
GLY-4822 

Calculus Review/Assignment 1 

Slope  

 

  
 

Slope is defined as the rise over the run: Slope = rise/run. The rise is the change in the y 

value and the run is the change in the x value.  

 

Slope = rise/run = y/x = (y2 – y1)/(x2 – x1) 

 

Note that the result is the same if the subscripts identifying the points are reversed; for 

this case, numerator and denominator will both be negative and the negatives cancel. It is 

critical that the ordered pairs are kept separate however. 

 

It also does not matter what quadrant the points lie in; the signs work out correctly. 

 

The slope is closely related to the concept of a derivative in Calculus. In the simplest 

terms, the derivative is the slope at a point on a curve, which is the same as the slope of 

the tangent to the curve. Standard Leibniz notation for the derivative is based on y/x; 

the derivative is written dy/dx. 

Exponent Definition 

x0 = 1 

Derivative of a Line 

Recall the equation for a straight line: y = ax + b. The slope is a and the y axis intercept 

is b. 

 

The derivative of a polynomial function of the form y = axn + bxp + … with respect to x 

is  
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dy/dx = a n x(n-1) + b p x(p-1) + …. 

 

More terms can easily be added as necessary and the derivative of each term is simply 

added to the overall derivative. 

 

If we recast the equation for the straight line (y = ax + b) in the form of a polynomial, we 

have 

 

y = ax1 + bx0 

 

Note that the second term [bx0] has a derivative 0bx-1 = 0, and it drops out of the overall 

derivative. The same is true for any constant. 

 

For the straight line, n = 1 so the derivative of the remaining term is 

 

dy/dx = a 1 x(0), or because x0 = 1,  

 

dy/dx = a. 

 

Derivative of a Polynomial 

In differential Calculus, we consider the slopes of curves rather than straight lines.  

 

For a general polynomial y = axn + bxp + cxq + …, the derivative with respect to x is  

 

 dy/dx = a n x(n-1) + b p x (p-1) + c q x (q-1) + … 

 

Here is an example with the following coefficients and exponents: 

 
a 3 

n 3 

b 5 

p 2 

c 5 

q 0 

 



1/25/2023 3 

 
 

 

Note that the slope of this function, instead of being a constant, is itself a function of x. In 

this case, for x less than 0 the slope is negative and, for x > 0, the slope is positive. The 

sign and magnitude of the slope are given by the derivative. 

 

 
 

Derivative of Sine and Cosine 

You will also need to know the derivative of the sine and cosine functions for this class.  

First, always remember that sin(0) = 0 and that the period of both the sine and cosine 
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functions is 2. Now look at the sine function and notice that its initial slope is positive 

and that it becomes negative at /2. This is exactly the behavior of the cosine and in fact 

d(sin(x))/dx = cos(x). You can also see that the initial slope of the cosine is negative so 

you can figure out that d(cos(x))/dx = -sin(x). 

 

  
 

 

Numerical Derivatives 

Numerical approximations of derivatives can be made by taking the slope between points 

and can serve as a useful check on the analytical derivative. Very often, there is no 

analytical derivative and all computations must rely on numerical derivatives. There are 

obvious limitations to this approach. Grid spacing and position of the computed 

derivative need to be considered. 

 

Partial Derivatives 

What if the variable of interest – say water table elevation – is a function of both x and y? 

In this case we use the concept of a partial derivative. 

 

Here is a plot of the function h(x,y) = x4 + y3 + xy. To compute the partial derivative of h 

with respect to x at a y location y0 (indicated by the notation ∂h/∂x|y=y0), we simply treat 

any terms containing y only as constants. If these constants stand alone (like b in the 

computation of the derivative of the straight line) they drop out of the result. If they are in 

multiplicative terms involving x, they are retained as constants. Thus ∂h/∂x|y=y0 = 4x3 + 

y0. 
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So what use are these partial derivatives?  

 

One simple and important application is for the computation of gradients. The gradient 

function of h(x,y) can be written as  

 

𝜵𝒉 or Grad h or (‘del’)h (bold means vector) 

 

 
𝛻ℎ = 𝒊

𝜕ℎ

𝜕𝑥
+ 𝒋

𝜕ℎ

𝜕𝑦
 ( 1 ) 

 

i and j are the unit vectors in the x and y directions; that is they point in the positive x and 

y directions respectively and have length 1. The vector sum of these vectors multiplied by 

their respective partial derivatives gives the gradient vector.  

 

Implementation in Python 
 

Next, we’ll demonstrate the computation of numerical partial derivatives using Python. 

Let’s use a realistic ground water potential surface (i.e., a solution of the Laplace 

equation that we will derive later). 

 

Begin by importing the following packages: 
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import numpy as np 

 

import matplotlib.pyplot as plt 

 

Next load the csv file you created in Excel: 

 

h=np.loadtxt('C:\\Users\\sukopm\\My 

Drive\\Work\\FIU\\Classes\\GLY4822\\Spring23\\junk.csv', delimiter=',') 

 

The address of your file will be different. 

 

Then create a grid of x and y coordinates:  

 

x_vec = np.arange(-1,1.1,0.1) 

y_vec = np.arange(-1,1.1,0.1) 

X,Y = np.meshgrid(x_vec,y_vec) 

 

Surface Plot 

 

Now you can plot the surface (better than in Excel, because the coordinates are real): 

 

# Plot the surface. 

fig = plt.figure(figsize=[4,4], dpi=300) 

 

ax = plt.axes(projection='3d') 

surf = ax.plot_surface(X,Y,h) 
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Contour Map 

 

Now plot the surface as a contour map: 

 

fig3 = plt.figure(figsize =[4,4], dpi=300) 

 

plt.contour(X,Y,h) 

 

 

Gradient/Partial derivatives 

In Python, the gradient terms — the estimated partial derivatives 
𝜕ℎ

𝜕𝑥
 𝑎𝑛𝑑 

𝜕ℎ

𝜕𝑦
 — can be 

computed using the following code: 

 

[dhdy,dhdx]=np.gradient(h, x_vec, y_vec) 

 

We can use the partial derivatives to plot flow vectors and streamlines. 

 

Flow vectors 

A Quiver (vector) plot can be generated using code like 

 

#Plot quiver 

 

plt.quiver(X, Y, -dhdx, -dhdy) 

 

The vectors have to be perpendicular to the contours! We use a minus sign in front of the 

partial derivatives because we want the flow to go downgradient from high to low head. 
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The length and direction of the arrows indicate the strength and direction of the gradient. 

As you will see, partial derivatives also play a key role in ground water flow models. 

Streamlines 

Another useful way to look at such a field is known as ‘streamlines’, which trace the 

trajectory of a particle released at a given point in the domain. Python provides 

algorithms that make the necessary calculations and display the graphics. 

 

startxy = np.array([[-1,-1,-1,-1 ,1,1,1,1],[-0.75, -0.25, 0.25, 0.75,-0.75, -0.25, 0.25, 0.75]]) 

 

plt.streamplot(X,Y,-dhdx,-dhdy) 

 

This is for stream lines starting at x = -1 and x = 1 at y = -0.75, -0.25, 0.25, and 0.75. 

Different geometries will require different starting points. 
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Assignment 

 

1. Given the following ordered pairs: Line 1: (1,1), (3,2); Line 2: (1,-1), (3,-2); Line 

3: (-1,-1), (-3,-2) ; Line 4: (-1, 1), (-3, 2), plot the points, compute the slopes. 

 

2. Given the following ordered pairs: Line 1: (1,1), (-3,-2); Line 2: (1,-1), (-3,2); 

Line 3: (-1,-1), (1,-1) ; Line 4: (-1, 1), (-1, -1), plot the points, compute the slopes. 

 

3. Write down the partial derivative ∂h/∂x of h(x,y) = x3 + y2 + xy. Evaluate it at y = 

-1. Plot the whole function. Then plot h(x,-1) and the partial derivative between x 

= -1 and 1 on the same graph. Add the numerical approximation of the derivative 

to the same graph. Use solid lines for the analytical function and derivative and 

open symbols for the numerical derivative. Discuss limitations of this numerical 

derivative. 

 

4. Write down the partial derivative ∂h/∂x of h(x,y) = x3 + y2 + xy. Evaluate it at y = 

1. Plot the function, h(x, 1), and the partial derivative between x = -1 and 1. Plot 

the numerical approximation of the derivative on the same graph. Use solid lines 

for the analytical function and derivative and open symbols for the numerical 

derivative. 

 

5. Write down the partial derivative ∂h/∂y of h(x,y) = x3 + y2 + xy. Evaluate it at x = 

-1. Plot the function, h(-1, y), and the partial derivative between y = -1 and 1. Plot 
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the numerical approximation of the derivative on the same graph. Use solid lines 

for the analytical function and derivative and open symbols for the numerical 

derivative. 

 

6. Write down the partial derivative ∂h/∂x of h(x,y) = x3 + y2 + x2y. Evaluate it at y 

= -1. Plot the whole function, h(x,-1), and the partial derivative between x = -1 

and 1. Plot the numerical approximation of the derivative on the same graph. Use 

solid lines for the analytical function and derivative and open symbols for the 

numerical derivative. 

 

7. Write down the partial derivative ∂h/∂x|y = 1 of h(x,y) = x3 + y2 + x2y. Plot the 

function, h(x,1), and the partial derivative between x = -1 and 1. Plot the 

numerical approximation of the derivative on the same graph. Use solid lines for 

the analytical function and derivative and open symbols for the numerical 

derivative. 

 

8. Write down the partial derivative ∂h/∂y|x= -1 of h(x,y) = x3 + y2 + x2y. Plot the 

function, h(-1,y), and the partial derivative between y = -1 and 1. Plot the 

numerical approximation of the derivative on the same graph. Use solid lines for 

the analytical function and derivative and open symbols for the numerical 

derivative. 

 

9. Show that h(x,y) = x2 – y2 + xy is a solution of the 2-D Laplace Equation [Eqn. 

(2)]. Plot and label contours of the function and plot arrows indicating the strength 

and direction of the negative gradient using Python. Mark the ‘stagnation point’. 

 𝜕2ℎ

𝜕𝑥2
+

𝜕2ℎ

𝜕𝑦2
= 0 ( 2 ) 

   

10. Instead of arrows as in Question 9, plot streamlines using Python. Pick your own 

unique starting points for the streamlines. 


