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Space Geodetic Techniques

Globa Positioning System Interferometric Synthetic
(GPS) Aperture Radar (InSAR)

Measures point positioning Measures surface changes

e 3-D vector  Line of sight (LOS)
e Absolute measurement » Relative measurement

Sub-cm level detection capability

High spatial resolution (7-50 m pixel)
Low temporal resolution

Higher sensitivity to vertical movements

 mm-level accuracy (sub-mm/yr)

» Low spatial resolution

» High temporal resolution

* Horizontal components are more accurate



Geodetic observations

Continuous GPS time series (ROCH-N)

Dok vt Kiadel:  roch, nedth

e Rigid plate motion
e Crustal deformation

— Earthquake
deformation cycle

— Creep
— Transient (slow EQs)

* Non-tectonic crustal
movements
— Seasonal variations
— Hydrology
— Man-induced
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ODbjectives

e Plate Motion

— Does Baja California behave as a rigid block/s?

— Does Baja California move as part of the Pacific plate, as assumed
by global plate models?

— If not, what is the relative motion between Baja and the other
major plates (NA, Pa)?

e Crustal deformation

— Where does the present-day deformation occur (mainly
interseismic)?

— What are the present-day slip rates along the main active faults?
— Are there additional unaccounted deformation processes (creep,
post-seismic, others)?

e Model constraints

— What can we learn about crustal properties?

— What can we learn about faulting and other deformation
processes?



Plate motion

 global plate models consider Baja as part of PA.
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Plate motion

Velocity w/r to Pacific plate.

GPS observation:
e Coastal site in Baja, south of

the Agua Blanca Fault show 3-
8 mm/yr motion w/r to the
Pacific plate.

The relative motion between
Baja and Pacific plate is
absorbed by a “Baja
California Shear Zone”
(analogous to ECSZ).

Dixon et al. (2000)



Plate motion
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Velocity w/r to stable Pacific plate.
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Plate motion
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Conclusion:

* The central part of Baja California moves as a
rigid block. The residuals at Baja vary between
3-5 mm/yr,

» Baja does not move with the full Pacific rate.
Thus the Gulf of California does not
accommodate the full PA-NA motion.

» The sites north of the Agua Blanca fault and in
the Cabo region are subjected to -crustal
deformation.




Crustal deformation
Co-seismic

e The 1940 Mw=7.1 and 1979
Mw=6.6 Imperial Valley
earthquakes were studied
using geodetic data
(levleing, triangulation and
trilateration) collected in
1931, 1941, 1978, 1981

o The studies estimated a
right-lateral slip of 0.8-4.8
m (2 segments) for the 1940
event and 1-4 m for the
1979 event.

Reilinger (1984)

R o King and Thatcher (1998)
1940 Mw=7.1 Imperial Valley EQ




Crustal deformation
Post-seismic

o Geodetic data indicate 30-75 cm of post-seismic
deformation following both 1940 and 1979
Imperial Valley EQs.

* The post-seismic deformation was described as
creep occurring during 6 month after the main
events.

Reilinger (1984), Langbein et al. (1983).



Crustal deformation
Inter-seismic
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Bennett et al. (1996)
o First GPS derived velocity field for northern Baja.

» Using dislocation models they estimated slip rate

for major fault segments.
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The SCEC 2.0 velocity field
(released In 1998)
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2-D Deformation Analysis
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Quasi 2-D Deformation Analysis
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Analysis of the SCEC 3.0 V-field
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Crustal deformation
Inter-seismic
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Crustal deformation
Inter-seismic
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Conclusions:

 Slip rate of the Agua Blanca and San Miguel Vallecitos faults is 4-8 mm/yr.

 Elastic half-space models predict roughly equivalent slip rates for the two
faults, in the range 2—4 mm/yr.

* Viscoelastic models suggest that the Agua Blanca fault slips at a long-term
rate of about 6 £ 1 mm yrl, while the San Miguel-Vallecitos fault slips at
about 1 £ 1 mm yrl, in better agreement with geological data.

Dixon et al. (2002)



Crustal deformation
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GPS measurements across the Imperial
Fault show ~45 mm/yr of slip
Using Elastic dislocation model, they show
slip partitioning: 35 mm/yr below 10 km
and 10 mm/yr above 3 km.

Lyons, Bock, & Sandwell (2003)



Crustal deformation
Creep
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INSAR measurements of the southern Salton Trough area show:

e 12-18 mm/yr creep along the southern San Andreas Fault.

e 10 cm of triggered slip following the 1992 Landers EQ.
Lyons & Sandwell (2003)
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Aseismic slip and 09/05 earthquake swarm

10
NW

5 -

0

_s}  InSAR

— Seismicity
1 | —Mw 5.7
-5 0 ] 10 15

Distance along profile (km)

Seismicity alone can’t explain observed deformation
Mw 5.7 total slip required vs. Mw 5.3 recorded (5x as big)



Creep on Cerro Prieto fault
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o QObserved discontinuity across fault

« Temporally variable, need more observations _



Model constraints

Gina’s new GPS network -
transect across the Gulf




Model constraints
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Model constraints

GPS velocity field (1996-2004)
Horizontal components show
right-lateral shear + extension

Fault Hormmal Extention Rate
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Fault normal extension can be
explained by a locked fault model
with 1.6£0.2 mm/yr dip-slip motion

Kim Outerbridge et al.
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Summary

* Plate Motion
— Central Baja behave as a rigid block.
— It moves w/r to the Pacific plate at a rate of 3-8 mm/yr.
— The relative motion between Baja and Pacific is absorbed by a “Baja
California Shear Zone”

Crustal deformation
— Co- and Post-seismic: leveling, triangulation, trilateration measurements indicate:
e right-lateral slip of 0.8-4.8 m for the 1940 EQ); 1-4 m for the 1979 EQ.
» 30-75 cm of post-seismic deformation following both events.

— Inter-seismic: GPS measurements show strain accumulation across main
faults segments. Derived slip-rates are 3-45 mm/yr.

— Creep: GPS and InSAR measurements indicates 9-18 mm/yr creep along
the southern San Andreas and the Imperial faults. INSAR also shows 10 cm

of triggered slip following the 1992 Landers EQ.

e Model constraints

— Geodetic measurements can constrain estimates of crustal strength and its
lateral variations.

— GPS observed vertical movements in northern Baja suggests a long
wavelength (deep) uplifting process, possibly delamination of mantle lithos.
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