Using Mathematica to Solve PDEs
This semester we have derived the governing equations for a number of different processes including:

1-D Steady ground water flow (Laplace equation; no internal sinks/sources)

	
	
[image: image1.wmf]0

2

2

=

¶

¶

x

h

	(1)

1-D Steady ground water flow with internal sources/sinks (Poisson Equation):

	
	
[image: image2.wmf]T

R

x

h

-

=

¶

¶

2

2

	(2)

1-D Transient ground water flow:

	
	
[image: image3.wmf]t

h

T

S

x

h

¶

¶

=

¶

¶

2

2

	(3)

1-D Heat (Diffusion) equation:

	
	
[image: image4.wmf]t

C

x

C

D

¶

¶

=

¶

¶

2

2

	(4)

1-D CDE for solute transport under steady flow:
	
	
[image: image5.wmf]t

C

x

C

D

x

C

v

¶

¶

=

¶

¶

+

¶

¶

-

2

2

	(5)

We went on to develop algebraic finite difference expressions for each of these equations and solved them for a variety of boundary and initial conditions using either relaxation of a system of equations (the 2-D Laplace and Poisson equations) or explicit finite difference approaches.

There is great value in being able to derive the finite difference expressions; you are in a position to write your own computer code to solve these and similar equations, which arise in many fields of endeavor.

There are also new tools that allow you bypass this step; you provide the PDE and the computer uses (hopefully appropriate) numerical methods to provide a solution.

Mathematica, Matlab, Maple, Mathcad: Why would I want to use one of those?
There are at least 2 reasons you should know how to use one of more of these tools:

· It will allow you to solve equations you can’t easily solve otherwise, including complicated derivatives and integrals (and PDEs of course)
· It will allow you to learn more Mathematics without the drudgery of doing everything longhand, and mathematics, after all, may be the only truth in the world
Bad things

The syntax of the input can be cryptic and takes a while to learn. As with most everything else in life, you work from examples and only learn the parts you need (by trial and error) for the task at hand.
Methods

I’m going to focus on Mathematica here because I wanted to learn it; I had previous experience with all of the others, though not in solving PDEs. I also thought it would be the best for this purpose. Now I see that it appears to be rather limited in what it can do in the PDE realm. You are welcome and encouraged to use any of the programs mentioned above that will solve the PDEs in this assignment.
Preliminaries
Execute commands in Mathematica by holding down ‘shift’ and pressing enter while on the line you wish to execute. For your sanity, I encourage you to begin every notebook with Remove[“Global`*”].
Plotting

The syntax of the ‘plot’ statement is Plot[what to plot, {variable, low end of range, high end of range}].

Plotting functions of 1 and 2 variables is easy:

[image: image6.png]nfioo]= Plot [Sin[x], {x, 0, 10}]

Ow[i00) - Graphics -

For 2 variables:

[image: image7.png]¥, {x, 0, 10 0, 1031
1+¥, {x, 0,10}, {y, 0,
in[x]+¥,

Plot3D[S:

.. 10
Z g,
o LA
R 7
R,

o ,ll..... ;

’

'.'... 1

Graphics -
urface
L

Heaviside Function

You need to know how to use the Heaviside function. It is called UnitStep in Mathematica and has a single argument, which will always be a simple function of x for our purposes. The Heaviside function has the value 0 when the argument is less than zero and 1 when the argument is greater than 0.

This is useful because we can turn things on and off as a function of space. Try the following:

[image: image8.png])= solution = UnitStep[x - 2]
D)= Tnitstep(-2 +x]

b= Plot[solution, (x, 0, 4)]

ol - Graphics -

“solution” stores the formula entered on the right hand side of the equal sign. When x < 2, x – 2 is less than 0 so the Heaviside function returns 0. When x > 2, x – 2 is greater than 0 and the Heaviside function returns 1.

Notice that we can conveniently combine Heaviside functions to get more complex results:

[image: image9.png]ol

=

ool

solution - UnitStep[x - 2] - UnitStep[x - 31
Unitstep(-3 +x] + Unitstep(-2 +x]

Plot [solution, (x, 0, 4}]

- Graphics -

Subtracting the Heaviside function that turns on at x = 3 results in a ‘pulse’ that lies only between x = 2 and 3.
Derivatives
We need to specify the PDEs we wish to solve in terms of the first and second order derivatives that make them up. Here we take the derivative of x3.

[image: image10.png]nz00]= Remove["Global »"]
bEoi= £2 X038

owpotge x*

o= DIE, X1

o033 %

Suppose f is a function of space and time and we want to write the second partial derivative with respect to space.

[image: image11.png]nz00]= Remove["Global »"]
b= £2 X734 82
omppe & 4%

nosg= DIE, x, x]

O[OSk 6%

We also wish to impose no flux boundaries in some instances. As you know, these take the form of space derivatives of concentration or head that are set equal to zero. (No head gradient means no flow; no concentration gradient means no diffusive or dispersive flux.)
In Mathematica the most general form for derivatives is
Derivative[n1, n2, …][f]
It represents differentiation of f n1 times with respect to the first argument, n2 times with respect to the second argument, and so on.
Solving PDEs

As Tom pointed out during our very first meeting, the 1-D Laplace equation

	
	
[image: image12.wmf]0

2

2

=

¶

¶

x

h

	(6)

tells us that the head gradient (h/(x is a constant. Let’s use Mathematica to solve (6).

The general PDE numerical solver syntax in Mathematica is

NDSolve[eqns, y, {x, xmin, xmax}, {t, tmin, tmax}]
From the derivatives section above we see that we can specify (2h/(x2 = 0 as

D[h, x, x] = = 0.

(The double equal signs are needed for these symbolic equations.)

Let’s use fixed head conditions at x = 0 and x = 1:

h[0] = = 0 and h[1] = = 10.

Finally, we need to specify that we’re solving for f over some particular range of x.

The solution is shown below.

[image: image13.png]nfz26]= Remove["Global’ »"]

)= solution - WDSolve [(DLELX], X, X1
£ 4x,0, 1]

, 1101

0, £[11 - 103,

om0l {{£ > InterpolatingFunceionl {{0., 1.3}, <1}}

hEsz)= Plot [Evaluate[f[x] /. First[solution]], (x, 0, 1},
Plotpoints - 30]

o2k - Graphics -

Your Assignment:

Modify the Laplace solution given above so that you solve the same Poisson equation you did for Long Island ground water flow. You need to change one of the boundary conditions to no flow using a statement like Derivative[1][f][100] = = 0. Also plot the analytical solution (use Plot[{…as given above…, x^2}, …as given above… where the { , } enclose multiple functions to plot and I’m using x^2 as a surrogate for the analytical solution). Impress me by plotting the numerical solution as open symbols.
Move on to transient PDEs by including time. Modify the Poisson notebook. Now f[x] needs to be f[x,t], we need a time derivative, an initial condition, and a time range. The initial condition is tricky because Mathematica seems to insist that all boundary and initial conditions be ‘consistent’; h[100, t] = 11 and h[x, 0] = 16 are not consistent because h[100, 0] is set differently by these conditions. So, one way to make it work is to use something like f[x, 0] == 16 - 5*UnitStep[x - 100] for the initial condition. I plotted the result like this

[image: image14.png]M
k-
g
B
i

)= solution

£
a

HDSolve[(DIf[x, t1, X, x]

16,

£0x, 0] == 16 -5 » UnitStep[x - 1001, £[0, t]

1003, {t, 0, 50031

o, 0,

.t

owpels (£ InterpolatingFunction[(0., 100.}, (0., 500.}}, <»1}}

,{x, 0, 1003,

npsz)= PlotiD[Evaluate[£[x, t] /. First[solution]]

PlotRange - (11, 16}, PlotPoints —30]

1, 0, 5003,

- SurfaceGraphics -

ouaszy

but please, please realize that you are looking at time on the axis that points northeast, and this does not represent any physical surface.
It’s probably safer and easier to look at if you do the following:

[image: image15.png]nz74]= Remove["Global »"]

)= solution

+(0.002/0.02) DI£Lx, 1, ¢],

HDSolve[(DIf[x, t1, X, x]

16,

P
g
£

113, £, {x, 0, 1003, {t, 0, 5003]

owpels (£ InterpolatingFunction[(0., 100.}, (0., 500.}}, <»1}}

hEez)= Plotab[Bvaluate[£[x, t] /. First[solution]], (x, 0, 100},

A

{t, 0, 500}, PlotRange - {11, 16}, PlotPoints -30]

~ &

4
bste
o

ot
et
LS
i

%

s
i
i

- SurfaceGraphics -

ouaszy

100, 500}

50,

10, 25,
Plot [Evaluate[£[x,

s

, {x, 0, 10031

17. Pirst[solution]]

s00)

owpssl= (0, 25, 50, 100

- Graphics -

Ot [354)-

The t = 0 curve is not sharp and identical to the initial condition due to numerical problems. See the appendix for more information. Plot with the analytical solution from your previous exercise.
Next we work with the heat or diffusion equation: D(2C/(x2 = (C/(t. Code it. Use a domain of unit length, the diffusion coefficient D = 1, and time up to 0.1. Use a step initial condition that has C = 1 for x = 0.25 to x = 0.75 and C = 0 elsewhere. First, fix the boundaries at C(t) = 0. Plot the solution. What is happening to the chemical mass over time in this case? Next, use ‘no-diffusion’ boundaries (i.e., you simulate a closed box). Plot the solution. What happens to the mass in the system now?
Finally, solve the CDE for the following conditions (same as in CDE assignment):

· Domain: x = 0 to 100, t = 0 to 10
· Velocity: v = q/ = 1 m/yr / 0.5 = 2 m/yr
· D = 2 and 20 m2/yr

· IC: C|x, 0 = 0
· BCs:
· C|0, t = 100
· (C/(t |100, t = 0
As in the CDE assignment, change the IC and the right-hand BC to

· IC: C|6 m < x < 12 m, 0 = 100

· BC: C|0, t = 0

Plot all the results.
Appendix
I started noticing that the initial conditions were often not being well represented by the solutions. As you have probably come to appreciate, the numerical solution of many equations is challenging – especially when sharp head or concentration gradients are present. There are a host of options you can use with NDSolve to improve the results:

	AccuracyGoal: digits of absolute accuracy sought

	Compiled: whether to compile the original equations

	InterpolationPrecision: the precision of the interpolation data returned

	MaxSteps: maximum number of steps to take

	MaxStepSize: maximum size of each step

	Method: method to use

	PrecisionGoal: digits of precision sought

	StartingStepSize: initial step size used

	WorkingPrecision: the number of digits used in internal computations

I played with a few of these to get the results below for the CDE solution (D = 20, 10 years; the main part of the NDSolve coding is not shown). The result at time 0 is much better than you get with the default parameters. There is still a warning message though. Plan on having something else to do once you execute this command; it took less than half an hour on my computer.
[image: image16.png]nfe54]= Remove["Global »"]
crear(t]
solution
mSolvel
(DI, t], 1= 20+DILLx, t], X, x] -2+ DILLX, t1, X1,
£0x, 0] -- UnitStep[x - 6] - UnitStep[x - 121,
£00, £1=- 0, Derivative[1, 01[£1[100, t] -0, £,
x, 0, 100}, {t, 0, 20}, AccuracyGoal » 1071,
PrecisionGoal + 10°1, StartingStepSize .1,
HaxSteps > 100000]

[—

Warning: Escimated spacial error ac © = 0 is
much greater than prescribed srror tolerance
Grid spacing 0.1 vhich vas based on the value
of the ScarcingScepSize oprion may be too large

o achisve the desired aceuracy or precision.

oapetls (£ InterpolatingFunction(({0, , 100.), (0., 20.)), <-1}}

s

t-q0,5, 10}
Plot[Evaluate[£[x, t] /. First[solution]], {x, 0, 100},
PlotRange - {0, 1}

owpotls {0, 5, 10}

Ou[6i= - Graphics -

_1111393327.unknown

_1111479824.unknown

_1110313102.unknown

_1111393132.unknown

_1107869106.unknown

