

Nuclear photoproduction with GlueX

A. Somov, Jefferson Lab with E. Chudakov (Jefferson Lab) and S. Gevorkyan (JINR)

Next generation nuclear physics with JLab12 and EIC Florida International University, 10 – 13 February, 2016

12 GeV CEBAF Energy Upgrade

- Upgrade CEBAF energy from 6 GeV to 12 GeV.
- New experimental Hall D
 - photon beam (linear polarization)

Hall D Physics Program

Experiment Proposal	Name	Days	Status	Cond.	Target
E12-06-102	Mapping the Spectrum of Light Quark Mesons and Gluonic Excitations with Linearly Polarized Photons	120	A		LH ₂
E12-12-002 E12-13-003	A study of meson and baryon decays to strange final states with GlueX in HallD	220	А	L3 trigger PID	LH ₂
E12-10-011	A Precision Measurement of the Radia- tive Decay Width via the Primakoff Effect	79	A-		LHe ₄
E12-13-003	Measuring the Charged Pion Polari- zability in the $\gamma\gamma \rightarrow \pi^+\pi^-$ Reaction	25	A-		Sn
C12-14-004	Eta Decays with Emphasis on Rare Neutral Modes: The JLab Eta Factory Experiment (JEF)	(130)	С	Upgrade forward calorim.	LH ₂
LOI12-15-001	Physics with secondary K_L beam				LH ₂ , A
LOI12-15-006	Production ω mesons off nuclei				A

Photon Beam Requirements

Experiment	Photon Energy Range (GeV)	Polarization	Photon Flux γ/ sec
GlueX Search for gluonic excitations in the spectra of light mesons	8.4 – 9.0	44 %	5 · 10 ⁷
PrimEx A precision measurement of the $\eta \rightarrow \gamma \gamma$ decay width via the Primakoff effect	10.5 – 11.7	None	7.6 · 10 ⁶
Measuring the charged pion polarizability	5.5 - 6.0	76 %	107

Exotic Mesons

 \succ Gluonic exitations result in hybrid mesons with exotic J^{PC}

▶ Predicted by flux tube model (1970) and lattice QCD

- constituent gluon with $J^{PC} = 1^{+-}$ and mass 1 - 1.5 GeV

Lattice QCD Predictions

Dudek et al. PRD 88 (2013) 094505

Photoproduction of Exotic Mesons

Exchange particle		Final States		
Р	0 +	0 +- , 2 +-	b ⁰ , h, h'	
π^0	0 -	2 +-	b ₂ ⁰ , h ₂ , h ₂ '	
π^{\pm}	0 -	1-+	π_1^{\pm}	
ω	1 -	1-+	$\pi_1,\eta_1,\ \eta_1'$	

 Polarized photon beam helps to determine production mechanism (naturality)

Search Modes of Exotic Decays

JPC	Exotic Meson	Possible Decays
1 -+	π ₁ (1900)	$πρ$, $πb_1$, $πf_1$, $πη'$, $ηa_1$
	η ₁ (2100)	η f ₂ , a ₂ π, ηf ₁ , ηη′, π(1300) π
	η1' (2300)	K[*]K , K ₁ (1270) K , K ₁ (1410) K , ηη'
2 +-	b ₂ (2500)	ωπ, $a_2\pi$, $\rho\eta$, $f_1\rho$, $a_1\pi$, $h_1\pi$, $b_1\eta$
	h ₂ (2500)	ρπ, $b_1\pi$, ωη, $f_1\omega$
	h ₂ '(2600)	$K_1(1270)$ K, $K_1(1410)$ K, K_2^* K, $\phi\eta$
0+-	b ₀ (2400)	π (1300) π, h ₁ π, f ₁ ρ, b ₁ η
	$h_0(2400)$	$\mathbf{b}_1 \pi, \mathbf{h}_1 \eta$
	$h_0'(2500)$	$K_1(1270)$ K, $K_1(1460)$ K, $h_1\eta$

Multiparticle final states:

- (p,n) + 3π, 4π, 3πη, 4πη ...
- 70% of decays involve at least one π^0
- 50% more than two π^0

Detector Requirements:

- Hermetic detector
- Large/uniform acceptances
- Good energy and momentum resolution

Polarized Photon Beam

- Beam photons are produced by 12 GeV electrons ($I < 2.2 \ \mu A)$ on a thick diamond crystal (20 μm)
- Photon energy: detect bremsstrahlung electrons $\Delta~E~/~E < 0.005$
- Pass beam photons through the collimator
 - increase the fraction of linearly polarized photons
 - beam intensity: $10^8 \gamma$ /sec for 8.4 < E_{γ} < 9.1 GeV

GlueX Detector

Tracking:

- Central Drift Chamber
- Forward Drift Chamber

Calorimetry:

- Barrel Calorimeter
- Forward Calorimeter

PID:

- Time of Flight wall
- Start Counter
- Barrel Calorimeter

GlueX Detector

Tracking

Forward Drift Chamber

- Angular coverage $1^{\circ} < \theta < 30^{\circ}$
- 4 packages, 6 cathode/wire/cathode chambers in each package
- ~12000 channels
- σ_{xy} ~ 200 μm

Tracking performance: $\sigma_p / p \sim 1 - 3 \%$

Central Drift Chamber

- Angular coverage $6^{\circ} < \theta < 155^{\circ}$
- 12 axial layers, 16 stereo layers
 3522 straw tubes (1.6 cm diameter)
- De/dx for p, π identification
- $\sigma_{\phi} \sim 150 \ \mu m$, $\sigma_z \sim 2 \ mm$

Calorimetry

Forward Calorimeter:

- Angular coverage 2° < θ < 11 °
- 2800 Pb-glass blocks: 4cm x 4 cm x 45 cm
- $\sigma_{\rm E}$ / E $\,$ = 6 % //E \oplus 2.0 %
- σ_{xy} = 6.4 mm / √E

Barrel Calorimeter:

- Angular coverage 11° < θ < 120 °
- 191 layers Pb:ScFib:Glue (37:49:14%)
- Double side readout (SiPM)
- $\sigma_{\rm E}$ / E = 6 % / $\sqrt{\rm E}$ \oplus 1.6 %
- σ_z = 5 mm / \sqrt{E}
- σ_t = 74 ps / $\sqrt{E \oplus 33}$ ps

GlueX Commissioning

Experiments using Primakoff Production

Measurement of $\Gamma(\eta \rightarrow \gamma \gamma)$ via Primakoff Effect

Physics:

- Light quark mass ratio
- η η' mixing angle

 $\Gamma(\eta \rightarrow 3\pi) \propto |A|^2 \propto Q^4$

$$Q^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}$$
, where $\hat{m} = \frac{1}{2}(m_u + m_d)$

- 11.0 11.7 GeV incoherent tagged photons
- > 30 cm LH₂ and LHe₄ targets (~3.6% r.l.)
- > Forward Calorimeter (FCAL) for $\eta \rightarrow \gamma \gamma$

Nuclear Targets in PrimEX I Experimet

Experiment performed in Hall-B using a 6 GeV photon beam

> Measure $\Gamma(\pi^0 \rightarrow \gamma \gamma)$ using nuclear targets: ¹² C and ²⁰⁸ Pb

Charged Pion Polarizability

- Use Primakoff production $\gamma A \rightarrow \pi^+ \pi^- A$ to extract pion polarizability *test* χPT *predictions*
- Photon energy of interest 5.5 6 GeV, polarization 76 %
- Major background from rho decays and $\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$
- Requires new muon detector

 $\gamma + \gamma \rightarrow \pi^+ + \pi^-$

Physics Topics with Nuclear Targets Considered for GlueX

- Photoproduction of vector mesons off nuclei Phys. Rev. C 93, 015203 (2016)
- > Study in-medium modification effects
- Color transparency (initial calculations by Mark Strikman and A. Larionov)
- (Production of J/ψ)

.

Photoproduction of Vector Mesons off Nuclei

- Develop physics motivation for the study of photoproduction of vector mesons (ω, ρ, ϕ) on nuclear target with the GlueX detector
- Measure differential cross section of the vector meson photoproduction in the energy range between 5 GeV and 12 GeV and the momentum transfer range $|t| < 0.5 \text{ GeV}^2$
- Study interactions of transversely and longitudinally polarized vector mesons with nucleons

Quark Distributions in Polarized Mesons

Different distributions of quarks in the transversely and longitudinally polarized mesons

Photoproduction of ω-mesons off Nuclei

Coherent photoproduction $\gamma + A \rightarrow \omega + A$

- obtain the total cross section of transversely polarized ω meson with nucleons $\sigma_{T}\left(\omega\;N\right)$
- \bullet measure the ω photon coupling constant

Incoherent photoproduction $\gamma + A \rightarrow \omega + A'$

- extract the total cross section of longitudinally polarized ω meson with nucleons $\sigma_L (\omega N)$ which has not yet been measured
- measure nuclear transparency and the spin density matrix elements for different nuclei

Coherent Production of w-mesons

- Exchange of particle with isotopic spin one (pion exchange) has different signs in photoproduction on proton and neutron
 - the contribution of pion exchane cancels out when amplitudes are summed
- S channel helicity conservation in production at small angles
 - transversely polarized $\boldsymbol{\omega}$ mesons

$$\frac{d\sigma_A(q)}{dt} = |F_A(q_\perp, q_L \sigma_T)| \frac{d\sigma_N}{dt}|_{t=0}$$

Obtain ω - photon coupling constant

$$\frac{d\sigma_N}{dt}\bigg|_{t=0} = \frac{4\pi}{\gamma_{\omega}^2} \frac{\alpha}{64\pi} \sigma_{\omega}^2 (1+\alpha_{\omega}^2)$$

Measure coupling constant in photoproduction on nucleons using linearly polarized photons (distinguish contributions from the natural and unnatural parity exchange)

- measure photoproduction cross section on both nuclei and nucleons
- help to sort out some contradictions in the measurements of the ω photon coupling constant

Incoherent production of ω **mesons**

Nuclear transparency

$$\frac{d\sigma_{A}(q)}{dt} = \frac{d\sigma_{0}(q)}{dt} \cdot (\rho_{00}N(\sigma_{L}) + (1 - \rho_{00})N(\sigma_{T}))$$

$$N(\sigma) = \int \frac{1 - \exp(-\sigma\int\rho(b,z)dz)}{\sigma} d^{2}b$$

$$\overbrace{A_{EFF}}^{A} = \frac{d\sigma_{A}(q)}{dt} / \frac{d\sigma_{0}(q)}{dt}$$
Spin density matrix elements
$$\rho_{00}^{A} = \frac{N(\sigma_{L})}{\rho_{00}N(\sigma_{L}) + (1 - \rho_{00})N(\sigma_{T})}\rho_{00}$$

Extend the model by taking into account interference of production amplitudes

- required to describe electroproduction of vector mesons
- energy dependent transparency: $N(\sigma_T) \rightarrow W(\mathbf{q}_L, \sigma_T)$, where $q_L = m^2 / 2 E$

Nuclear Transparency

E. Chudakov, S, Gevargyan, A, Somov Phys. Rev. C 93, 015203 (2016)

Input values:

 $\sigma_T = 26 \text{ mb}$ $\rho_{00} = 0.2$ (mesured by SLAC in photoproduction on nucleon)

25

Spin Density Matrix Elements

26

 A_{EFF} and ρ_{00} versus σ_L

Experimental Requirements

Main factors limiting luminosity:

- rate of coincidential hits in tagger (for small beam energies)
- background (neutrons) in the experimental Hall-D
- Reduce beam current 10 nA (about 220 times smaller that the nominal GlueX current of 2.2 µA)
- \triangleright Coincidential rate in the tagger in the energy range 4.5 6.5 GeV is about 3 %
- Flux of collimated and tagged photons:

2.3 x 10⁵ γ/sec (5 GeV < E_{γ} < 6 GeV can be increased by moving high granularity tagging detectors 4.1 x 10⁵ γ/sec (8 GeV < E_{γ} < 9 GeV)

Yield of w Mesons

- > Thickness of nuclei targets $-7 \% X_0$ (400 µm Pb)
- Production rate of omega mesons in incoherent process on a Pb target:

 $R = 7.8 \ \omega/sec$ 5 GeV $< E_{\gamma} < 6$ GeV 0.28 reconstructed ω/sec

$$R = 7.3 \quad \omega/sec \qquad 8 \text{ GeV} < E_{\gamma} < 9 \text{ GeV}$$

Target	σ _{INCOH} (μb)		Reconstructed $\omega \rightarrow \pi^0 \gamma$ per day	
	5 GeV	9 GeV	5 GeV	9 GeV
Al	31	19	15600	17600
Pb	130	64	17300	16500

Reconstruction of ω -mesons with GlueX

 $\succ \omega$ - mesons reconstructed with GlueX

Detector calibration is in progress

Medium Modifications of Mesons

□ Study modifications of meson properties by nuclear matter:

Spectroscopy of hadron line shapes

Attenuation measurements

Use vector mesons to study the mass distribution and medium absorption (cτ = 1.3 fm, 23 fm, and 46 fm for ρ , ω , and ϕ)

In-medium modification measurements have been performed by several experiments

- Experimental measurements are not completely understood (more measurements are required)

Experimental Results on In-medium Modifications

S.Leupold, V. Metag, U. Mosel Int. J. Mod. Phys. E 19 (2010)

Experimet	Beam GeV	P range GeV/c	ρ	ω	φ
Spring 8	γ A 1.5 – 2.4	p > 1 K+K ⁻ final state			$\Delta\Gamma \sim 70 \text{ MeV}$ p = 1.8 GeV/c
CBELSA/ TAPS	γ A 0.9-2.2	p > 0 $\pi^0 \gamma$ final state		$\Delta\Gamma \sim 130 \text{ MeV}$ p = 1.1 GeV/c	
CLAS E01-112	γ A 0.6 – 3.8	p > 0.8 e ⁺ e ⁻ final state	$\Delta m \sim 0$ $\Delta \Gamma \sim 70 \text{ MeV}$ p = 1.1 GeV/c		
KEK-E325	рА 12	p > 0.6 e+e⁻ final state	$\Delta m / m = -9 \%$ $\Delta \Gamma \sim 0$	$\Delta m / m = -9 \%$ $\Delta \Gamma \sim 0$	$\Delta m / m = -3.4 \%$ $\Delta \Gamma / \Gamma = 3.6$
GlueX	γ A 6 – 12		ππ (e+e-)	π ⁰ γ, π ⁺ π ⁻ π ⁰ , (e ⁺ e ⁻)	K+K- (e+e-)

Nuclear Transparency Measured by CLAS E01-112

PRL 105, 112301 (2010)

GlueX Perspectives to Measure In-medium Effects

- **Study medium modifications of light mesons** ρ , ω , and ϕ
- Reconstruct mesons in different final states
 - study contribution from final state interactions
 - small final state distortion in the dilepton final state
 - small branching fractions of $10^{-4} 10^{-5}$
 - ρ ω interference
 - have to study GlueX reconstruction capabilities of dileptons
- Study in-medium effects for different beam energies and meson momenta

Summary

- A new detector, GlueX, has been construction at Jefferson Lab
- The detector design was optimized for search and mapping the spectrum of light exotic mesons using the hight-intensity linearly polarized photon beam
 - The detector is designed to have excellent acceptance for both charged particles and photons in the final state
- We have strated developing physics program for the GlueX to study photoproduction on nuclear targets. Some topics we have considered so far:

Photoproduction of vector mesons off nuclei

Study in-medium modification effects

Color transparency

We want to get interested people involved and build a strong physics motivation for the experiment

Workshop on nuclear photoproduction at GlueX, JLab, April 28 - 29, 2016

