
Water retention of prefractal porous media generated
with the homogeneous and heterogeneous algorithms

Michael C. Sukop1

Department of Agronomy and Center for Computational Sciences, University of Kentucky
Lexington, Kentucky, USA

Edmund Perfect2

Department of Agronomy, University of Kentucky, Lexington, Kentucky, USA

Nigel R. A. Bird
Silsoe Research Institute, Silsoe, Bedford, England, UK

Abstract. Fractal models of porous media are of interest in numerous scientific
disciplines, including hydrology and soil science. This interest arises in part from the
ability of these models to parsimoniously produce highly complex and richly structured
geometries. Examination of the soil hydrology literature suggests that there are at least
two different ways these models are being constructed. We review the two primary
algorithms and compare the computed water retention behavior of the different media.
Water retention is computed using a method that explicitly considers the connections
between pores and to the atmosphere. The distributions of simulated water saturations
(for 1000 realizations) around their median values as a function of applied tension were
complex and multimodal for both homogeneous and heterogeneous prefractals. The range
between the first and third quartiles for the water retention in heterogeneous prefractal
structures was, on average, more than twice as large as that for the homogeneous
prefractals. This suggests that relations between fractal parameters used to construct the
porous media and the water retention behavior of the media can be more readily
determined for homogeneous prefractals.

1. Introduction

Fractal models of porous media are enjoying considerable
popularity [e.g., Adler and Thovert, 1993; Perrier et al., 1995;
Bird and Dexter, 1997; Rieu and Perrier, 1998; Perrier et al., 1999;
Rappoldt and Crawford, 1999]. This is due in part to the rela-
tively small number of parameters that can define a random
fractal porous medium of great complexity and rich structure.
Also, fractal scaling of natural porous media has been widely
anticipated on the basis of the observed power law form of soil
water retention curves [Ahl and Niemeyer, 1989; Tyler and
Wheatcraft, 1990; Rieu and Sposito, 1991a, 1991b, 1991c; Perrier
et al., 1996; Perfect, 1999]. There has been considerable debate
about the validity of the approaches presented in these papers
because they generally neglect pore connectivity [Bird et al.,
1996; Rieu and Perrier, 1998]. One way that this limitation can
be surmounted is to compute retention in simulated realiza-
tions of known fractal porous media using a method that ex-
plicitly accounts for pore connectivity [Perrier et al., 1995; Bird
and Dexter, 1997; Stepanek et al., 1999]. As these and other
types of simulations in fractal porous media become more

widespread, it is valuable to examine the methods used to
generate the media and their properties.

Various modifications of basic fractal-generating algorithms,
such as assemblages of fractal “patches” or fractal cell arrays
[Bird and Dexter, 1997; Rappoldt and Crawford, 1999] and pore-
solid fractals [Perrier et al., 1999] have been proposed and
applied. Our focus is on the most basic models, however, and
we do not address these variants further. Rieu and Perrier
[1998] make the distinction between “mass” and “pore” fractal
models. Only mass fractal models are considered here, though
the issues addressed apply equally to random pore fractal mod-
els. We review fundamental fractal scaling requirements and
contrast different fractal-generating algorithms in terms of
their water retention behavior.

2. Basic Prefractal Porous Media
The fractals we consider first are scale-invariant construc-

tions that follow simple number-size relations. Conceptually,
porous fractals are often constructed from a solid starting mass
by an iterative process of mass removal and rescaling. As a
concrete example, we consider the perhaps familiar Sierpinski
carpet, which has E � 2 (the embedding or Euclidian dimen-
sion), b � 3 (a scale invariance factor), and p � 8/9 (the
probability of a solid at any iteration) (Figure 1a).

Construction begins with a solid square of size 1 � 1 from
which one square area of size 1/3 by 1/3 is removed from the
center. N(r) is the number of solids of the new size remaining
at any iteration (for our example, N(r) � 8 for the first
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iteration), and r is the linear measure of a pore or solid. Note
that r depends on b as r � (1/b)i, where i is the iteration. In
a fractal of unit side length, N(r) � r�D, and the ratio �log
N(r)/log r gives the mass fractal dimension D. As is generally
true for such ratios, point estimates based on individual
pairs of N(r) and r or slope estimates based on numerous
pairs can be computed. For the standard Sierpinski carpet,
N(r) � 8 and r � 1/3 at the first iteration. Hence on the basis
of this pair of N(r) and r, D � �log (8)/log (1/3) � 1.89 � � � .
At the second iteration, N(r) � 64 and r � 1/9. Therefore
D � �log (64)/log (1/9) � 1.89 � � � . Computation of the
double logarithmic slope between the points leads to

D � �
d log N
d log r

� �
� log N
� log r � �

log 8 � log 64
log 1/3 � log 1/9 � 1.89 � � � . (1)

We recover the exact fractal dimension from either procedure.
The porosity (�) of a “true” fractal (in which the generating

process is iterated an infinite number of times) is always unity.
Hence such models are of little use as models of natural porous
media such as soil, aquifer, or reservoir material. However, by
introducing a lower “cutoff” size, where the generating process
ceases, we can maintain a realistic porosity. Thus we can define
such a “prefractal” [Feder, 1988], in which the generating pro-
cess is iterated only i times, in terms of any three of the
following four parameters: D, b, i, and � (or p). The water
retention model of Perfect [1999] describes the drainage of
such a prefractal when a number of assumptions are met.
The model incorporates a tension at dryness (�d) that re-
lates to the iteration i of the fractal. The model can be
written as

S �
�D�E � �d

D�E

�e
D�E � �d

D�E , (2)

where S is the relative saturation, � is the tension of interest,
�e is the air entry tension, and �d is the tension at dryness.

3. Algorithms for Generating Randomized
Prefractal Porous Media
3.1. Homogeneous Algorithm

Clearly, the prefractal in Figure 1a bears little resemblance
to natural porous media like soils and aquifer or reservoir
materials because of its regularity and lack of pore connectiv-
ity. Now the question arises, How are we to construct a ran-
domized version of a prefractal? One method that maintains
strict adherence to the fractal scaling law N(r) � r�D, and
therefore returns the correct fractal dimension using both the
individual point ratios log (N(r))/log (1/r) and the slope
measures, is to assign a random permutation of the integers 1
through bE to each site of a lattice and then retain only those
with an integer value j � pbE as solids. Iterating this algorithm
produces prefractal porous media that can be classified as
homogeneous [Gouyet, 1996]. This approach has also been
called “constrained curdling” [Mandelbrot, 1983].

For the classical Sierpinski carpet, 1 � j � 9, p � 8/9, b �
3, and E � 2. Hence sites with j � 8/9 � 32 (i.e., j � 8) are
retained as solids. For the second iteration the same algorithm
is applied independently to each of the eight solids that remain
and so on for subsequent iterations. Figure 1b shows the re-

Figure 1. (a) Sierpinski carpet constructed to fourth iteration
(solids indicated by white; voids indicated by black). (b) Random-
ized Sierpinski carpet constructed to fourth iteration with the
homogeneous algorithm. Note that the number of pores of each
size class (neglecting coalescence) is in strict agreement with the
number in the standard Sierpinski carpet (Figure 1a). (c) Ran-
domized Sierpinski carpet constructed to fourth iteration with the
heterogeneous algorithm. Note that the number of pores of each
size class does not agree with the number in the standard Sier-
pinski carpet (Figure 1a) or the randomized carpet in Figure 1b.
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sults of the application of this algorithm. If we neglect the
coalescence of adjacent pores, there is exactly one large pore
(and hence eight solids) at the first iteration, and there are
exactly eight new pores at the second iteration. Pore coales-
cence does not affect the total porosity but may be of signifi-
cance in the study of water retention.

3.2. Heterogeneous Algorithm

Bird and Dexter [1997] and Rappoldt and Crawford [1999]
present random prefractal models of porous media. In both
cases some of these prefractals were constructed using an al-
gorithm that can be summarized as follows: (1) Choose a
probability p that a site is a solid. (2) For each site in a space
divided into bE sites, generate a uniformly distributed random
number in the interval [0, 1]. (3) If the random number is
greater than p , make the site a pore. Models generated with
this algorithm can be classified as heterogeneous [Gouyet,
1996] as opposed to the homogeneous model we present in
Figure 1b. Mandelbrot [1983] uses the term “canonical cur-
dling” to describe this approach. The defining characteristic of
a heterogeneous model is that N(1/b) (the number of solids
out of bE possible choices each time the pore/solid assignment
is made and henceforth simply N) is a random variable. Let us
consider the behavior of this algorithm. Say that we wish to
generate a randomized Sierpinski carpet. Hence p � 8/9 (�
0.888 � � �). We generate nine realizations of bE (�9) random
numbers and show them in Table 1. It is clear from Table 1 that
this algorithm often fails to return the number of solids (eight
for the Sierpinski carpet) needed to satisfy the simple fractal
scaling law N(r) � r�D. For the first realization on the first
line, N(r) � 7 and r � 1/3. Hence the fractal dimension
based on the point estimate is D � �log (7)/log (1/3) �
1.77 � � � rather than D � 1.89 � � � as is characteristic of the
classical Sierpinski carpet (Figure 1a).

Figure 1c shows a randomized Sierpinski carpet based on the
heterogeneous algorithm. In this realization, there are no
pores at the first iteration (like realization 4 of Table 1) and
only six (again ignoring pore coalescence) at the second level.
The point estimates of the fractal dimension are 2.000, 1.965,
1.945, and 1.933 for the first, second, third, and fourth itera-
tions, respectively. Mandelbrot [1983] defines the generalized
similarity dimension for the heterogeneous case as D* � log
�N�/log (1/b), where �N� is the expectation of N(1/b). If the
algorithm does not yield the empty set, then the pointwise
dimensions (i.e., D � �log N(1/bi)/log (1/bi)) tend to the
limit D* with increasing iteration of the fractal structure. For
a homogeneous medium, there is a finite set of dimensions
corresponding to the allowed rational values of p; whereas for
the heterogeneous case, there is an infinite set. The slope

estimate also tends to the limit D* as the number of iterations
increases. We obtain a slope estimate of 1.9096 after four
iterations in comparison with the limiting value of 1.89 � � � .

Prefractal structures generated with the homogeneous algo-
rithm exhibit variable pore connectivity, but, for a given choice
of p , they have a unique fractal dimension and, associated with
this, a unique pore size distribution (ignoring pore coales-
cence) and porosity. The heterogeneous prefractal models dis-
play additional levels of complexity, with variable inferred frac-
tal dimension, pore size distribution, and porosity.
Consequently, the simulation of soil processes in these two
models will exhibit differences reflecting the different levels of
complexity. In particular, the simpler homogeneous algorithm
generates model porous media that share a common pore size
distribution and porosity. This offers an opportunity to isolate
the impact of variable pore connectivity as a function of a
uniquely defined fractal dimension.

4. Application to Water Retention
4.1. Previous Work and Method

In perhaps the first paper to explicitly consider the effects of
pore connectivity on water retention in a prefractal model of
porous media, Bird and Dexter [1997] computed moisture ten-
sion relations in two-dimensional prefractal pore networks.
They simulated drainage in b � 3 and i � 5 randomized
Sierpinski carpets by allowing three sides of the prefractal
structure to be open to the atmosphere, while the bottom was
connected to a water sink. At a given tension all pores of size
greater than r that are filled with water and are connected to
the atmosphere by at least one path consisting of pores no
smaller than r drain. Note that this approach also neglects the
coalescence of pores that can lead to pores larger than any
particular size r computed from the fractal scaling equations.
For example, consider the largest pore of Figure 1b, which is
enlarged relative to the 1/3 � 1/3 size produced by the fractal-
generating process because of its connection to other pores.
The tension at which a pore drains completely is taken as
inversely proportional to the size r , as it is in the Young-
Laplace equation. This approach is therefore similar to most
others in its assumption of purely capillary behavior. The ap-
proach is different from most others, however, in that it con-
siders the pore connectivity.

4.2. Results

Bird and Dexter [1997] considered only heterogeneous pre-
fractals in their work. Figure 2 compares water retention sim-
ulations on prefractal media generated with the homogeneous
and heterogeneous algorithms at three different p values using

Table 1. Nine Realizations of Nine Random Numbers in [0, 1]a

Realization Random Numbers in [0, 1] N

1 0.8712 0.606 0.2482 0.4722 0.566 (0.9357) 0.3504 (0.9946) 0.0136 7
2 0.5845 0.8111 (0.9886) 0.7324 0.7607 0.6739 0.613 0.8774 0.7895 8
3 0.6026 0.4618 0.5643 (0.9806) 0.3452 0.4279 0.3377 0.6259 (0.8996) 7
4 0.4882 0.0937 0.2205 0.6668 0.4475 0.8328 0.636 0.2119 0.0022 9
5 (0.9426) 0.1027 0.8775 0.6831 0.5158 0.1713 0.5166 (0.9155) 0.5163 7
6 0.3465 0.8745 0.7276 0.8754 0.1573 0.4406 0.5195 0.1343 0.6244 9
7 0.1997 0.0608 0.8531 0.5077 (0.9809) 0.7524 0.6264 (0.9681) 0.2652 7
8 0.0981 0.8472 0.1777 0.4679 0.2988 0.6155 (0.9492) 0.6199 0.399 8
9 0.6521 0.4541 0.5403 0.2448 0.1546 0.2542 0.2235 0.6408 (0.9776) 8

aValues greater than p � 8/9 (pores) are in parentheses. N denotes the number of solids created by the heterogeneous algorithm.
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Figure 2. Impact of homogeneous and heterogeneous fractal-generating algorithms on simulated water
retention for 1000 realizations of two-dimensional b � 3 and i � 5 prefractal porous media with different
p values: (a) p � 8/9, (b) p � 7/9, and (c) p � 6/9.
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the method of Bird and Dexter [1997]. Here logb � is the scaled
log of tension. As noted in section 2, r depends on b as r �
(1/b) i, where i is the iteration. Because � � 1/r � bi in the
Young-Laplace equation, taking logarithms yields log � � i log
b or logb � � i . Hence logb � can be represented by the
prefractal’s iteration i . The p values, 6/9, 7/9, and 8/9, were
selected to maintain a reasonable range of porosities. The
porosity of a homogeneous prefractal is given by 1 � pi, but
the porosity of a heterogeneous prefractal is not predictable a
priori. After five iterations the homogeneous structure poros-
ities ranged from 45 to 87%, while those from the heteroge-
neous algorithm ranged from 32 to 97%.

Figure 2 reveals an important distinction between the fractal
algorithms; there is, in general, less variability in the computed
drainage curves for the structures generated with the homoge-
neous algorithm. This must be the case because all homoge-
neous structures belong to a subset of the possible heteroge-
neous structures. The distributions of simulated water
saturations around their median values as a function of applied
tension were complex and multimodal for both homogeneous
and heterogeneous prefractals. Therefore we use nonparamet-
ric statistics to summarize the results. These distributions re-
flect the complex connectivity conditions that arise in these
porous media.

The principal findings are that the range of saturations be-
tween the first and third quartiles for water retention in het-
erogeneous prefractal structures was, on average, more than
twice as large as that for homogeneous prefractals (Table 2).
Thus the effects of pore connectivity on water retention for a
particular set of prefractal parameters can be better elucidated
by the less variable structures generated with the homogeneous
algorithm.

The deviation in the median saturations for the homoge-
neous and heterogeneous algorithms when p � 7/9 (Figure
2b) may be explained by different degrees of pore intercon-
nectedness in the prefractal media. The critical fractal dimen-
sion for sample-spanning pore percolation in homogeneous
random prefractal porous media with E � 2, b � 3, and i �
5 is Dc � 1.716 [Sukop et al., 2001]. Pore percolation occurs
in these media when D 	 Dc. When p � 8/9 (D � 1.89 � � �)
both homogeneous and heterogeneous networks are poorly
connected, and air has limited access to the pore system. Con-
sequently, saturation remains high over all tensions. When p �
6/9 (D � 1.63 � � �), both networks are sufficiently well con-
nected to permit significant air invasion. For the intermediate
case, p � 7/9 (D � 1.77 � � �), drainage is always hindered in
the homogeneous structures; whereas for the heterogeneous
structures, a subset of the realizations have higher porosity and

higher connectivity, offering routes for air invasion into the
pore network.

Bird and Dexter [1997] conclude that within certain param-
eter ranges, pore connectivity can make it impossible to accu-
rately measure the pore size distribution from the water reten-
tion curve. The algorithmic differences in assigning pores do
not have a substantial impact on this conclusion.

Figure 2 also shows the predictions of the Perfect [1999]
water retention model (equation (2)). At high p values the
saturations computed considering pore connectivity differ sig-
nificantly from those predicted by this model. The Perfect
[1999] model is directly based on prefractal porous media of
the type investigated in this note, except that complete pore
connectivity (including a path of larger pores connecting any
given pore to the atmosphere) and no coalescence of pores are
assumed. Under those circumstances the air entry tension is
always related to the size of the largest pores, and the tension
at dryness is always related to the smallest pore size. The
largest pore size is determined by the scaling factor b (for a
carpet of unit side length it is 1/b), and the smallest pore size
is determined by the scaling factor and the iteration level i (it
is 1/bi). Through the Young-Laplace equation the air entry
tension and the tension at dryness are also completely deter-
mined by these parameters: �e � 1/b and �d � 1/bi. Taking
logarithms and ignoring any constants yields logb �e � 1 and
logb �d � 5 for the fifth iteration porous media under con-
sideration in Figure 2.

Thus, if the assumptions of the Perfect [1999] model are met,
�d in (2) is determined by the smallest pore size. In random-
ized prefractal media, however, pore connectivity is usually
incomplete, and dryness cannot be achieved at any tension if
pores containing water are isolated. This is most significant
when the connectivity of the pore network is low (i.e., when the
fractal dimension of the medium is high and the porosity is
low). Figure 2a shows that because of pore isolation, little and
eventually no reduction in saturation occurs when tension is
increased. The optimal �d is therefore infinite. At lower p
values (higher porosity, see Figure 2c) the Perfect model works
significantly better.

5. Conclusions
We have demonstrated the increased variability in computed

soil water retention that results from application of the heter-
ogeneous algorithm as compared to results obtained with the
homogeneous algorithm. The distributions of simulated water
saturations around their median values as a function of applied
tension were complex and multimodal for both homogeneous
and heterogeneous prefractals. The range between the first
and third quartiles for the water retention in heterogeneous
prefractal structures was, on average, more than twice as large
as that for the homogeneous prefractals. This suggests that the
homogeneous algorithm may be superior when the goal is to
test the effect of fractal dimension on processes occurring in
the medium. Fitting the Perfect [1999] model to experimental
water retention data does not necessarily yield an estimate of
the mass fractal dimension of the underlying porous medium
because of incomplete pore connectivity and an assumption of
purely capillary behavior.
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Table 2. Ratio of Interquartile Ranges of Saturation for
Heterogeneous and Homogeneous Algorithms at Each
Tension for Varying pa

logb � p � 8/9 p � 7/9 p � 6/9

1 
b 1.76 
b

2 3.52 5.33 2.90
3 3.53 2.98 1.75
4 3.43 2.33 2.01
5 3.39 1.58 1.96

aDifference between first and third quartiles for the heterogeneous
case is divided by the difference between the first and third quartiles
for the homogeneous case.

bInterquartile range of homogeneous results equals 0.
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