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Main topics to be discussed
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Open questions of microscopic nuclear structure

Why high energies are necessary to probe short-range structure of nuclei

Strategies for further studies:  Jlab, muon beams, EIC...

Δ-isobars, 3N in nuclei - towards direct observations; 
2N - directions for  detailed studies

Four resolution scales in resolving structure of nuclei

EMC effect: unambiguous evidence of non-nucleonic degrees of freedom 
in A; constrains on the mechanism, message from LHC pA collisions
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Four energy momentum  transfer scales in structure (interactions with) nuclei with 
different role of low momentum nucleons (k< kF -naive estimate of the highest 
momenta in nuclei for non-interacting gas)  and high momentum nucleons due 
to local NN interactions (slow decrease with k  distribution).

Experience of quantum field theory - interactions at different resolutions 
(momentum transfer) resolve different  degrees of freedom - renormalization,.... 
No simple relation between relevant degrees of freedom at different scales. 

➟ Complexity of the problem

Precision determination  of the nuclear structure at different resolution scales 
requires understanding of the fine details of the interaction dynamics. 

Examples:  At what Q squeezing sets in for the nucleon form factors ? 

Final state interactions in eA scattering:  formation time, etc 
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Nuclear observables at low energy scale:  treat nucleus as a Landau-Migdal Fermi liquid with nucleons as quasiparticles 
(close connection to mean field approaches) - should work for processes with energy transfer ≲ EF and momentum 
transfer q ≲ kF.  Nucleon effective masses ~0.7 mN, effective interactions - SRC are hidden in effective parameters. 
Similar logic in the chiral perturbation theory / effective field theory approaches - very careful treatment at 
large distances ~ 1/mπ,  exponential cutoff of high momentum tail of the NN potential 

Nuclear observables at intermediate energy scale: energy transfer < 1 GeV and momentum transfer q < 1 GeV.   
Transition from quasiparticles to bare nucleons - very difficult region - observation of the momentum dependence 
of quenching (suppression)  factor Q for A(e,e’p) (Lapikas, MS, LF,  Van Steenhoven, Zhalov 2000)

Hard nuclear reactions I:  energy transfer > 1 GeV and momentum transfer q > 1 GeV.  Resolve SRCs = direct 
observation of SRCs but  not sensitive to quark-gluon structure of the bound states 

Hard nuclear reactions II:  energy transfer ≫ 1 GeV and momentum transfer q ≫ 1 GeV.  May involve 
nucleons in special (for example small size  configurations).    Allow to resolve quark-gluon structure of 
SRC: difference between bound and free nucleon wave function, exotic configurations

①

②

④

③
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Before 

Removal of a quasiparticle

Long range interactions

Short−range interactions After q

Knockout of a nucleon
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Low Q2 scale

High Q2 scale I
from short-range correlation

 (SRC)
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k
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High Q2 scale II Quark removal  in the  DIS kinematics

Removal of a quark of a nucleon

N

N N

N

Removal of  interchanged quark
Possibility of decay of the residual system with production of slow 
(for example backward in the nucleus rest frame) baryons like N*, 
Δ-isobar if color is not localized in one nucleon.
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New effects if one would remove a valence gluon  (EIC) ?

Thursday, February 11, 16



7

Q2 dependence of the 
spectroscopic factor

Lapikas,   van der Steenhoven, Frankfurt, MS 
Zhalov, Phys.Rev. C, 2000

Rather rapid transition from  regime of interaction with quasiparticles 
to regime of interaction  with nucleons Q2transition ≈0.8 GeV2 

Still need to study transition in a single  experiment.
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Glauber model calculation with with Hartree-Fock-Skyrme:spectral function
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blue curves include 
soft rescatterings

No evidence of  suppression at large Q2 :  Quenching factor > 0.9

Jlab data (E94-139 ) agree well with 

( Frankfurt, Strikman Zhalov,Phys.Lett. B503 (2001) 73-80)

Warning:  GM gives dominant contribution. Necessary  to test  kinematics sensitive to GE 

Q2 dependence of bound nucleon form factor as for free nucleon 
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Outstanding questions:  Fermi step / Migdal jump & 
transition from mean field to short-range 
correlations (SRC)

n(k)

Migdal jump

quasiparticles

2p2h excitations = 
2N SRC

kF

⦿  Is it possible to observe directly jump?  Smearing of the jump at Q2 resolving 
nucleons. Effect of nucleon absorption in (e,e’p). Smaller effective ρA(r)

⦿ At what k> kF 2N SRC dominate? Evidence from (p,ppn): starting at k ~ kF 

(Eli’s talk). The same pattern for (e,e’pn)? 

effective <ρA(r)>e,e’pn  > <ρA(r)>p,ppn

E94-139 seems to indicate 
a strong washout of the jump
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BNL Carbon data of 94-98. The 
correlation between pn and its 
direction γ relative to pi. The 
momenta on the labels are the beam 
momenta. The dotted vertical line 
corresponds to kF=220 MeV/c.

SRC appear to dominate  at momenta  k> 250 MeV/c - very close to kF.  A bit of surprise 
- we expected dominance for k> 300 - 350 MeV/c. Naive inspection of the realistic 
model predictions for nA(k) clearly shows dominance only for k > 350 MeV/c. Important 
to check a.s.p. 

γ

n

p
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kF=220 MeV/c

Thursday, February 11, 16



2N Short-range correlations (SRC) - outstanding questions  - hadronic scale resolution

Current situation:  

(e,e’)  2>x>1.4 -scaling of the rations at LC fractions corresponding 
to nucleon momenta k ≥ 300  MeV/c. Measures relative strength and universality 
of 2N SRCs

(p,2pn), (e,e’pn(pp))

So far the model 2N SRC pair moving in mean field works. 
the process is expressed through the nuclear decay function

(e,e’)  - absolute cross sections, role of f.s.i. (predominantly in 2N SRC)

Outstanding issues: 

(p,2pn), e,e’pn(pp)  - need differential studies, accuracy of the model,
 are absolute cross sections consistent? 

Do we understand sufficiently well  D(e,e’pn) in the probed Q2 range, intermediate
 state Δ-isobars ? (Boeglin talk)

✵

✵

✵
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Relativistic 
projectile

t1, z1 t2, z2

t1 − z1 = t2 − z2

High energy processes develops along the light 
cone. 

Similar to the perturbative QCD the amplitudes of the processes are 
expressed through the wave functions on the light cone. Note: in general 
no benefit for using LC for low energy processes.
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Noncovariant and covariant approaches
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LC quantization is uniquely  selected in high energy processes if one tries to express cross 
section through elementary amplitudes near energy shell. 

Consider the break up of the deuteron in the impulse approximation:  h+D→X+N, for Eh→∞

D N

h

{
sf = (ph + pD − pN )2}

N’

sin = (ph + pN ′)2

is finite at high energies. hN’ amplitude depends on Δ
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� ⌘ (sin � sf ) ! M2
NN �M2

D
where M2

NN   is invariant mass squared
 of the two nucleon system

In covariant (Feynman diagram) approach elementary cross section 

depends on virtuality of N’ / �
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Dependence of the hard amplitude on  the off-shellness /virtuality 

◉ Off-shell effects are proportional to virtuality  for small virtualities

◉ Dependence on virtualities is weakest if the probe interacts with
 nucleon in average configuration. For small size configurations drop with off 
shellness is large. 

Will elaborate when discussing EMC effect

No evidence for color transparencies in processes where momentum transfer (Q2) to 
the nucleon is ≤ 4 GeV2. (e.m. form factor, large angle scattering). Hence a large range 
where we can expect factorization :

σ = “Spectral function” x  “elementary on shell cross section”

14
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FIG. 7.4: The meson exchange current diagram for the reaction γ∗ + D → N + N.

description of w(r) for r > 2 fm (k ! 0.15 GeV/c) and the prediction of conventional models for the total probability
of the D-wave, PD = (6 ± 1)%, is consistent with the analysis of µd; cf. the discussion in ref. [420]. The recent
measurements [413, 414, 421] of elastic eD → eD⃗ scattering for q ∼ 2 fm−1 probe w(k) for k ∼ 0.2 GeV/c, while
elastic high-energy pD scattering is sensitive to GQ(Q2) at Q2 ∼ 0.3 GeV2/c (see, e.g., ref. [422]).

It has been suggested in the literature that the nuclear core hypothesis may be checked by measuring Gc(Q2)
and GQ at −q2 > 0.5 GeV2 inelastic eD⃗ scattering or by measuring the tensor polarization of the recoil deuteron
(see, e.g., ref. [423], where the experimental problems involved in such measurements are also discussed). Incoherent
phenomena, discussed below, have a number of obvious advantages for performing a critical test of the nuclear core
hypothesis (this was first explained in ref. [424]):

(i) In incoherent processes at high energy one can measure the deuteron wave function directly in momentum space
instead of a convolution of wave functions as in the case of elastic deuteron form factors.

(ii) The nucleon yields in incoherent fragmentation of a two-nucleon correlation and of a 6q bag are qualitatively
different (see the discussion in sections 2 and 8 8.6), while in elastic scattering processes the separation of 6q and
2N contributions is hardly possible.

(iii) The absolute values of the cross sections are much larger than for elastic eD scattering.
(iv) In the kinematical region where the contribution of the high-momentum component of the deuteron wave

function dominates (k > 0.2 GeV/c) the cross section of these reactions should strongly depend on the deuteron
polarization.

7.2. High-Q2 e + D⃗ → e + p + n, e + N + X, e + X reactions

Evidently, detailed information about the structure of the deuteron wave function can be obtained only if the
distribution of spectator nucleons is measured. The high-Q2 exclusive reactions e + D → e + p + n(∆,N∗) seem to
be the simplest for a theoretical analysis, since a large energy-momentum (q) is transferred to the struck nucleon in
a controlled way. At sufficiently high Q2 and W − md " 100 MeV the interference diagram (fig. 8.12 below) is small
(a few percent) in the essential kinematic region. The difference between the final state momenta of the nucleons is
large, so the correction due to misidentification of a spectator and the “active” nucleon is also small even for forward
moving spectators. Besides, the final state interaction estimated within the nonrelativistic approach (sec, e.g., ref.
[425, 426]) is expected to be rather small, ! (10 − 30)%, in the kinematic region discussed. In fact it is even smaller
because at Q2 " 2 GeV2 nucleons are produced in compressed configurations, which have a small interaction cross
section (section 6 6.3). Moreover, in the ratio of the cross sections for γ∗ scattering from polarized and unpolarized
deuterons uncertainties due to the off-energy-shell effects in γ∗N interaction, discussed in section 8 8.3, are cancelled
to a large extent. Note also that in order to suppress two-step processes like e + D → e + ∆ + N → e + p + n one
should choose W far enough from W = m∆ + mN.

Since the total cross section of unpolarized electron scattering off a polarized nucleon does not depend on the
nucleon polarization, the ratio of the cross sections of scattering off a polarized and an unpolarized deuteron has a
rather simple form if the polarization of the produced nucleon is not measured [427]:

dσ(e + DΩ → e + N + X)
(dα/α) d2pt

/
dσ(e + D → e + N + X)

(dα/α) d2pt

= 1 +
(

3kikj

k2
Ωij − 1

) 1
2w2(k) +

√
2u(k)w(k)

u2(k) + w2(k)
≡ P (Ω, k), (7.1)

where Ω is the spin density matrix of the deuteron, SpΩ = 1 [the expression for the case of unpolarized deuterons is
given in ref. [410]. eq. (3.17)].93 The relationship between the spectator nucleon momentum, p, in the deuteron lab.

93 In line with the convention of ref. [428] w(k) is defined so that w(k) > 0 at small k.
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FIG. 7.5: (σ± − σ0)/⟨σ⟩ for backward nucleon production, (a) in high-energy eD⃗ and pD⃗ scattering for the Reid soft core

wave function, (b) in high-energy eD⃗ scattering for the Pans potential wave function and for the QCB model with bag radius
b = 1.2 fm and 1.4 fm.

frame and the inner momentum, k, is given by eq. (5.31); the 3-axis is chosen in the direction of the γ∗ momentum.94
It follows from eq. (7.1) that by studying the dependence of the nucleon yield on the deuteron tensor polarization

one can directly measure the ratio w(k)/u(k). An independent check of the nuclear core hypothesis can be obtained
from the measurement of the dependence of the nucleon polarization on the deuteron vector polarization, see ref.
[427], pp. 578, 579. (For the parametrization of Ω in terms of tensor and vector polarizations, see, e.g., ref. [429].)

It is convenient to represent the magnitude of spin effects in the form of the tensor asymmetry

R = T20 =
[
1
2
(σ+ − σ−) − σ0

]/
⟨σ⟩, (7.2)

where ⟨σ⟩ = 1
3 (σ++σ−+σ0). The indices (+,−, 0) denote deuteron helicities. In the deuteron rest frame the deuteron

spin is quantized in the direction of the γ∗ momentum. Note that in the unpolarized electron case σ+ = σ− due to
space parity conservation. Evidently in the physical region R can vary from −3 to 1.5. Using eq. (7.1) we obtain for
R a rather simple expression:

R(ps) =
3(k2

t /2 − k2
z)

k2

u(k)w(k)
√

2 + 1
2w2(k)

u2(k) + w2(k)
. (7.3)

In nonrelativistic quantum mechanics (ps/m ≪ 1) ps and ks coincide. In this case R has the form

Rnonrel(ps) =
3(p2

t/2 − p2
z)

p2

u(p)w(p)
√

2 + 1
2w2(p)

u2(p) + w2(p)
. (7.4)

Eq. (7.3) with a conventional nuclear core wave function like the Reid soft core predicts a large variation of R(ps)

94 The difference between k and p is due to the fact that in eq. (7.1) the space-time picture characteristic for high-energy processes in
relativistic theory [409, 410] is taken into account.

Consider
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The best way to look for the difference between LC and NR/Virtual nucleon seems to be 
scattering off the polarized deuteron. Off-shell effects mostly cancel in the ratio.

trivial angular 
dependence for 

fixed ps
15

In quantum mechanical treatment amplitude is far off energy shell ( - wrong diagrams

In both  relativistic approaches -- virtual nucleon and  non covariant LC--  the first step is matching 
NR and relativistic descriptions  of the wave function, and next modeling elementary amplitude

nonlinear  relation 
between k and ps
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FIG. 7.6: Angular dependence of (σ±−σ0)/⟨σ⟩ for the spectator distribution in the reaction e+D⃗ → N+X at different nucleon
momenta. Solid and dashed lines are predictions of relativistic theory and nonrelativistic quantum mechanics, respectively.

FIG. 7.6: (cont.)

for nucleon momenta ps ! 0.1 GeV/c (fig. 7.5a),95 although no significant effect is expected for ps ! 0.4 GeV/c in the
6q model (see the above discussion in section 7 7.1). The use of different realistic potentials with nuclear core leads
to quite similar expressions for R(ps), probably because in this framework the relationship between the phase shifts

95 Indeed, the qualitative picture of the ps dependence of R at not too large nucleon momenta within the deuteron (k/m ≪ 1) is quite
simple. It is well known that in corrdinate space, due to the presence of the D-wave, the charge distribution in the deuteron with spin
pointing in the direction of the 3-axis is “cigar-shaped”. Evidently due to the properties of the Fourier transform in momentum space
the deuteron with helicity ±1 has the form of a ball flattened in the direction of the 3-axis. As a result the yield of the backward
spectators is minimal for deuteron helicity ±1.
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FIG. 7.6: (cont.)

and the corresponding wave functions is rather rigid. However, once this relationship is changed, e.g., by introducing
the transitions of two nucleons into a quark compound bag (QCB), the prediction for R(ps) changes significantly at
ps > 0.3 GeV/c, see, e.g., fig. 7.5b.96

It is worthwhile to emphasize that eqs. (7.3) and (7.4) predict a different momentum dependence at fixed angle
and at fixed nucleon momentum (fig. 7.6), It can be seen from fig. 7.6 that the calculation based on eq. (7.4) leads
to R ∼ ( 1

2 cos2 θ − sin2 θ), although a rather complicated angular dependence follows from eq. (7.3) (θ is the angle
between ps and the 3-axis). To our knowledge the discussed angular dependence of R(ps) is the clearest relativistic
effect suggested so far in the literature. Actually this is the only effect where the relativistic relation between k and
ps becomes important at momenta as low as 0.3 GeV/c.

Equation (7.3) predicts Q2 independence of R(ps). Besides, the same R(ps) is expected for different final states
like Nsp + N, Nsp + ∆, Nsp + N∗, . . .. Such a universality of R(ps) at fixed ps is a general feature of the two-
nucleon approximation (valid in all approaches, nonrelativistic, covariant, and light-cone). Thus, the independence
of w(k)/u(k) extracted from different measurements for the same spectator momentum would provide an important
check of the extraction procedure and of the role of the final state interaction.

At the same time one can expect that at large spectator momenta R(ps) would depend on Q2 in the transitional Q2

range 2− 4 GeV2, where scattering off the compressed nucleon configuration becomes important. This is because the
deformation of the bound nucleon wave function should be somewhat different for S- and D-waves due to the different
relative roles of the one- and two-pion exchange potentials. Indeed, the contribution of the two-pion exchange potential,
which leads to a larger deformation of the bound nucleon wave function (cf. the discussion in section 2 2.5 2.5.2), is
more important for the S-wave.

In the impulse approximation eq. (7.1) is also valid for the deep inelastic reaction e+D → e+p+X. The final state
interaction between the struck nucleon and the spectator is a correction because a large amount of energy (∼ 1 GeV)
is transferred to the interacting nucleon in an average process. Moreover, the contribution to the nucleon yield due to
the production of nucleons in γ∗N interaction (the direct mechanism) constitutes a small correction to the production
of spectator nucleons in a wide kinematical region, α = (

√
m2 + p2

s − ps3)/m > 1 − x. This region includes (for
sufficiently large x) emission of spectators in the forward direction.

Equation (7.1) may be modified due to suppression of the spectator nucleon yield (with α > 1 − x) as a result
of the final state interaction between hadrons produced in ℓN interaction and would-be spectators. However, the
suppression of the nucleon yield in different spin states should be rather close, at least at small pt, because secondary
hadron rescatterings mostly suppress the contribution of configurations in the deuteron wave function where p, n are

96 We are indebted to I. M. Narodetski for supplying numerical results for the QCB deuteron wave functions [405].
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Feasible at EIC;
 challenging at Jlab (spin observables)

Thursday, February 11, 16



To use semiinclusive processes like

 - one needs to understand f.s.i.. Example: BEBC                                   1989

l(e, ⌫, ⌫̄) +A ! l0 + backward nucleon + X

⌫, ⌫̄+ Ne data

vN (α) = <xy(α)>/<xy> sample without  2p backward 

vN (α) = 2- α
2N SRC prediction

Future studies - use the lightest nuclei; explore f.s.i. in interaction with 
the 2N SRC 17

α - light cone 
fraction carried by 
backward proton
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Large momentum transfer hadronic scale:
  outstanding questions - discovery potential 

Direct observation and theoretical studies of 3N,... SRC. 

Direct observation of non-nucleonic hadronic components in nuclei -- Δ- isobars 

18
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N> 2 SRCs
Evidence from fast backward nucleon production: 

(π,γ,p) +A→ “backward proton” +X 

α= 3.0

Comparison of the few nucleon 
correlation model with the 400 
GeV data on the fast backward 
nucleon production.

To reach α=3 one needs scattering off at least 4N SRC

19
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• 2N Correlations

pm

rp 3
r2p

pm

r2p rp 3

q

a)                                                           b)

q

-Type 2N-I correlations: E(2N−I)
m =

√
m2 + p2

m − m −TA−1

-Type 2N-II correlations: E(2N−II)
m =

√
m2 + p2

r2 +
√
m2 + p2

r3 − 2m

• 3N Correlations

r2pr2p

a)                                                  b)

q q

rp

p

rp

p

3

3

mm

-Type 3N-I correlations: E(2N−I)
m ≈ |ϵA|

-Type 3N-II correlations: E(3N−II)
m = 2

√
m2 + p2

m − 2m −TA−1

Expectations:

P(3N)/ P(2N) ~ 0.1 - 0.2 for A~40  & ~ 1 for neutron stars

 P(ppn) ~P(pnn) >> P(ppp)

Observation of 3N in (e,e’) x > 2, Q2 � 3÷ 4GeV2

eA →e + 2 backward protons + 1 forward nucleon + (A-3)*

Day’s talk

Cohen’s talk

Open questions:  NR  vs LC wf ,  spectral functions, decay functions. 3N forces,...
20

Sargsian et al
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A hidden parameter (FS 75-81) : in NN interactions: direct pion production is suppressed for a 
wide range of energies due to chiral properties of the NN interactions:

⇒ Main inelasticity for NN scattering for Tp ≤ 1 GeV is single  Δ-isobar

Correspondence argument: wave function - 
continuum ⇒ Small parameter for inelastic effects 

in the deuteron/nucleus  WF, while relativistic 
effects are already significant since pN/mN ≤ 1

in the deuteron channel only 2 Δ’s allowed 

Non-nucleonic degrees of freedom:

Data: No enhancement of antiquarks in nuclei ⇒ weak 

modification of the pion field

21
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Δ-isobars are natural candidate for the most important nonnucl. degrees of freedom 
Large energy denominator for NN →NΔ transition 

Expectations during EMC effect rush

VOLUME 51, NUMBER 9 PHYSICAL REVIEW LETTERS 29 AUcUsT 1983

Realistic nuclear Hamiltonians can be written in the form

H =P [-(k'/2ni;)V;'+&n; -mn]+ Q (V,, + V, , "), (10)

where V, , represents the rest of the interaction
(primarily short-range repulsion) between nu-
cleons, and m, =m„(m~} when i is in a nucleon
(6) state. In practice the &(k') and V,.„"are
fitted to the two-nucleon data. In the present
work the realistic Argonne National Laboratory
v„model' of the Hamiltonian (10) is used. The
tensor part of V, , " in this model is consistent
with the form factor (9) for A = 7 fm '.
The ground-state wave function is calculated

exactly for the deuteron, and by the variational
method' for nuclear matter. The variational
wave functions include 4 components generated
by correlation operators" containing transition
spins and isospins S and T. Techniques for cal-
culating expectation values of two-body opera-
tors such as 6e,-, ' are discussed in Refs. 9 and
10.
The (6n") calculated in SPA with the full Ham-

iltonian (10) is 0.18/nucleon in nuclear matter at
k F =1.33 fm '. This value is much less than the
perturbative estimates obtained for the model
Hamiltonian in which V;,. is neglected (Table I,
A. =7 fm ' values). The short-range correlations
induced by V, , reduce (6n") by a large amount,
much greater than the uncertainty introduced by
using the SPA. The main advantages of the SPA
are that (i) models of V;, and A(k') consistent
with the two-nucleon data are available, and (ii)
the many-body calculations can be done nonper-
turbatively. The SPA is more accurate for cal-
culating energies than pion excess; the diagrams
included in Table I give 31.8 MeV (97.2 Me V) in
field theory and 33.0 MeV (113.6 MeV) in SPA
for A. =4.8 fm ' (7.0 fm '). It is also a reasonable

approximation for calculating the scattering of
slow nucleons. "
Our results for the pion excess and the momen-

tum distribution of the excess pions (&n'(k)) are
given in Table II and Fig. 2, respectively. The
A fraction, i.e., the expectation value (n )/A
is also given in Table II. We note that (5n "(k))
is negative at small k, because of the Pauli block-
ing of self-energy processes, and has a large
peak at k -2 fm ', which is mostly due to tensor
contributions through the 1V = 4 diagrams. The
nN~ coupling gives the dominant contribution in
nuclear matter. When 4 states are neglected,
(ht")/& at k„=1.33 fm ' is only 0.04, because
of a cancellation between the N = 2 Pauli blocking
term of -0.05 and higher-order terms that give
+0.09. By contrast, in the deuteron the 4 states
give only & of the calculated (5n').
The results reported in Table II for Al, ' Fe,

and 'O'Pb nuclei are obtained in the local density
approximation using nuclear matter results from
k, =0.93 to 1.43 fm '. The fact that these nuclei
have unequal numbers of neutrons and protons is
ignored. The neutron-proton asymmetry effects
are proportional to [(N —Z}/A J', and are thus
negligible in the present context.
For 'He and 4He we have used the three- and

four-body wave functions calculated' '' with a
Hamiltonian containing the Argonne National Lab-
oratory v„ two-nucleon potential' and the Uni-

0.12

TABLE II. Pion excess and ~ fraction in nuclear
matter (NM) and nuclei.

(Bn )/A

0.08

I

E 00~-

NM, Q F
——0.93

NjVI Q F —1.13
NM, $F—1.33

H
He
"He
7Al
56' e
~OBpb

0.08
p.l2
0.18
0.024
0.05
0.09
0.11
p.l2
0.14

0.03
0.04
0.06
0.005
0.02
0.04
0.04
0.04
0.05

-0.04 I a I

2 -13
K( frn ')

FIG. 2. The calculated values of k (pn~(k))/2~ A are
shown for various systems. (pn")/A is the integral
over p of this quantity.

765

Friman, Pandharipande, WIringa 1983

ruled out by Drell - Yan data

P (�)

PSRC(N)
⇠ 0.04

0.2

Too much ?

~ 0.2

22

➡ Δ’s predominantly in SRCs 
➡ Δ’s much more important  in I=1 (pp,nn)  SRCs 
➡ Δ’s much broader distribution in  momenta ( α,kt)

1% to satisfy Bjorken sum rule,
Guzey et al

➠  Worth looking for Δ’s  in the forbidden kinematics
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  Evidence for Δ’s in nuclei 

Indications from DESY AGRUS  data (1990) on electron - air 
scattering at Ee=5 GeV (Degtyarenko et al). 

Measured Δ++/p, Δ0/p  for the same light cone fraction α.

�(e + A⇥ �0 + X)
�(e + A⇥ �++ + X)

= 0.93± 0.2± 0.3

�(e + A⇤ �++ + X)
�(e + A⇤ p + X)

= (4.5 ± 0.6 ± 1.5) · 10�2

New data are necessary:  many options in Jlab kinematics ? New Jlab experiments ? 

23

P (�)

PSRC(N)
⇠ 0.1

⇓

Perfect  kinematics for EIC in particular 
~e+ ~

D ! e+�++ +X(or forward⇡±)

Δ ‘s in 3He on 1% level from Bjorken sum rule for A=3 - Guzey &F&S 96

suppression at α~1 

expect R=1 for 
isosinglet nucleus

◉
◉
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☝

Sufficiently large Q are necessary to suppress two step processes where  Δ++   
isobar is produced  via charge exchange

Promising channels for searching/discovering baryonic nonnucleonic degrees of freedom in nuclei

Knockout of    Δ++ isobar in  e+2H! e+ f orward ∆++ + slow ∆�

(b)

e+3He! e+ f orward ∆++ + slow nn
(a)

e+2 H(3He) ! e+ backward�+X
forward (along nuclear beam) at EIC

24
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The highest resolution possible for probing  the distribution of constituents in hadrons is 
deep inelastic scattering (DIS) (and other hard inclusive processes)

Reference point: nucleus is a collection of quasifree nucleons.

A hard probe incoherently interacts with individual nucleons

RA(x,Q
2) ⌘ �A(x,Q2)

Z�p(x,Q2) +N�n(x,Q2)
EMC ratio

L. Frankfurt and M. Strikman, Hard nuclear processes and microscopic nuclear structure 273

x
C

~Z. • BCDMS Fe/D
—- 1 2 -

- 0 Arnold et al. Fe/D

0 Stein et al. Cu/D

Ii -

+ 4 +

0.8 -

0.7 - (b)

I I I I I I I I
0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Bjorken x

Fig. 3.14. (b) Comparison of high-Q2 BCDMS data [34] with SLAC data [28, 44].

ref. [28]) that the A-dependence of RA(x, Q2) — 1 is practically the same for all x (fig. 3.18). As a
result, RA (x, Q2) — 1 can be fitted to a factorized form:

RA(x, Q2) — 1 f(A)q(x, Q2). (3.22)

At x ~ 0.3 the essential longitudinal distances z involved in the deep inelastic scattering off nuclei are
much smaller than the average internucleon distance in nuclei, z — (0.5—1) Im~x~ 0.7 fm (cf. the

=1

L. Frankfurt and M. Strikman, Hardnuclear processes and microscopic nuclear structure 269

the nonrelativistic constituent quark model with parameters fitted to reproduce the nucleon form
factor). An observation of a much larger value of p would signal the presence of large short-range
parton—parton correlations in the nucleon wave function.

At present there exist several pieces of information about (p,~, which are basically consistent with a
naive estimate (for average x):

(i) Production of leading hadrons in the current fragmentation region in the reaction  + N—+ 1’ +
+ h2 + X. The EM Collaboration analysed correlations in the transverse momentum plane between

the leading hadrons using the Lund model. They find that a reasonable description is reached for
(p,) —0.44 GeV/c at x —0.1—0.2 [21].This analysis is likely to overestimate (pj since it does not take
into account the QCD broadening of the p~distribution due to the gluon radiation in the initial state.

(ii) The p-dependence of the leading hadron production in the reaction  + N—~e’ + h + X. The
analyses [22]of this effect lead to (ps) —(0.3—0.4) GeV/c for x—0.1—0.2.

(iii) In Drell—Yan pair production the p~distribution of the  ~ pair is reasonably well described by
the QCD calculations which take into account the gluon radiation (the DDT form factor), see, e.g., ref.
[23].It appears that the agreement would be destroyed if (~~)exceeds 0.5GeV/c. Similarly, the p~
distribution of Xe-meson production is reasonably described by the gluon fusion model with the DDT
form factor [24].This can be considered as an indication that (P5)g also does not exceed 0.5 GeVI c.

3.7. Nuclear effects. Introduction

At the Paris (Rochester) Conference in 1982 the European Muon Collaboration (EMC) first
reported their observation of a difference between the structure functions F2 of heavy (Fe) and light
(D) nuclear targets for 0.05  x  0.65 (fig. 3.11) [25].The difference between the observations and the
expectations of the conventional Fermi motion calculations [26](see discussion in section 5) became
known as the EMC effect.

I I I I I

1.3 -

4+

_ II

::~ ~‘~‘

Fig. 3.11. Ratio ofnucleon structure functionsF~for iron and deuterium as measured by the EM Collaboration in 1983 125]. The solid curve is the
expectation of the Fermi motion models.

Theoretical expectation under 
assumption that nucleus 
consists only of nucleons FS 81

One should not be surprised by presence of 
the effect but by its smallness for  x<0.35 
where bulk of quarks are since distances 
between nucleons are comparable to the radii 
of nucleons. 
Large effects for atoms in this limit. 
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Can account of Fermi motion describe the EMC effect?
YES

If one violates baryon charge conservation 
or momentum conservation or both

Many nucleon approximation:

Z
⇥NA (�, pt)

d�

�
d2pt = A baryon charge sum rule

fraction of nucleus momentum 
NOT carried by nucleons

1

A

Z
�⇤NA (�, pt)

d�

�
d2pt = 1� ⇥A

26

=0 in many nucl. approx.
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Generic models of the EMC effect (no qualitatively new models in 30 years)

RA(x,Q
2) = 1� �Anx

1� x

Pionic model:  extra pions  - λπ ~ 4% -actually for fitting Jlab and SLAC data  ~ 6%

+ enhancement from scattering off pion field with  απ~  0.15

6 quark configurations in nuclei with P6q~ 20-30%

◉

◉

◉

Mini delocalization (color screening model) - small swelling - enhancement 
of  deformation at large x due to suppression of small size configurations in 
bound nucleons + valence quark antishadowing with effect roughly ∝	 knucl2

Nucleon swelling - radius of the nucleus is  20--15% larger in nuclei. Color is 
significantly delocalized in nuclei

Larger size →fewer fast quarks - possible mechanism: gluon radiation  starting at 
lower Q2

◉
(1/A)F2A(x,Q

2) = F2D(x,Q2
⇠A(Q

2))/2

27
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Drell-Yan experiments:   

Q2 = 15 GeV2

A-dependence of antiquark 
distribution, data are from FNAL 
nuclear Drell-Yan experiment, curves - 
pQCD analysis of Frankfurt, Liuti, MS 
90. Similar conclusions by  Eskola et al 
93-07 data analyses

vs Prediction q̄Ca(x)/q̄N = 1.1÷ 1.2|x=0.05÷0.1

x

VOLUME 65, NUMBER 14 PHYSICAL REVIEW LETTERS 1 OCTOBER 1990

we find that the difference Rs(x, Q ) —I=S~(x,Q )/
AS~(x, Q )—1, evaluated at x =0.05, increases by a
factor of 2 as Q varies between Q =3 and 25 GeV . In
particular, if we use the QCD aligned-jet model
(QAJM) of Refs. 4 and 5 (which is a QCD extension of
the well-known parton logic of Bjorken) to calculate
Rs(x, Q ), we find, in the case of Ca, Rg(x=0.04,
Q =3 GeV ) =0.9 and Rs(x=0.04, Q =25 GeV )
=0.97. The last number is in good agreement with
Drell-Yan data (see Fig. 2). Thus, we conclude that
the small shadowing for S~ observed in Ref. 3 for
x=0.04 and Q & 16 GeV2 corresponds to a much
larger shadowing for Q =Qo.
Shadowing in the sea-quark distribution at x =0.04
[Rs(x=0.04, Q =3 GeV ) =0.9), combined with the
experimental data for F2 (x,Q )/AF2 (x,Q ) at the
same value of x [F2 (x,Q )/AFi (x,Q ) & I], unambi-
guously implies an enhancement of the valence quarks,
i.e., Rv(x, Q ):—V~(x, Q )/AV~(x, Q ) & 1. For Ca,
Rv(x =0.04-0.1, Q 3 GeV ) = 1.1, whereas for
infinite nuclear matter, we find Rv(x =0.04-0.1, Q =3
GeV ) ~ 1.2. By applying the baryon-charge sum rule
[Eq. (2)], we conclude that experimental data require
the presence of shadowing for valence quarks at small
values of x [i.e., Rv(x, Q ) & 1 for x,h &0.01-0.03].
Moreover, the amount of shadowing for Rv(x, Q ) is
about the same (somewhat larger) as the shadowing for
the sea-quark channel (see Fig. 3). The overall change
of the momentum carried by valence and sea quarks at
Q'= I GeV' is

yv(Qo) =1.3%, )s(Qo) =—4.6%.
To summarize, the present data are consistent with the

parton-fusion scenario 6rst suggested in Ref. 7: All par-
ton distributions are shadowed at small x, while at larger
x, only valence-quark and gluon distributions are en-
hanced. At the same time, other scenarios inspired by
the now popular (see, e.g. , Ref. 8) idea of parton fusion,

which assume that the momentum fraction carried by
sea quarks in a nucleus remains the same as in a free nu-
cleon, are hardly consistent with deep-inelastic and
Drell- Yan data.
Let us brieAy consider dynamical ideas that may be

consistent with the emerging picture of the small-x
(x ~ 0.1) parton structure of nuclei. In the nucleus rest
frame the x =0.1 region corresponds to a possibility for
the virtual photon to interact with two nucleons which
are at distances of about I fm [cf. Eq. (I)]. But at these
distances quark and gluon distributions of different nu-
cleons may overlap. So, in analogy with the pion model
of the European Muon Collaboration effect, the natural
interpretation of the observed enhancement of gluon and
valence-quark distributions is that intermediate-range in-
ternucleon forces are a result of interchange of quarks
and gluons. Within such a model, screening of the color
charge of quarks and gluons would prevent any sig-
nificant enhancement of the meson field in nuclei. Such
a picture of internucleon forces does not necessarily con-
tradict the experience of nuclear physics. Really, in the
low-energy processes where quark and gluon degrees of
freedom cannot be excited, the exchange of quarks
(gluons) between nucleons is equivalent, within the
dispersion representation over the momentum transfer,
to the exchange of a group of a few mesons. Another

1. 10I—

. 00
CL

0. 90

0, 80

1.30
1.20 Ca/D

FIG. 2. Ratio R =(2/A)ug(x, g')/uD(x, g') plotted vs x,
for diff'erent values of Q . Notations as in Fig. 1. Experimen-
tal data from Ref. 3.

1 0

FIG. 3. Ratios R(x,gj) (2/3)F" (x,gf)/FP(x, g$)
(dashed line), R=Rv(x, gS) -(2/A) Vq(x, gf)/Vo(x, QS)
(solid line), and R—=Rs(x, g/) =(2/A)S~(x, g/)/SD(x, g/)
(dot-dashed line) in Ca. All curves have been obtained at
Q) =2 GeV . The Iow-x behavior (x ~ x,h) corresponds to the
predictions of the QA3M of Refs. 4 and 5; the antishadowing
pattern (i.e., a 10/o enhancement in the valence channel
whereas no enhancement in the sea, leading to a less than 5%
increase of F~q at x =0.1-0.2) has been evaluated within the
present approach by requiring that sum rules (2) and (3) are
satisfied. Experimental data are from Ref. 1 (diamonds) and
Ref. 3 (squares), the latter representing the sea-quark ratio Rg
(cf. Fig. 2). The theoretical curves are located below the data
at small x, due to the high experimental values of g~: (g )
=14.5 GeV~ in Ref. 1 and (Q ) =16 GeV2 in Ref. 3, respec-
tively.
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meson model expectation

Q2 = 2 GeV2

q̄Ca/q̄N ⇡ 0.97

q̄ C
a
/q̄

N

q̄Ca(x)/q̄N = 1.1÷ 1.2|x=0.05÷0.1
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✺
Structure of 2N correlations - probability ~ 20% for A>12  
→ dominant  but not the only term in kinetic energy

90% pn + 10% pp < 10% exotics ⇒ probability of exotics < 2%

Combined analysis of (e,e’) and knockout data

Analysis  of (e,e’) SLAC data at x=1 -- tests Q2 dependence of the nucleon 
form factor  for nucleon momenta kN < 150 MeV/c and Q2 > 1 GeV2 : 

rbound
N

/rfree
N

< 1.036

Analysis of elastic pA scattering

L. Frankfurt and M. Strikman, Hard nuclear processes and microscopic nuclear structure 243

satisfied for the sea at all Q2 (see fig. 3.8). This leads [in the case of a small contribution of the ‘rr~
component to the SU(2) sea] to the restriction AN >3 GeV2 (cf. ref. [7]).

(iii) 1TTNN(t) extracted from the reactions e + p(n)—*e + N(z~)(see ref. [8] and section 8.6) corre-
sponds to

AN=(6±1)GeV2.

(iv) From the reaction p + p-~N + ~ [9]AN 2.5 GeV2.
The derived lower limit on AN  3 GeV2 is much larger than the number used in the OBEP models

(eq. 2.2). Thus the question of the consistency of these models with the restrictions from high-energy
processes requires further investigations. Such an investigation would help to clarify whether short-
range nuclear forces are due to meson exchanges or due to exchanges by constituent quarks and gluons.

2.1.2. Properties of bound nucleons
(a) Nonrelativistic theory reasonably describes the main deuteron characteristics: the magnetic

moment ~d (with 1% accuracy), the electromagnetic form factors up to Q2 1 GeV2 [10], etc. (It is
worth emphasizing that in the momentum space representation realistic deuteron wave functions — Reid
wave function, Paris potential wave function, and Hamada—Johnston wave function — differ consider-
ably for k ~ 0.6—0.8 GeV/c only.) Accounting for the relativistic motion of nucleons in a deuteron, in
terms of light-cone quantum mechanics, improves the description of js~(accuracy 0.5%) [111and
enables us to describe a number of hard nuclear reactions. (For a review see ref. [12]and sections 6—8.)

(b) The data on elastic proton—nucleus scattering at T~ 1 GeV agree with the standard Glauber
model (which uses as input free NN amplitudes) with an accuracy of the order of 2% [13]. Thus the
radii of bound and free nucleons are quite close (cf. the analysis of p4He data [14]):

— 1~~ 0.04. (2.3)

This inequality is relevant for the properties of nucleons at average nuclear densities (not only near the
nuclear surface).

(c) The recent analysis [15] of the SLAC data for the Q2 dependence of the inelastic electron—3He
cross section in the region of the quasinelastic peak indicates that the radius of a nucleon bound in 3He
with momentum ~0.2 GeV/c is close to that of the free nucleon:*)

r~0~!r~~ 1.036. (2.4)

Similar conclusions were reported very recently from the analysis [16] of preliminary SLAC data for
inclusive electron—Al, Fe scattering:

r~°°~/r~~< 1.05. (2.5)

Note that all these data mainly probe the magnetic nucleon form factor of a bound nucleon (see
discussion in section 8.6).

2.1.3. Indications for a signijicant high-momentum component in the wave function of the nucleus
(d) Analysis of high-energy reactions: elastic pD scattering (see, e.g., ref. [17]), kinematically

forbidden proton and pion production, elastic and inelastic electromagnetic form factors of the
*) For k  0.2 the analyses of refs. [15,16] are more uncertain since they neglect the final state interaction effect and the excitation of the

residual system. A more model independent analysis briefly presented in section 8.6 somewhat improves the limit (2.5) for small k.

Similar conclusions from combined analysis of  (e,e’p)  and (e,e’)  JLab data 

☛

Problem for the nucleon swelling models of the EMC effect which 20% swelling

✺

29
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Very few models of the EMC effect survive  when constraints due to the 
observations of the SRC are included as well as lack of enhancement of 
antiquarks and Q2 dependence of the quasielastic (e,e’) at x=1

 - essentially one scenario survives - strong deformation of rare configurations 
in bound nucleons increasing with nucleon momentum  and with most of the 
effect due to the  SRCs . 

30
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Dynamical model - color screening model of the EMC effect (FS 83-85)

(a) Nucleon in a quark-gluon configurations of a size << average size (PLC) should 
interact weaker than in average configuration.  Already application of the variational 
principle indicates that  probability of such configurations in bound nucleons is 
suppressed.

Combination of two ideas: 

(b)  Quarks in nucleon with x>0.5 --0.6 belong to small size configurations with  
strongly suppressed pion field.

prediction for  pA with trigger - confirmed by pA run (discuss in a couple of slides)

31

In color screening model modification of average properties is < 2- 3 %.

Thursday, February 11, 16



δ(p,Eexc) =
✓
1� p2int�m2

2∆E

◆�2

Introducing in the wave function of the nucleus explicit dependence  of the internal 
variables 

In the first order perturbation theory for V << U using closure we find 

19

As above, ⟨UA⟩ is the average potential energy per nucleon (⟨UA⟩A≫1 ≈ −40 MeV). ∆EA ≈ MN∗ − MN = (0.3 −
0.5) GeV is the energy typical for nucleon excitations within the nucleus. (∆ED ! 2(m∆ −mN) ∼ 0.6 GeV) since due
to the zero isospin of the deuteron, the ∆N component in the deuteron wave function is forbidden.)

To estimate the deformation of the bound nucleon wave function let us consider the model where the interaction
between nucleons is described by a Schrödinger equation with potential V (Rij , yi, yj) which depends both on the
internucleon distances (spin and isospin of nucleons) and the inner variables yi and yj , where yi characterizes the
quark-gluon configuration in the ith nucleon [cf. eqs. (2.36) and (2.37)],

⎡

⎣− 1
2mN

∑

j

∇2
i +

∑

i,j

′
V (Rij , yi, yj) +

∑

i

H0(yi)

⎤

⎦ψ(yi, Rij) = Eψ(yi, Rij). (2.39)

Here H0(yi) is the Hamiltonian of a free nucleon. In the nonrelativistic theory of the nucleus the internucleon
interaction is averaged over all yi,j . Thus the nonrelativistic potential U(Rij) is related to V as

U(Rij) =
∑

yi,yj ,ỹi,ỹj

⟨ϕN(yi)ϕN(yj)|V (Rij , yi, yj , ỹi, ỹj)|ϕN(ỹi)ϕN(ỹj)⟩, (2.40)

where ϕN(y) is a free nucleon wave function. We have written explicitly the internal variables for the nucleon before
(yi) and after (ỹi) the interaction. In the following we will suppress tilda’s. Due to the existence of a small parameter
(eq. 2.38) we estimate the deformation of the wave function of the ith nucleon in the nucleus in lowest order in the
potential

∑′
j [V (Rij , yi, yj)−U(Rij)] and neglect the deformation of the other nucleons (effect ∼ κ2). (The prime on∑

indicates that the term with j = i should be omitted.) The unperturbed wave function is the solution of eq. (2.39)
with the potential V replaced by U . The correction to the ground state wave function of a nucleus when nucleon i is
in a plc is as follows:

δψ0|ri≪rN =
∑

n̸=0

|ψn⟩⟨ψn|
∑

j

′ (V − U)
E0 − En

|ψ0⟩ ≈ − 1
∆EA

∑

n̸=0

|ψn⟩⟨ψn|
∑

j

′
(V − U)|ψ0⟩

≃
∑

j

′ U(Rij)
∆EA

|ψ0⟩. (2.41)

In the calculation we take out of the sum the factor En −E0 in the mean point, use the definition of the potential U
(eq. 2.40), and apply the closure for the functions |ψn⟩ and the inequality |U | ≫ |V | for a plc in a nucleon [cf. eqs.
(2.36), (2.37)]. It follows from eq. (2.41) that the probability of finding a plc in a bound nucleon i is suppressed by a
factor

δ =
∣∣∣∣
ψ0 + δψ0

ψ0

∣∣∣∣
2

≃ 1 + 2
∑

j

′
U(Rij)/∆EA. (2.42)

We can estimate the average value of the suppression factor δ:

⟨δA⟩ = 1 +
2
A
⟨ψA|

A∑

i,j=1

′U(Rij)
∆EA

|ψA⟩ ≈ 1 +
4⟨UA⟩
∆E

= 1 − 4(⟨k2⟩/2m + εA)
∆EA

, (2.43)

where ⟨k2/2m⟩ is the average kinetic energy of a nucleon in a nucleus, and εA is the average binding energy per
nucleon (εA|A≫1 ≃ 8 MeV). The extra factor 2 in the third of eqs. (2.43) is due to the fact that each term Uij

appears twice in eq. (2.43) but not in the relation (1/A)(T + U) = −εA. Thus we find a considerable numerical
enhancement of ⟨δA⟩ − 1 as compared to the naive estimate ⟨δA⟩ − 1 ∼ κ.

Comment. For heavy nuclei the contribution of one-pion exchange to ⟨0|U |0⟩ is largely cancelled due to its tensor
nature. Therefore we expect that for large A, ⟨0|V (ri, R)|0⟩ decreases with ri faster than r2

i for a large range of
ri < rN (cf. eq. 2.37).

For applications one needs δA(k), i.e. the suppression of plc in a bound nucleon with momentum k. It follows from
the Schrödinger equation for ψ0 that

δA(k2) ≈ 1 − 4(k2/2m + εA)/∆EA. (2.44)
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enhancement of ⟨δA⟩ − 1 as compared to the naive estimate ⟨δA⟩ − 1 ∼ κ.

Comment. For heavy nuclei the contribution of one-pion exchange to ⟨0|U |0⟩ is largely cancelled due to its tensor
nature. Therefore we expect that for large A, ⟨0|V (ri, R)|0⟩ decreases with ri faster than r2

i for a large range of
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where ⟨k2/2m⟩ is the average kinetic energy of a nucleon in a nucleus, and εA is the average binding energy per
nucleon (εA|A≫1 ≃ 8 MeV). The extra factor 2 in the third of eqs. (2.43) is due to the fact that each term Uij

appears twice in eq. (2.43) but not in the relation (1/A)(T + U) = −εA. Thus we find a considerable numerical
enhancement of ⟨δA⟩ − 1 as compared to the naive estimate ⟨δA⟩ − 1 ∼ κ.

Comment. For heavy nuclei the contribution of one-pion exchange to ⟨0|U |0⟩ is largely cancelled due to its tensor
nature. Therefore we expect that for large A, ⟨0|V (ri, R)|0⟩ decreases with ri faster than r2
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For applications one needs δA(k), i.e. the suppression of plc in a bound nucleon with momentum k. It follows from
the Schrödinger equation for ψ0 that

δA(k2) ≈ 1 − 4(k2/2m + εA)/∆EA. (2.44)
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➠ modification of average properties of bound nucleons  is < 2- 3 %

�EA = mN⇤ �mN
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Critical test we suggested in 1983:

33

Hadron production in pA scattering with trigger on large x hard process. If large x corresponds to small sizes in 
proton, number wounded nucleonsat large x would be smaller and  hadron production should  be suppressed. In 
other words - trigger for large activity - suppression of events with large x. 

ATLAS and CMS reported the effect of such kind. Our analysis (M.Alvioli, B.Cole. LF,  . D.Perepelitsa, MS) 
suggests that for x~ 0.6 the transverse size of probed configurations is a factor of ~2 smaller than average. 

Relative probability of hard processes 
corresponding to a small σ selection 
as a function of ΣET . ATLAS data  are 
for x = 0.6 
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Dependence of suppression we find for small virtualities: 1-c(p2int-m2)

 

seems to be very general for the modification of the nucleon properties.  Indeed, consider 
analytic continuation of the scattering amplitude to  p2int-m2=0. In  this point modification 
should vanish. Our quantum mechanical treatment of 85  automatically  took this into 
account.   

This generalization of initial formula allows a more 
accurate study of  the A-dependence of the EMC effect.

34

Our dynamical model for dependence of bound nucleon pdf on virtuality - explains why effect 
is large for large x and practically absent for  x~ 0.2 (average configurations V(conf) ~ <V>)
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(b) EMC ratio for 208Pb

FIG. 5: (Color online.) EMC ratios with and without the color screening model of medium
modifications. Q2 = 10 GeV2, and data and nucleonic structure function parametrizations

are as in Fig. 3.

The nucelon, after all, has an overall neutral color charge, so any color interaction between
nucleons owes to higher moments (dipole, quadrupole, etc.), which decrease with distance
between the color-charged constituents. Moreover, it can be shown by the renormalizability
of QCD that meson exchange between nucleons, one of which is in a PLC, is suppressed[49].

Since nucleons in an average-sized configuration (ASC) and a PLC will interact differently,
the probability that the nucleon can be found in either configuration should be modified by
the immresion of a nucleon in the nuclear medium. In particular, PLCs are expected to
be suppressed compared to ASCs since the bound nucleon will assume a configuration that
maximizes the binding energy and brings the nucleus to a lower-energy ground state. The
change in probability can be estimated using non-relativistic perturbation theory, as has
been done in Refs. [1, 49]. What is found is that the light cone density matrix should be
modified by a factor δA(k2), which depends on the nucleon momentum (or virtuality) as

δA(k
2) =

1

(1 + z)2
(34)

z =
k2

mp
+ 2ϵA

∆EA
. (35)

In analogy with electric charge screening, this is called the color screening model of the
EMC effect. We shall use it as an example of accounting for medium modifications when
calculating dijet cross sections.

Since the suppression factor depends on the total nucleon momentum rather than just
the light cone momentum fraction α, it is necessary to use the three-dimensional light cone
density ρ(α,pT ) when applying the color screening model. Moreover, since the suppression
of PLCs depends on inter-nucleon dynamics, it is expected not just that the parameters of
δA(k2) should vary with the nucleus considered, but with whether the nucleons are moving
in the mean field or are in an SRC. For a nucleon in the mean field of a heavy nucleus,
we expect the excitation energy ∆EA to be in the range 300 − 500 MeV, namely between
the excitation energies of a ∆ and an N∗ resonance. The best bit to data appears to be
with the N∗ excitation energy ∆EA ≈ 500 MeV. However, for the deuteron, as well as for a

16

Simple parametrization of suppression:  
no suppression x≤ 0.45,  by factor δA(k) 
for x ≥0.65,  and linear interpolation in 
between

Fe , Q2=10 GeV2

Freese, Sargsian, MS 14
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interesting to measure  tagged structure functions where modification is 
expected to increase quadratically with tagged nucleon momentum. It is 
applicable for searches of the form factor modification in (e,e’N). If  an 
effect is observed at say100 MeV/c - go to 200 MeV/c and see whether the 
effect would increase by a factor of ~3-4.

1� F

bound

2N (x/↵, Q2)/F2N (x/↵, Q2) = f(x/↵, Q2)(m2 � p

2
int

)

Here α is the light cone fraction of interacting nucleon

Tagging  of  proton and neutron in  e+D→e+ backward N +X 
(lab frame).

↵spect = (2� ↵) = (EN � p3N )/(mD/2)

35

γ

D p

A>2 -- two step contribution, motion of the pair. mask effect. 
In neutrino scattering BEBC tried to remove two step processes to see better 2N SRC “Doppler” shift

Collider kinematics -- nucleons with pN>pD/2 - C.Weiss talk 

“Gold plated test” (FS85) (Silver?)
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Experimental challenges

❖ Jlab Q range - separate LT and HT (50 :50 ) contribution to the EMC effect  

Measurements at LHC in dijet production in pA feasible: Freese, Sargsian, MS 14

COMPASS DIS --- improve old DIS data which have errors ~50% for x=0.6

❖ Superfast (x> 1) quarks Jlab: Study of Q2 dependence, trying to reach LT 
regime for x~ 1 at Q2 ~ 15 GeV2 

x~1 LHC  dijet production in pPb feasible: Freese, Sargsian, MS 14

❖ EIC --- x~0.1:  u-, d- quarks, gluons 

F2A(x = 1)/F2D(x = 1) > a2(A)
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Interesting  possibility - EMC effect maybe missing some significant 
deformations which average out when integrated over the angles 

A priori the deformation of a bound nucleon can also depend on the  angle φ between 
the momentum of the struck nucleon and the reaction axis as 

Here <σ> is cross section averaged over φ and  dΩ is  the phase volume and the 
factor  c characterizes non-spherical deformation. 

d�/d⌦/ < d�/d⌦ >= 1 + c(p, q).

Optimistic possibility - EMC effect maybe missing some significant 
deformations  

A priori the deformation of a bound nucleon can also depend on the  angle φ 
between the momentum of the struck nucleon and the reaction axis as 

Here <σ> is cross section averaged over φ and  dΩ is  the phase volume and the 
factor  c characterizes non-spherical deformation. 

Such non-spherical polarization  is well known in atomic physics (discussion with 
H.Bethe). Contrary to  QED detailed calculations of this effect  are not possible 
in QCD.    However, a qualitatively similar deformation of the bound nucleons 
should arise  in QCD. One may expect that the  deformation of bound nucleon 
should be maximal in the  direction of radius vector between two nucleons of 
SRC.

d�/d⌦/ < d�/d⌦ >= 1 + c(p, q).

Such non-spherical polarization  is well known in atomic 
physics (discussion with H.Bethe). Contrary to  QED 
detailed calculations of this effect  are not possible in 
QCD.    However, a qualitatively similar deformation of 
the bound nucleons should arise  in QCD. One may 
expect that the  deformation of bound nucleon should 
be maximal in the  direction of radius vector between 
two nucleons of SRC.
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Next ten years

Discovery of non-nucleonic degrees of freedom in nuclei: Δ’s , tagged structure function
 (testing origin of the EMC effect); observation of superfast quarks

Direct observation of the 3N correlations

High statistic studies of 2N correlations:  determining at what momenta SRC set in,  
node in pp SRC,  S/D wave separation in deuteron, deviations from universality of SRC

Theory: FSI effects, calculation of the decay function, solving LC many body equations,...

Factorization of SRC dominated cross sections at large Q2(t) - Jlab vs hadronic probes 
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