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1 INTRODUCTION

LB2D_Prime is a lattice Boltzmann (LB) code capable of simulating single and multiphase flows and
solute/heat transport in geometrically complex domains. Flows and transport in porous media can also be
computed. The program is complementary to the text “Lattice Boltzmann Modeling” by Sukop and Thorne
(2007); more details on all of the types of simulations described here can be found in the book.

The code was written by a computer scientist (Dr. Thorne) and is relatively comprehensive and hence
appears rather complicated. But in fact the code is quite easy to use. This document has been developed
to assist potential users — including those whose primary computing environment is Microsoft Windows
based — get the program running. The program’s main capabilities may be best learned by initial exposure
to examples. Users who progress beyond the simple example problems will find ample information in the
documentation and of course in the source code itself. This manual is a work in progress.

1.1 REQUIRED SOFTWARE

To obtain a copy of the LB2D_Prime source code, simply find it on the internet by searching ‘google code
Ib2d’ and use the Command-line access “hg clone https://lb2d-prime-dev.googlecode.com/hg/ Ib2d-
prime-dev” in Cygwin (see below) or any Unix-based environment, to obtain the latest Developer’s
version — which is not likely to be fully documented. This will create subdirectories /doc, /in, /out, and
/src. These contain the program documentation, input, output, and source code respectively. If for some
reason you do not receive an out file be sure to make one in the LB2D_Prime folder; you do not need to
put anything into it.

There are 2 software programs necessary to use LB2D_Prime in its current stage of development: Cygwin
and a text editor. The editor can be as simple as Wordpad, or a program such as vi can be used under



Windows, Cygwin, or Linux. This guide will cover a few simple Cygwin and MATLAB commands. For more
advanced applications however, more advanced understanding of those programs could be necessary.

Your Windows computer should come equipped with Wordpad. If you would like to use vi, it can be
downloaded from the internet (e.g., http://www.vim.org/) for both Unix and Windows. Also available

online is Cygwin; this can be found at http://www.cygwin.com. It may take a while to download this

program. It is suggested to download and install the program straight from the internet. This may take
three or more hours, but there can be complications if Cygwin is downloaded and then installed
separately. When downloading/installing Cygwin there will be a list of all of the required files, please be
sure to change the list from “Default” to “Install” by clicking on the “Default” next to “All”. This will ensure
that the compiler files will be correctly installed. If this is not done, Cygwin will be unable to compile
LB2D_Prime.

1.2 OPTIONAL SOFTWARE

MATLAB is used to probe the simulation results more deeply. MATLAB must be purchased separately

2 GETTING STARTED

2.1 TEST SCRIPTS

A number of test scripts are provided to ensure the correct operation of the code. Scripts available
include:

e Poiseuille_gravity_x.sh (17x17 slit domain, 15 lattice unit slit, flow in positive x direction )
e Poiseuille_gravity_y.sh

e  Poiseuille_pressure_y.sh

e Taylor_pressure.sh

To run the test scripts from the Cygwin command line, type
sh scriptname.sh

As an example, he first script contains the following lines to copies the necessary files from the Mercurial
archive, compile, and run the code:

pushd in

cp 17x17_x.bmp 17x17.bmp

popd

pushd src

cp flags poiseuille gravity x.h flags.h

popd

make

/1b2d _prime ./in/params_poiseuille _gravity x.in

2.2 COMPILING LB2D_PRIME



First you need to compile LB2D_Prime. To do this, open Cygwin, change the directory (by typing ‘cd [path
to your directory]’) to the directory containing the above subdirectories. Once the path is correct, type
‘make’; this will compile the program. Now the program is compiled and we can begin to run simulations.

Typing ‘make mpi’ will compile a parallel version of the code, provided that the compiler directories are all
in the places specified in the make file.

2.3 RUNNING LB2D_PRIME

2.3.1 PRINCIPAL INPUT FILES

As mentioned in the introduction, the best way to learn LB is by examples. Before we begin, let us become
familiar with the two principal input files of LB. One is the input geometry file ixj.bmp where i and j are
the number of lattice units (lu) in the x and y directions. The program is provided with a few of these files
which will be used in the example simulations though they are easy to create. The second major file is
called params.in and contains most of the information needed for a simulation. Flags.h is a file located in
the .src directory that enables pre-compilation selection of the type of simulation and defines some
output options.

2.3.2 GEOMETRY INPUT FILE

The code reads the locations of obstacles to flow from bitmap files contained in the ‘in’ directory. Many
types of input graphics files can be converted to this format and domains can easily be drawn with
Microsoft Paint® for example. Currently LB2D_Prime supports 24-bit ‘truecolor’ BMPs with black
corresponding to obstacles and white signifying open space. It is essential that only black and white pixels
appear in the file.

The file naming convention is based on the lattice size and one pixel in the bmp corresponds to 1 lu. Thus,
the input file for a domain 100 /u long in x by 25 /u in y would be ‘100x25.bmp’. When creating bitmap
files for simulations, keep in mind the rule of thumb is that 4 or 5 lattice units in an open flow channel are
the minimum for the simulation of realistic hydrodynamics (Succi, 2001).

Figure 1: Example geometry file 96 by 144 pixels. Its name for input to the program is 96x144.bmp

2.3.3 PARAMETERS INPUT FILE



Also in the ‘in’ directory is the params.in file, which contains the main parameter values for the
simulation. Note that many of the lines in the file may not be required for a given application and thus the
number of lines a user needs to be concerned with and/or modify can be very small.

The detailed structure of the params.in file is similar to that indicated below (it can change slightly as new
code releases become available; check the documentation corresponding to the release you are using for

details). In the following example params.in file, the comments following ‘//’ provide a brief description of
the parameter on that line and what it is used for.

Distinct fluids are referred to both as components and as substances. Normally in conversation we talk
about fluid components, but the parameters are indexed by "subs". The term "component" can be used
to refer to a fluid component or a solute component, as well as the more broadly conventional
mathematical usage of a vector component. The reader should therefore be wary of context.

The parameters that are arrays are stated with typical and/or suggestive index names between square
brackets. For example, tau[0], tau[1] are written to suggest the fact that tau contains an array of values,
one for each substance or fluid component.

A common mistake made when configuring a problem is to specify in the file "params.in" an integer
number for a type double parameter or vice versa. This can cause mystifying symptoms. Be careful to
include a decimal point in all type double parameter values in "params.in" regardless of whether there is a
fractional part to the value. Likewise, do not include decimal points in type integer parameter values.
Remember, if things have been going smoothly and then suddenly go bad in weird ways (sorry | can't
recollect any specific examples) be sure to check this issue in "params.in".

The file "params.dat" is output by the code mostly as a sanity check: if values in "params.dat" do not
match values in "params.in", the double versus integer parameter type issue may be the reason.

2.3.4 EXAMPLE OF PARAMS.IN FILE

LX 1000 I mumber of lattice nodes in x-direction

LY 600 /I number of lattice nodes in y-direction
characteristic_length 31 Il characteristic length used for computing Re only
NumFrames 100000 /I 'number of frames to output

FrameRate 1000 I number of time steps per frame

tau[0] 0.55 Il relaxation time for component 0



gforce_x[0]
gforce_y[0]
end_grav[0]
tau[1]
gforce_x[1]
gforce_y[1]
end_grav[l]
buoyancy
incompressible

simple_diffusion

rho A

rho B
rho_sigma
rho_sigma_in
rho_sigma_out
u_sigma
u_sigma_in
u_sigma_out
sigma_start
sigma_stop
sigma_btc_rate
sigma_btc_spot
rho_in

rho_out

ux_in

ux_out

uy_in

0.0

-0.000002222

0

1.0

0.0

0.0

85.7042

524.3905

1.0

1.0

0.0

0.0

0.0

0.0

0

9999999

100

-1

501.0

501.0

0.0

0.0

0.0

Il gravitational acceleration for component 0 in the x direction
Il gravitational acceleration for component 0 in the y direction
Il ending time step for gravity on fluid component 0

Il relaxation time for component 1

Il gravitational acceleration for component 1 in the x direction
Il gravitational acceleration for component 1 in the y direction
Il ending time step for gravity on fluid component 1

Il toggles buoyancy effects due to the density of solute

Il toggles an incompressible lattice Boltzmann method

Il toggles a simplified diffusion computation, by simplifying the
Il computation of feq for the solute component

Il'initial fluid density (see BCs)

Il'nitial fluid density (see BCs)

Il'nitial density boundary condition for a solute component 1
II'in" density for a solute component 1

Il *out’ density for a solute component 1

Il'nitial velocity (flux) boundary condition for a solute component 1
II'in" velocity (flux) for a solute component 1

Il"out’ velocity (flux) for a solute component 1

Il time step at which boundary solute is activated

Il time step at which boundary solute is deactivated

Il rate at which to accumulate temporal breakthrough curve
/I position in domain (from inflow) for measuring btc

II'in’ density

Il"out’ density

/l'in" velocity in x direction

Il"out’ velocity in the x direction

I1'in’ velocity in the y direction



uy_out

G

Gads|0]

Gads[1]

ns_flag

ns

slice_x

slice_y
ic_poisseuille
bc_poisseuille
bc_slip_north
bc_sigma_slip
pressure_n_in[0]
pressure_s_in[0]
pressure_n_out[0]
pressure_s_out[0]
velocity_n_in[0]
velocity s _in[0]
velocity n_out[0]
velocity_s_out[0]
pressure_e_in[0]
pressure_w_in[0]
pressure_e_out[0]
pressure_w_out[0]
velocity_e_in[0]
velocity_w_in[0]
velocity_e_out[0]

velocity w_out[0]

0.0

-120.0

-327.79

0.0

0.1

500

-10

Il *out’ velocity in the y direction

I/ fluid-fluid or fluid-vapor interaction strength

Il adsorption strength for component 0

Il adsorption strength for component 0

11011 flag for Dardis & McCloksky porous medium

/I fraction of solids for Dardis & McCloksky porous medium

Il produces output along a slice through domain at this x-coordinate

Il produces output along a slice through domain at this y-coordinate

110/1 flag for for Poiseuille flow initial condition

11'0/1 flag for Poiseuille flow velocity boundary condition

110/1 flag to toggle slip condition on north wall

110/1 flag for slip boundary condition for solute on side walls
110/1/2 flag for north component 0 pressure BC = rho_in or file
110/1 flag for south component 0 pressure BC =rho_in

11'0/1 flag for north component 0 pressure BC = rho_out

11'0/1 flag for south component 0 pressure BC =rho_out
11011 flag for north component 0 velocity BC = uy_in

110/1 flag for south component 0 velocity BC = uy _in

110/1 flag for north component 0 velocity BC = uy_out

110/1 flag for south component 0 velocity BC = uy_out

11011 flag for east component 0 pressure BC = rho_in

110/1/2 flag for west component 0 pressure BC = rho_in or file
110/1 flag for east component O pressure BC = rho_out

11011 flag for west component 0 pressure BC = rho_out

11011 flag for east component 0 velocity BC = ux_in

11011 flag for west component 0 velocity BC = ux_in

11011 flag for east component 0 velocity BC = ux_out

11'0/1 flag for east component 0 velocity BC = ux_out



pressure_n_in[1] 0 11'0/1 flag for north component 1 pressure BC = rho_in
pressure_s_in[1] 0 11'0/1 flag for south component 1 pressure BC =rho_in
pressure_n_out[1] 0 110/1 flag for north component 1 pressure BC = rho_out
pressure_s_out[1] 0 11'0/1 flag for south component 1 pressure BC = rho_out
velocity n_in[1] 0 110/1 flag for north component 1 velocity BC = uy_in

velocity s _in[1] 0 110/1 flag for south component 1 velocity BC = uy_in

velocity n_out[1] 0 11'0/1 flag for north component 1 velocity BC = uy_out
velocity_s_out[1] 0 110/1 flag for south component 1 velocity BC = uy_out
pressure_e_in[1] 0 110/1 flag for east component 1 pressure BC =rho_in
pressure_w_in[1] 0 11'0/1 flag for west component 1 pressure BC = rho_in
pressure_e_out[1] 0 110/1 flag for east component 1 pressure BC = rho_out
pressure_w_out[1] 0 110/1 flag for west component 1 pressure BC = rho_out
velocity_e_in[1] 0 110/1 flag for east component 1 velocity BC = ux_in

velocity w_in[1] 0 11011 flag for west component 1 velocity BC = ux_in

velocity e _out[1] 0 110/1 flag for east component 1 velocity BC = ux_out

velocity w_out[1] 0 110/1 flag for east component 0 velocity BC = ux_out
constcon_n_in 0 11011 flag for north constant concentration BC = rho_sigma_in
constcon_s_in 0 11'0/1 flag for south constant concentration BC = rho_sigma_in
constcon_n_out 0 11'0/1 flag for north constant concentration BC = rho_sigma_out
direction

constcon_s_out 0 110/1 flag for south constant concentration BC = rho_sigma_out
direction

constflx_n_in 0 11'0/1 flag for north constant solute flux BC = u_sigma_in
constflx_s_in 0 11 0/1 flag for south constant solute flux BC = u_sigma_in
constflx_n_out 0 110/1 flag for north constant solute flux BC = u_sigma_out
constflx_s_out 0 110/1 flag for south constant solute flux BC = u_sigma_out
constcon_e_in 0 110/1 flag for east constant concentration BC = rho_sigma_in
constcon_w_in 0 11'0/1 flag for west constant concentration BC = rho_sigma_in



constcon_e_out
constcon_w_out
constflx_e_in
constflx_w_in
constflx_e_out
constflx_w_out
zeroconcgrad_n
zeroconcgrad_s
zeroconcgrad_e
zeroconcgrad w
zeroconcgrad_full
plot_scale_dynamic
use_colormap
initial_condition
X0

y0

r0

cut

x1

X2

yl

y2

rel x1

rel_x2

rel_yl

rel_y2
dump_rho

dump_u

35.

25.

0.0

1.0

0.0

0.3

11'0/1 flag for east constant concentration BC = rho_sigma_out

11'0/1 flag for east constant concentration BC = rho_sigma_out

11'0/1 flag for east constant solute flux BC = u_sigma_in
11'0/1 flag for south constant solute flux BC = u_sigma_in
11'0/1 flag for east constant solute flux BC = u_sigma_out
11'0/1 flag for west constant solute flux BC = u_sigma_out
11'0/1 flag for north zero concentration gradient BC

11011 flag for south zero concentration gradient BC

110/1 flag for east zero concentration gradient BC

11'0/1 flag for west zero concentration gradient BC

11011 flag for zero concentration gradient

110/1 flag for dynamic scaling of the plots

Il see the colormap routines in Ibio.c

Il see below a listing/description of all initial conditions

Il x-coordinate for the center of circle

Il'y-coordinate for the center of circle

I radius of circle

I/ cut-off value for IC 7, see below

Il x-coordinate of lower left corner of a rectangle
Il'y-coordinate of lower left corner of a rectangle

Il x-coordinate of upper right corner of a rectangle
Il'y-coordinate of upper right corner of a rectangle

Il relative x-coordinate of lower left corner of a rectangle
Il relative x-coordinate of upper right corner of a rectangle
Il relative y-coordinate of lower left corner of a rectangle
I relative y-coordinate of upper right corner of a rectangle
11 0/1 flag to toggle output of the macroscopic density

110/1 flag to toggle output of the macroscopic velocity



dump_force 0 11'0/1 flag to toggle output of the interaction and adsorption forces

dump_vor 0 11'0/1 flag to toggle output of vorticity

2.3.5 INITIAL CONDITIONS

In all simulations you must input the initial conditions. Often, these can be very simple. In LB2D_Prime
there are 13 initial conditions that can be used. Below is a list of the various settings. The leftmost column
is the title of the condition, the center column is the number that would be entered into params.in, and
the rightmost column is a brief description of the condition.

UNIFORM_RHO_A 1 l
UNIFORM_RHO B 2 i
UNIFORM_RHO_IN 3 l
BUBBLE 4 I creates circle of density rho_A. When using this condition
Il the center and radius of the circle must be specified
DIAGONAL 5 il
2X2_CHECKERS 6 !
STATIC 7 Il random with ‘cut’ equals fraction of component (subs) 1
RECTANGLE 8 Il creates a rectangle of density rho_A:, when using this condition
Il specify the two corner coordinates, either relative or absolute.
DOT 9 il
WOLF_GLADROW_DIFFUSION 10 il
YIN_YANG 11 Il
HYDROSTATIC 12 il
READ_FROM_FILE 99 II'if none of the other conditions suit your needs, you may create

/I'your own

2.3.6  TRANSIENT PRESSURE BOUNDARIES

Transient pressure values for substance 0 on the north and west boundaries may be specified externally in

files named, for example, "pressure_n_in0.in", which contain a single column of pressure values, one for



each simulation time step. In this case, an integer "2" should follow the appropriate line in the params.in
file asin: "pressure_n_in[0]  2".

If there are more timesteps than input values, the input values will be cycled. This is particularly useful for
imposing temporally periodic boundary conditions to simulate something like tidal periods.

A convenient MATLAB code for generating the required file is

clear all
close all

a=(1 + 0.2*sin(0:2*pi/10000:2*pi))"

plot(a)

save pressure_n_in0O.in a -ascii

This gives a mean density of 1 mu lu® with an amplitude of 0.2 mu lu®and a period of 10,000 time steps.

More information on the variables in params.in can be found in the documentation folder of the
program.

2.4 EXAMPLES

Now that you are familiar with the input we can try some examples. This section will explain how to do a
few basic applications. For each example there is a simplified version of the params.in file that you can
duplicate to run the respective examples. Please note that ‘..." means there are parameters included in
params.in that do not need to be changed but must remain in the file. Also please forgive the repetitive
nature of the example instructions; it was done this way so that you can begin at any example.

‘2.4.1 SINGLE COMPONENT, MULTIPHASE PHASE SEPARATION (SPINODAL
‘ DECOMPOSITION)

In this example we have one component, such as H,0, but two phases, such as liquid water and water
vapor. We start with an unstable initial density and watch as the liquid and vapor separate and ultimately
attain their lowest energy state (circular drops or bubbles).

The first step is to open Cygwin and change to the directory ‘cd’ that contains LB2D_Prime. Next enter the
src folder, rename the file flags_scmp.h to flags.h, and recompile the program by typing ‘make’ in Cygwin.
Now enter the ‘in’ folder. A new .bmp file must be created here. In this example a blank area will suffice
and all the domain boundaries will be periodic by default. The bigger the domain the longer the
processing time, however the details of the simulation are easier to see. Try an area 100x100 lu, be sure
to change the attributes of the .bmp to the correct size. Also in the ‘in’ folder, open the params.in (again
you can use a variety of programs to edit this file). This example is a single component system so we will
not be concerned with variables ending in [1].



Params.in

LX 100

LY 100

NumFrames 250 I/ this system will approach equilibrium if there are a large number of frames
FrameRate 100 I/ mumber of time steps per frame

tau[0] 1.0

rho_A 200.4

G -120.0  //an attractive van der Waals-like force (negative interaction strength)
slice_x 100

slice_y 100

plot_scale_dynamic 1

initial_condition 7 Il 'static’ (random) initial condition

cut 0.9

dump_rho 1 I/ outputs bitmaps (.bmp) of density

Once all of these variables are entered, the program is ready to run. To do this, go back to cgywin, ensure
that the path is correct and then type ‘./Ib2d_prime’. This starts the simulation, the output will be found
in the out directory in .bmp form and should look similar to the figure below. You will notice that most of
the drops are coalescing, however there are a few that disappear due to evaporation.
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Figure 2: Example of a single component multiphase phase separation. Frames from left to right: 100, 800, 5,700, and 23,700 time
steps in a 200x200 lu area.

2.4.2 SINGLE COMPONENT CONTACT ANGLE

In this example we again are only using one component. We begin with a circular initial condition and
observe as it attaches itself to the wall with a 90° contact angle.



We start out the same as in the previous example by opening Cygwin and changing to the directory ‘cd’
containing LB2D_Prime. If you did not try the previous example you will have to rename the file
flags_scmp.h to flags.h in the src folder. If you did the last example then you should still have this
renamed. It is always a good idea to recompile the program, so again type ‘make’ into Cygwin. Now enter
the ‘in’ folder, and create a new .bmp file. In this example we need a blank area with one wall. Try an area
100x100 lu, be sure to change the attributes of the .bmp to the correct size. Now open the params.in file,
also in the ‘in” folder. Again this example is a single component system so we will not be concerned with
variables ending in [1].

Params.in

LX 100
LY 100
NumFrames 100
FrameRate 100
tau[0] 1.0
rho_A 2004
rho_in 200.0
rho_out 200.0
G -120.0
Gads|0] -187.16
slice_x 50
slice_y 50
plot_scale_dynamic 1
initial_condition 4 I/ bubble
x0 25.0
y0 25.0
r0 10.0
dump_rho 1

Once all of these variables are entered, the program is ready to run. To do this go back to cgywin, ensure
that the path is correct and then type ‘./Ib2d_prime’. This starts the simulation. The output will be found
in the out directory in .bmp form and should look similar to the figure below. The fuzzy halo around the
solution is the transition to the vapor phase.



Figure 3: Example of a single component multiphase simulation with a contact angle of 90°. Frames from left to right: 0, 1200,
1400, and 5000 time steps in a 100x100 lu area.

2.4.3 MULTI-COMPONENT, MULTIPHASE INTERFACE RELAXATION

This example begins our journey into multi-component systems, such as oil and water. We start with a
simple example of phase interface relaxation.

In Cygwin make sure that you are in the correct folder. Now enter the src folder, rename the file
flags_mcmp.h to flags.h (you may want to rename your other flags.h back to flags_scmp.h), and recompile
the program (type ‘make’ into Cygwin). Next enter the ‘in’ folder and create a new .bmp file. We are again
using a blank area corresponding to a fully periodic domain. Let’s use 100x100 lu. Be sure to change the
attributes of the .bmp to the correct size. Also in the ‘in’ folder, open params.in. Unlike the previous
examples the variables ending in [1] will now become important.

Params.in

LX 100
LY 100
NumFrames 100
FrameRate 100
tau[0] 1.0
tau[1] 1.0
rho_A 1.0
rho B 0.0
rho_in 1.0
rho_out 1.0
G 2.0
slice_x 10
slice_y 10

plot_scale_dynamic 1



initial_condition 8 Il rectangle

x1 -1.0 Il -1 turns off absolute coordinates of rectangle

X2 -1.0 Il -1 turns off absolute coordinates of rectangle
yl -1.0 Il -1 turns off absolute coordinates of rectangle
y2 -1.0 Il -1 turns off absolute coordinates of rectangle
rel x1 0.25 I gives relative coordinates of rectangle

rel_x2 0.75 I gives relative coordinates of rectangle

rel_yl 0.25 I gives relative coordinates of rectangle

rel_y2 0.75 Il gives relative coordinates of rectangle
dump_rho 1

Once all of these variables are entered, the program is ready to be run. To do this go back to cgywin,
ensure that the path is correct and then type ‘./Ib2d_prime’. This starts the simulation. The output will be
found in the out directory in .bmp form and should look similar to the figure below. You will notice that
the two components reach equilibrium when the first component forms a circle; this is the state with the
lowest interfacial length and thus lowest energy.

Figure 4: Example of a single solution multi phase separation. Frames from left to right: 0, 400, and 2300 time steps in a 100x100
lu area and depict the density of component one (i.e. [0]).

2.4.4 MULTI-COMPONENT, MULTIPHASE PHASE SEPARATION

We start with an emulsion of two immiscible components and watch as they separate to their lowest
energy state.

In Cygwin make sure that you are in the correct folder. Now enter the src folder, rename the file
flags_mcmp.h to flags.h (this will already be done if you did the last example), and recompile the program
(type ‘make’ into Cygwin). Next enter the ‘in’ folder, a new .bmp file must be created here. We are again
using a blank area for fully periodic boundaries. Let’s use 100x100 lu. Be sure to change the attributes of
the .bmp to the correct size (you can use the .bomp that was made for the last example). Also in the in
folder open the params.in file.

Params.in



LX
LY

NumFrames
FrameRate
tau[0]

tau[1]

rho_A
rho B

rho_in
rho_out

G

slice_x
slice_y

plot_scale_dynamic
initial_condition
cut

dump_rho

100
100

100
100
1.0
1.0

1.0
0.0

1.0
1.0

2.0

10
10

01

Once all of these variables are entered, the program is ready to be run. To do this go back to cgywin,
ensure that the path is correct and then type ‘./lb2d_prime’. This starts the simulation, the output will be
found in the ‘out’ directory in .bmp form and should look similar to the figure below. You will notice that
most of the drops are coalescing, however there are a few that seem to disappear; unlike the single
component solution these drops are not accounted for by evaporation, but they have diffused into the

solute.
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Figure 5: Example of a single solution multi phase separation. Frames from left to right: 0, 2600, 13000, and 23700 time steps in a
200x200 lu area depict the density of component one (i.e., [0]).

2.5 MULTI-COMPONENT, MULTIPHASE CONTACT ANGLE



We begin with a square and observe as it attaches itself to the wall at a 90° angle.

In Cygwin make sure that you are in the correct folder. Now enter the src folder, rename the file
flags_mcmp.h to flags.h (this will be done if you did either of the last two examples), and recompile the
program (type ‘make’ into Cygwin). Next enter the ‘in’ folder, a new .bmp file must be created here. We
are again using a blank area. Let’s use 100x100 lu. Be sure to change the attributes of the .bmp to the
correct size (you can use the .bmp that was made for the last example). Also in the ‘in’ folder open the
params.in file.

Params.in

LX 100
LY 100
NumFrames 100
FrameRate 100
tau[0] 1.0
rho_A 1.0
rho_in 1.0
rho_out 1.0
G 2.0
Gads|0] -1.0
Gads[1] 1.0
slice_x 50
slice_y 50
plot_scale_dynamic 1
initial_condition 4

x0 25.0
y0 25.0
r0 10.0
dump_rho 1

Once all of these variables are entered, the program is ready to be run. To do this go back to cgywin,
ensure that the path is correct and then type ‘./lb2d_prime’. This starts the simulation, the output will be
found in the out directory in .bmp form and should look similar to the figure below.



Figure 6: Example of a single solution multi phase surface contact angle of 90°. Frames from left to right:
0, 1, 34 in a 100x100 lu area and depict component one (ie. [1] ).

LBM FOR MACROSCPOIC POROUS MEDIA

(Shadab Anwar, Evan Variano)

This option is of value for transcending the limits of pore-scale computational capabilities in the modeling
of large scale porous media. It uses a solution that treats the porous medium as a macroscopic
continuum.

There are three options for this capability of LB2D_Prime and the choice of these is determined by the
selection of the flags that appear in the flags.h file and the params.in file. The POROUS_MEDIA 1 flag must
be set in flags.h and the program must be recompiled to activate the porous media options. The three
options are:

1. When POROUS_MEDIA 0 in flags.h, the ns_flag and the ns value in params.in are meaningless

2. When POROUS_MEDIA 1 and ns_flag 0 then every pixel gets a resistance equal to the ns value in
the params.in file

3. When POROUS_MEDIA 1 and ns_flag 1, then every single pixel gets a resistance determined by
its grayscale value in a file named nsLXxLY.bmp, and the ns value in params.in is meaningless

The convention we follow here is that the darker color means higher permeability; hence,

white is impermeable and black is infinitely permeable (gray scale value 0 to 255 proportional to
resistance). The Navier-Stokes equations will be solved on black nodes where the gray value is 0 and
Darcy's law will apply on gray nodes in the range 0 < gray value <255 and white nodes (gray value 255) will
act as obstacles. We repeat for clarity: white color means impermeable node for macroscopic porous
media modeling, which is the exact opposite of regular pore-solid (binary) domain.

To create an input file that utilizes the gray scale porous medium capability of LB2D_Prime, one option is
to open your image file in Microsoft Paint. On the menu bar, click on Colors, Edit Colors, Define Custom
Colors, choose zero saturation and then drag the black arrow on the gray-scale to your desired level (0-
255). Now click "O.K." and your custom gray-scale is selected and you can paint it into the domain. Save
the file as ns_LXxLY.bmp, where LX and LY are the numbers of pixels in the X and Y directions respectively.
You must also have a blank (entirely white) image file named LXxLY.bmp in the ./in/ folder.



If the modeler’s intent is to use an external file for Ns input, it is recommended to ensure that a warning
of the following type is not displayed:

./src/latman.c 521 >> WARNING: Can't read "./in/ns616x579.bmp". Using default ns values.

Figure 7: Examples of porous media using ns
2.6 SOLUTE DIFFUSION

In this simulation solute is entered into the flow and allowed to diffuse around a series of solids. The first
component is being pulled out at the bottom, while the solute is being introduced at the top of the
column and diffusing through to the bottom.

In Cygwin make sure that you are in the correct folder. Now enter the src folder, rename the file
flags_mcmp.h to flags.h (this will be done if you did any of the last three examples), and recompile the
program (type ‘make’ into Cygwin). Next enter the ‘in’ folder, a new .bmp file must be created here, this
.bmp is diffucult to produce, to make it easier there will be a place you can download one already made.
Also in the in folder open the params.in.

Params.in

LX 60
LY 120
NumFrames 50
FrameRate 1000

tau[0] 1.0



tau[1] 0.6 11>0.5
rho_A 1.0

rho B 1.0

rho_sigma 1.0
rho_sigma_in 1.0
rho_sigma_out 0.0

u_sigma 0.0

u_sigma_in 0.0066
u_sigma_out 0.0

sigma_start 0

sigma_stop 99999999
sigma_btc_rate 25
sigma_btc_spot 120

uy_in -0.01

uy_out -0.01

slice_x 30

slice_y 30
velocity_n_in[0] 1 Il velocity BC on north side using u_y in
Velocity_s_out[0] 1 Il velocity BC on south side using uy_out
constcon_n_in 1
zeroconcgrad_n 0
zeroconcgrad_s 1
zeroconcgrad_full 1
plot_scale_dynamic 1
initial_condition 2

dump_rho 1

Once all of these variables are entered, the program is ready to be run. To do this go back to cgywin,
ensure that the path is correct and then type ‘./Ib2d_prime’. This starts the simulation, the output will be
found in the /out directory in .bmp form and should look similar to the figure below.
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Figure 8: Example of solute diffusion among solids. Frames from left to right: 1, 7, 48 both components (i.e. [0] and sigma).

2.7 BUOYANCY

This simulation is initialized with a region of a dense solute component or low temperature that will begin
to sink.

In Cygwin make sure that you are in the correct folder. Now enter the src folder, rename the file
flags_mcmp.h to flags.h (this will be done if you did any of the last four examples), and recompile the
program (type ‘make’ into Cygwin). Next enter the ‘in’ folder, a new .bmp file must be created here, a
blank area with a wall along the bottom to prevent the fluid from being pulled out by gravity (for fully
periodic boundaries). Let’s use 200x200 lu. Be sure to change the attributes of the .bmp to the correct
size. Also in the ‘in’ folder open the params.in file. There are two important aspects of this simulation, the
first is that it must run for a long period of time in order to approach equilibrium, and the other is to turn
on the buoyancy switch.

Params.in

LX 200

LY 200
NumFrames 1000
FrameRate 1000
tau[0] 0.51
gforce_x[0] 0.0
gforce_y[0] -0.000006
end_grav[0] 0

tau[1] 0.51
gforce_x[1] 0.0
gforce_y[1] -0.000006
end_grav[l] 0
buoyancy 1

rho_A 1.0

rho B 1.0
rho_sigma 1.0
rho_sigma_in 0.0
rho_sigma_out 0.0

rho_in 1.0

rho_out 1.0



slice_x 100

slice_y 100
plot_scale_dynamic 1
initial_condition 8
rel_x1 0.0
rel_ x2 0.5
rel_yl 0.0
rel_y2 1.0
dump_rho 1

Once all of these variables are entered, the program is ready to be run. To do this go back to cgywin,
ensure that the path is correct and then type ‘./Ib2d_prime’. This starts the simulation, the output will be
found in the ‘out’ directory in .bmp form and should look similar to the figure below.
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Figure 9: Example of buoyancy. Frames from left to right: 0, 10, 30, 396 in a 200x200 lu area of component 1 (i.e. subs[1]).

3 FLAGS.H FILE FOR COMPILER DIRECTIVES

An important file that has been previously mentioned, but not yet explained is flags.h. To use LB2D Prime
efficiently a comprehensive knowledge of this file is required. However for beginners a basic introduction
will suffice, as there are many versions of flags.h included in LB2D Prime when the program was installed.

Flags.h is best explained as an include file that contains compile-time switches for various options of
LB2D_Prime. Thus, if any changes are made to flags.h, the program must be recompiled (type ‘make’ in
Cygwin) to produce different models. The various options are explained in detail below, many of them can
only be turned on (1) or off (0), but a few have other options; these will be explained when applicable.
Like params.in, flags.h is edited using any text editor.

The first option is ‘verbosity level’. This option is mainly for troubleshooting. It controls how much output
is given or ‘printed’ during program execution. For example if it is set at 0 nothing will be printed, if it is
set to 1 only items outside of loops will be displayed, if it is set to 2, items inside the first level of loops will
be printed, and so on.



Another method of troubleshooting is the ‘say hi’ function. If this is on, some routines will display "hi" and
"bye" messages. If there is a problem with the simulation this toggle allows the user to see how far the
program has run before it failed.

Flags.h needs to be told how many components are involved in a particular simulation. This number can
be either 1 or 2, and is set in the ‘num_fluid_components’ setting. Related to this setting is
‘inamuro_sigma_component’. If this option is turned on and there are two components, this switches the
second component from a fluid to a solute. By turning on this switch all of the sigma options in params.in
now become important.

The Zhang and Chen energy transport method, which outputs thermodynamic consistency and computes
body force, a term representing non-local interaction potential speed, is not yet functional.

The porous media simulates a probabilistic bounceback as proposed by Dardis and McCloskey can be
turned on by toggling porous_media.

The ‘store_ueq’ is the true velocity when there is a multiphase and multicomponent system. Therefore, if
this is to be used, not only does it need to be on, but also there must be two components.

If your flow area is small compared to the total size of the area, it would be beneficial to have
‘do_not_store_solids’ option on. This will reduce the storage requirements. However this option is not yet
functional in the main distribution.

‘Non_local_forces’ turns on/off methods for calculating interaction forces, thus it is important when
modeling multiphase separation and surface interactions.

‘WM’ and ‘WD’ are phase force weighting factors and have been calculated and set at certain values,
these should not be changed.

At times it is useful to vary gravity in time, to do this ‘manage_body_forces’ must be turned on.

When using a solute you must tell LB2D_Prime that you want to use a breakthrough curve. To do this turn
on ‘store_btc’ and ensure the ‘inamuro_sigma_component’ is on. A value can be assigned to the
breakthrough curve in params.in.

Fluid in a model can flow in various directions; to begin with one direction must be stated. This is done in
the ‘determine_flow_direction’ option. This option has three choices. The flow can be vertical (1),
horizontal (2) or indeterminate (0). If the flow is indeterminate then the breakthrough curve mentioned
above will not be stored.

A model can also be initialized with a flow direction in either the x-direction or the y-direction. This is
done using a combination of variables in params.in and flags.h. In flags.h turn on one of
‘initialze_with_ux_in’ or ‘initialze_with_uy_in’. The values for these are set in params.in.

If the simulation can be analyzed by only .bmp and Matlab slice files then is may be useful to turn off
write_macro_var_dat_files and write_pdf_dat_files. This will save time and memory.

Another useful tool for debugging is using the write_rho_and_u_to_txt and write_rho_and_u_to_txt. This
function should only be used when the simulation requires a very small lattice since it will give density and
velocity data at every node of the lattice.



// Value used to represent an INACTIVE_NODE . This is used in the list
// of neighbors ( struct node_struct::nn). It is also used iIn the

// map from (i,J) space onto n index space in rho2bmp() and u2bmp().-
// Flag: INACTIVE_NODE

#define INACTIVE_NODE -1

Real fluid components will have a positive density; puke_negative_densities will stop the simulation if this
is not the case. However for long runs it will boost performance if this is turned off.

LB2D_Prime can use different patterns to display solid nodes. To do this turn on the respective toggle,
either solid_colour _is_checkerboard or solid_colour _is_black.

// Flag: DELAY
#define DELAY 0
// Flag: END_GRAV
#define END_GRAV 2000

To track orientation of the simulation a single white pixel can be placed at the origin of the lattice by
turning on mark_origin_for_reference.

// Flag: PERTURBATIONS

#define PERTURBATIONS O

More information on any of the toggles can be found in LB2D_Prime’s documentation folder.

4 PARALLEL LB2D_PRIME

LB2D_Prime is set up to compile and run in an MPI parallel environment. The domain must be broken up
into strips perpendicular to the y-axis and the input bmps named as follows from bottom to top:
LXxLY_proc0000.bmp, LXXLY_proc0001.bmp, ..., LXXLY_proc000n.bmp, where n is one less than the
number of processors. In these names, the LY refers to the fraction of the total LY of the domain. For
example, a 100x100 domain might be broken up into 2 parts as 100x50_proc0000.bmp and
100x50_proc0001.bmp. The total size is still used in the params.in file, for example, Lx = 100 and Ly = 100.
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6 APPENDIX



6.1 POISEUILLE FLOW

The Poiseuille analytical solution provides a fundamental test of single fluid flow
simulation. In 2 dimensions it represents the steady flow of a fluid between parallel plates
at low Reynolds number. LB2D_Prime automatically computes the analytical solution for
the input parameters of channel width, kinematic viscosity, and gravity, when the flow is
gravity driven and the domain boundaries perpendicular to the channel walls are periodic
(the default). The analytical solution is plotted against the simulation results in the
MATLAB “slice’ files only.

To simulate Poisuille flow, go to the ‘in’ folder and create a new .bmp file. We will try a domain size of
20x40 lu because it will allow for accurate results rather quickly. Once the file is created, open the
params.in file that is also located in the ‘in’ folder. It should look like

Params.in
LX 20
LY 40

characteristic_length 100

NumFrames 10
FrameRate 10000
tau[0] 1.0

gforce_x[0] 0
gforce_y[0] 0.000001
rho A 1

slice_x 10

slice_y 20

ic_poisseuille 1
bc_poisseuille 0

initial_condition 1



Once this is saved the program is ready to run. Go back to Cygwin and type in ‘./Ib2d_prime’. This will
start the simulation. Once the simulation is complete you can check to see if the Poiseuille analytical
solution graph is correct by using MATLAB. Open MATLAB and change the directory ‘cd’ to the out folder
of the file used in the Cygwin run.

Once this is ready type ‘slice_y20x40_frame0010(1)’ into MATLAB and press enter. MATLAB Figure
window 14 (reproduced here) indicates the Poiseuille analytical solution, which should be lined up.
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LB results overlaying analytical Poiseuille profile




