a clear disagreement with the CLAS325

data [12] which was presumably limited at large x by the326

ratio 4He/3He ratio 12C/3He

No hint of second plateau ?

E01-11-112 will perform the average of 3H, 3He --> A=3 “isoscalar” nucleus
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Onset of  Scaling for 2<x<3

Maybe our Q2 is too low ?! 

No hint of second plateau ?
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Taking deuterium data will allow:

1. Direct measures of the spectral function in the isospin 1 channel:

2. Direct measures of the difference of the spectral function in I=1 and I=0 channels:

5

Accessing the components of   
the spectral function
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These results will provide, in an independent way, a test of 
the observation of small values of (e,e’pp)/(e,e’pn) ratios. 
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Isospin study from 3He/3H ratio

€ 

σ 3He
/3

σ 3H
/3

=
(2σ p +1σ n ) /3
(1σ p + 2σ n ) /3

σ p ≈3σ n$ → $ $ 1.40

€ 

σ 3H
/3

σ 3He
/3

=
(2pn +1nn) /3
(2pn +1pp) /3

=1.0

Simple mean field estimates for 2N-SRC
Isospin independent: n-p (T=0) dominance:
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Inclusive cross section 
calculation from 

M. Sargsian using AV18/UIX 
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3N-configuration

(a)

(b)

1

1

2

2

3

3

p3 = p1+p2

p1 = p2 = p3

extremely large momentum

“Star-configuration”

R ≠ 1.4 implies isospin dependence AND non-symmetric momentum sharing

(a) yields R(3He/3H) ≈ 3.0 if nucleon #3 is always the doubly-occurring nucleon
(a) yields R(3He/3H) ≈ 0.3 if nucleon #3 is always the singly-occurring nucleon
(a) yields R(3He/3H) ≈ 1.4 if configuration is isospin-independent, as does (b)
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E12-11-112: kinematics
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3N2NQE

Beam current: 25 μA, unpolarized, Raster interlock 
Beam energy:
17.5 Days 4.4 GeV [main production]

Left HRS running
(380 hours)
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(about 1 day)

E12-11-112: kinematics
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Beam current: 25 μA, unpolarized, Raster interlock 
Beam energy:
17.5 Days 4.4 GeV [main production]
1.5 days 2.2 GeV [checkout+QE]

Left HRS running
(380 hours)

Left+Right HRS 
running

(about 1 day)

Right HRS running
(“parasitic”)

Existing 3H QE data 
limited Q2 ≤ 0.9 GeV2

E12-11-112: kinematics
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E12-11-112: projected results
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1.1% scale uncertainty not shown

Extraction of GMnIsospin study of SRC

In PWIA, 3He/3H with 1.5% 
uncertainty corresponds to 3% on GMn

At x>2,  3He/3H ≠ 1.4 implies isospin dependence 
AND non-symmetric momentum sharing
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E12-11-112: Neutron Magnetic FF
Quasielastic data 

In PWIA, 3He/3H with 1.5% uncertainty corresponds to 3% on GM
n 

    * Limited to Q2≤1 GeV2, where QE peak has minimal inelastic 
contribution 
    * This is the region with ~8% discrepancy between the Anklin, Kubon 
data and the CLAS ratio and Hall A polarized 3He extractions 
 
Nuclear effects expected to be small, largely cancel in ratio 

Worlds 3H QE data: !
Q2 � 0.9 GeV2!

This experiment:!
 0.6-1.0 GeV2!

1.4,1.7 GeV2!

2.2-3.0 GeV2!

12 

World 3H QE data: 
Q2 ≤ 0.9GeV2

This experiment: 
0.6, 0.8, 1.0, 1.4, 1.7,  
2.4, 2.7 and 3.0 GeV2

In PWIA, 3He/3H with 1.5% uncertainty corresponds to 3% on GMn

‣  Limited to Q2 ≤ 1 GeV2, where QE peak has minimal inelastic contribution
‣ This is the region with ~8% discrepancy between the Ankin, Kubon data and 
the CLAS ratio and the Hall A polarized 3He extraction.

Nuclear effects expected to be small, largely cancel in ratio
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The Target System

• 1090 Ci of T2 (0.1 g)
• ~200 psi at 295K
• 25 cm long 
• ID of 12.7mm
• Volume = 34 cc
• Aluminum CF seals

• Main Body and Entrance Window:  
ASTM B209 AL 7075-T651

• Valve assy:  SST 316 and 304

From D. Meekins (JLab)
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Tritium Experiments scheduled to run 
in February 2017

Thank you


