Ground Water and Solute Transport Modeling

Foreword to Instructors

We present here models for several key processes in ground water hydrology and solute transport. The models are generally built at the most rudimentary level and then expanded to incorporate more processes at the expense of only slightly more complexity. The focus is on governing equations and initial and boundary conditions. This text is aimed at first year graduate students embarking on modeling careers and individuals who need understanding of model fundamentals. 

Modern spreadsheets are capable of rapidly carrying out calculations that previously would have been too laborious or would have required programming skill. Spreadsheets have become ubiquitous in the academic and professional worlds. In addition to their power and ease of use, this ubiquity has made spreadsheets the ‘tool of choice’ for many students in scientific and engineering disciplines. In this book, we propose that those involved in ground water modeling education leverage the (typically) self-teaching that students have done to learn spreadsheets by expanding spreadsheet use into domains previously accessible only to more elite groups that have good skills in more standard programming languages.

What seems to pique students’ interest is the use of a familiar tool/computing environment in novel ways and the immediate linkage with powerful graphic displays of the results. Hopefully, this interest can be channeled into the desire to learn the techniques through instruction and particularly through experimentation. In our opinion, there can hardly be a more intuitive way for students to recognize the significance of boundary and initial conditions. Ultimately, students whose career paths demand the use of numerical models will benefit from the intuitive understanding that can be gained by ‘playing’ with these simple models. Others will benefit from the ‘demystification’ of numerical modeling and knowing enough to critique modeling efforts, which fundamentally depend on boundary conditions that may not be very well understood by some modelers.

Introduction

Ground water modeling texts abound… In our opinion, a strong foundation in basic numerics, boundary and initial conditions is of utmost importance. The wide variety of available Graphical User Interfaces have made it easy for a person to do exceptionally complicated ground water models perhaps without adequate recognition of the fundamental principles, and this in turn can lead to costly errors. The clarity of presentation of these fundamentals in Mary Anderson’s ground water modeling course at the University of Wisconsin and the associated text (Wang and Anderson, 1982) stand alone in meeting the needs of students embarking on a career in ground water modeling in our opinion. And while the most popular models are still FORTRAN-based, we have entered an age when the detailed workings of the code are not essential knowledge for a successful modeler. As Mary Anderson reminded us in class – the best modelers are generally not the best programmers and vice-versa; to paraphrase Professor Anderson’s apt analogy from the early 1980s, ‘the best race car drivers have no need to understand the detailed operation of their carburetors’. 
Chapter 1: Calculus Review

Slope
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Slope is defined as the rise over the run:
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Not that the result is the same if the subscripts identifying the points are reversed; for this case, numerator and denominator will both be negative and the negatives cancel.  It is critical that the ordered pairs are kept separate however.

It also does not matter what quadrant the points lie in; the signs works out correctly.
The slope is closely related to the concept of a derivative is calculus.  In the simplest terms, the derivative is the slope at a point on a curve, which is the same as the slope if the tangent to the curve.  Standard Leibniz notation for the derivative is based on 
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Exponent Definition
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Derivative of a Line

Recall the equation for a straight line: 
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The slope is m and the y-axis intercept is b.

The derivative of a function of the form
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With respect to x is
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Because b is a constant (think of it as 
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For a straight line, 
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Derivative of a Polynomial

In differential Calculus, we consider the slopes of curves rather than straight lines.

For a general polynomial 
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the derivative with respect to x is 
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Here is an example with the following coefficients and exponents:

	a
	3

	n
	3

	b
	5

	p
	2

	c
	5

	q
	0
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Note that the slope of this function, instead of being a constant, is itself a function of x.  In this case, the slope is positive.  The sign and magnitude of the slope is given by the derivative. 
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Derivative of Sine and Cosine
You will also need to know the derivative of the sine and cosine functions for this class. First, always remember that 
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You can also see that the initial slope of the cosine is negative so you can figure out that 
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Partial Derivatives

What if the variable of interest, say water table elevation, is a function of both x and y? In this case we use the concept of partial derivatives.

Here is a plot of the function 
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To compute the partial derivative of h with respect to x at a y location, y0 (indicated by the notation
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), we simply treat any terms containing y only as constants.  If these constants stand alone (like b in the computation of the derivative of the straight line (3)) they drop out of the result. If they are in multiplicative terms involving x, they are retained as constants.  Thus 
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So what use are these partial derivatives?
One simple and important application is for the computation of gradients. The gradient function of h(x,y) can be written as Grad h or (‘del’)h (bold means vector)
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i and j are the unit vectors in the x and y directions; that is they point in the positive x and y directions respectively and have length 1.  The vector sum of these vectors multiplied by their respective partial derivatives gives the gradient vector.
Basic MATLAB

MATLAB is a programming environment with a post-processor that has the ability to produce graphics and compare analytical solution to numerical solutions (see next section).

Here are a few simple commands that will make you more familiar with MATLAB.
To produce a vector:

a = [1 2 3 4] will give:
a =

     1     2     3     4

To transpose a vector:
a'

ans =

     1

     2

     3

     4

If typing every number is too tedious you can autofill: 

a = [1:0.2:3]'

a =

    1.0000

    1.2000

    1.4000

    1.6000

    1.8000

    2.0000

    2.2000

    2.4000

    2.6000

    2.8000

    3.0000
Obtaining one or two numbers within this vector use:

a(2:3)

ans =

    1.2000

    1.4000

To produce a x-y graph input:
x = [1 3 6  8 10];

y = [0 2 1 3 1];

plot(x,y)
this will give:


[image: image35]
Matrices are produced and transposed in a similar manner to vectors.

 b = [1 2 3 4; 5 6 7 8]

b =

     1     2     3     4

     5     6     7     8

>> b'

ans =

     1     5

     2     6

     3     7

     4     8

The ones function can be used to create a vector or matrix of ones. It can also be manipulated to create matrices of other numbers through multiplication:
b = 2.2*ones(4,4)

b =

    2.2000    2.2000    2.2000    2.2000

    2.2000    2.2000    2.2000    2.2000

    2.2000    2.2000    2.2000    2.2000

    2.2000    2.2000    2.2000    2.2000

Vectors can be turned into matrices with the reshape function:

a = [1:9]

a =

     1     2     3     4     5     6     7     8     9

bsquare = reshape(a,3,3)

bsquare =

     1     4     7

     2     5     8

     3     6     9

Quiver/vector plots are a way of visualized the direction of motion. These are produced by:
scale = 10;

d = rand(100,4); (rand creates a random set of numbers)
quiver(d(:, 1), d(:, 2), d(:, 3), d(:, 4), scale)


[image: image36]
To contour a graph input:
h = […];

contour(h)
Another useful way to look at graphs is known as ‘streamlines’, which will trace the trajectory of a particle released at a given point in the domain.  MATLAB provides algorithms that make the necessary calculations and display the graphics.

[Stream] = stream2(-dhdx, -dhdy, [51:100], 50*ones(50,1));

streamline(Stream)

This is for stream lines starting a y = 50 from x = 51 to 100 along the x-axis.  Different geometries will require different starting points.
As with all programming languages MATLAB supports if and for loops.

if(1)

…

else

…

end
for i = 1:10

…

end

Numerical Derivatives

Numerical approximation of derivatives can be made by taking the slope between points and can serve as a useful check on the analytical derivative.  Very often, there is no analytical derivative and all computations must rely on numerical derivatives.  There are obvious limitations to this approach. Grid spacing and position of the computed derivative need to be considered.
Next, we’ll demonstrate the computation of numerical partial derivatives using MATLAB.  Let’s use a realistic ground water potential surface (i.e. a solution of the Laplace equation that we will derive later).

In MATLAB,

h = [put values here];

[dhdx, dhdy] = gradient(h)

contour([1:20], [1:20], h)

hold

quiver([1:20], [1:20], -dhdx, -dhdy)

axis equal
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The length and direction of the arrows indicate the strength and direction of the gradient.  As you will see, partial derivatives also play a key role in ground water flow models.

Chapter 2: Groundwater Basics

In this chapter you will review basic concepts of hydrology; in particular, porosity, head, hydraulic conductivity and transmissivity.

In hydrology there is a common assumption that water is incompressible. This is not strictly correct and in fact compression and decompression of water can be an important ground water storage mechanism.  However since the compressibility very small it is often an acceptable assumption and we will apply it routinely when we equate the mass and volume of water using a single density.

Porosity Basics

Porosity, n or φ, is defined as the ratio of the volume of pores in a rock to the total volume of a rock.
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It can also be defined as the volume of solids subtracted from the total volume all divided by the total volume.
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Notice that the density of the solid part of the rock is:
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And the bulk density is given as:
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Thus the ratio of bulk density to solid density is:
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Now a simple substitution of (15) into (12) yields another useful porosity equation:
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While (16) gives the correct total porosity, applying it to compute the ground water ‘pore’ velocity that pertains to the movement of solutes and energy may result in error if the porosity is not well connected. Note that porosity has no units.
Volumetric water content, , is another quantifier of porosity. In a saturated system, that is, a system that is completely filled with water such as a confined aquifer, the volumetric water content equals the porosity. The main use of the volumetric water content is for unsaturated porous media. The volumetric water content is the ratio of the volume of water to the total volume of the medium:
	
[image: image45.wmf]total

water

V

V

=

q


	(17)


Cubic Packing and Porosity

Porosity is a result of how the minerals grains are packed together. The simplest packings are those of uniformly-sized spheres. There are three common ways such spheres can pack. The first is called simple cubic (Figure 1). It has a porosity of 0.48. 
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Figure 1: Simple Cubic Packing1
The second type of packing is called body-centered cubic. This type of packing is very similar to simple cubic, however it contains one extra grain in the center of the unit cell  (Figure 2). Hence it is known as body-centered cubic. This type has a porosity of 0.26.
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Figure 2: Body-Centered Cubic Packing1
The third type of packing contains an extra grain on each face of the cube. This is logically termed face-centered cubic packing (Figure 3). It also has a porosity of 0.26.
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Figure 3: Face-Centered Cubic Packing1
Effective Porosity

Effective porosity in simplest terms means connected pores. This is important if water is to flow through the rock rather than to be trapped in the rock in unconnected pores. Effective porosity can be clearly seen in Figure 4.
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Figure 4: The red is a dye moving through the connected pores (white) of the rock (solids in grey)

Pressure and Pressure Head
Pressure is defined as force per unit area.
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It has units of: 
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where m is mass, kg, and a is acceleration, 
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In groundwater hydrology, pressure is routinely defined relative to atmospheric pressure, so P = 0 at the water table. For an incompressible fluid at rest, pressure increases linearly with depth below the surface according to 
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where ρ is the density of the fluid, g is gravity and hp is the depth. Let’s consider a glass of water. If we plot elevation on the y-axis and head on the x-axis
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Figure 5: Head
Elevation Head
Elevation head is defined as the height of the water from a pre-defined reference point.
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Figure 6: Elevation Head
Total head

For fully saturated systems, a simple definition of total head as the sum of the pressure and elevation heads (Figure 6) will suffice:
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Water flows down a total head gradient, note that this could downhill or uphill. The direction of flow depends only on the gradient of the total head, ht.
In the glass of water shown below there is no flow and, if our definition of total head is correct, total head must be the same at all depths.
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Head Gradient

Head gradient is the ratio of the change in head to the distance within the rock over which head change occurs, 
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Darcy’s Law
Darcy (Figure 7) was an engineer from Dijon, France. In 1856 Darcy conducted experiments using columns of sand to find the amount of discharge. 
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Figure 7: Darcy 1803-1858

He concluded that the discharge is proportional to the hydraulic conductivity, cross-sectional area, and head gradient. This relationship is known as Darcy’s Law:
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where K is the hydraulic conductivity, 
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This flux can then be used to find the mean pore water velocity
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where ne is the effective porosity.

Intrinsic Permeability
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Kozeny-Carman Equation
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Transmissivity
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again K is the hydraulic conductivity and b is the thickness of the aquifer.  Thus the units of transmissivity are
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Darcy’s law can be easily rearranged to use transmissivity. Simply rearrange (27) to solve for hydraulic conductivity and substitute it into (22) to obtain
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where l is the width of the aquifer.

Derivation of the Laplace Equation
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Noting that 
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Substituting (23) we get:
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Simplifying we obtain the Laplace equation:
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Now given the Laplace equation let us find the equation of a line that represents the head.
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