Deep creep, seismicity, and earthquake potential along the southern San Andreas Fault System

Shimon Wdowinski

The San Andreas Fault System

Major fault segments

Earthquake-induced deformation

Elastic rebound theory (Read, 1910)

- Elastic strain accumulation
- Strain release during large Earthquakes

The earthquake deformation cycle

- Co-seismic: large EQ
- Post-seismic
- Inter-seismic
- Pre-seismic

Locked fault model

More complex models

Schwartz and Rokosky (2007)

Geology, April 2007; v. 35; no. 4; p. 311-314;

Diffuse interseismic deformation across the Pacific–North America plate boundary

Shimon Wdowinski Division of Marine Geology and Geophysics, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149-1098, USA

Bridget Smith-Konter Yehuda Bock David Sandwell

Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, La Jolla, California 92093-0210, USA

Maximum horizontal shear

San Jacinto Fault

Locking depth - 9-12 km Slip rate – 15-18 mm/yr

S. San Andreas Fault

Locking depth – 17-20 km Slip rate – 22-24 mm/yr

San Jacinto Fault

Locking depth - 9-12 km Slip rate – 17-21 mm/yr

S. San Andreas Fault

Locking depth – 17-20 km Slip rate – 24-28 mm/yr

Relocated earthquake catalog

Lin et al. (2007)

A New Catalog of Southern California Earthquakes, 1800–2005

Yan Y. Kagan and David D. Jackson

Department of Earth and Space Sciences, University of California

Yufang Rong

AIR-worldwide Corporation, Boston, Massachussets

▲ Figure 1. Epicenter distribution of earthquakes in southern California, 1800-2005. Black beach balls—known solutions; gray beach balls imputed solutions, obtained through interpolation from known focal mechanisms. A 6-point box (Equation 2) is shown. Earthquake distribution is considered to be reasonably homogeneous and complete in this box for the CalTech catalog (L. M. Jones, private communication, 2002).

Interaction of the San Jacinto and San Andreas Fault Zones, Southern California: Triggered Earthquake Migration and Coupled Recurrence Intervals

Christopher O. Sanders

Accepted explanation for high seismic level along the SJF:

Wesnousky (1990): seismic productivity is controlled by structural complexity of fault systems

Main fault segments

S. San Andreas Fault

Central San Jacinto Fault

Seismicity + Geodesy

The Anza Gap

The Anza Gap

Deep Creep

Aftershock sequence

Possible Triggered Aseismic Slip on the San Jacinto Fault (Agnew and Wyatt, 2005)

- We report evidence for deep aseismic slip following a recent earthquake on the San Jacinto fault (12 June 2005, 15:41:46.27, or 2005:163.654), based on data from long-base strainmeters at Pinon Flat Observatory (PFO).
- This magnitude 5.2 shock occurred within a seismic slip gap, but in in a region of abundant small and moderate earthquakes that lie to the SE of a 15-km section of fault that is relatively aseismic (a seismicity gap).

Transient deformation

Implications for seismic hazard assessments

New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement

by Donald L. Wells and Kevin J. Coppersmith

Table 2A Regressions of Rupture Length, Rupture Width, Rupture Area, and Moment Magnitude (M)

	Slip	Number of	Coefficients and Standard Errors		Standard Deviation	Correlation Coefficient	Magnitude	Length/Width
Equation*	Type†	Events	a(sa)	b(sb)	3	r	Range	Range (km)
$\mathbf{M} = a + b * \log (SRL)$	SS	43	5.16(0.13)	1.12(0.08)	0.28	0.91	5.6 to 8.1	1.3 to 432
	R	19	5.00(0.22)	1.22(0.16)	0.28	0.88	5.4 to 7.4	3.3 to 85
	N	15	4.86(0.34)	1.32(0.26)	0.34	0.81	5.2 to 7.3	2.5 to 41
	All	77	5.08(0.10)	1.16(0.07)	0.28	0.89	5.2 to 8.1	1.3 to 432
$\log (SRL) = a + b * M$	SS	43	-3.55(0.37)	0.74(0.05)	0.23	0.91	5.6 to 8.1	1.3 to 432
	R	19	-2.86(0.55)	0.63(0.08)	0.20	0.88	5.4 to 7.4	3.3 to 85
	N	15	-2.01(0.65)	0.50(0.10)	0.21	0.81	5.2 to 7.3	2.5 to 41
	All	77	-3.22(0.27)	0.69(0.04)	0.22	0.89	5.2 to 8.1	1.3 to 432
$\mathbf{M} = a + b * \log (\text{RLD})$	SS	93	4.33(0.06)	1.49(0.05)	0.24	0.96	4.8 to 8.1	1.5 to 350
	R	50	4.49(0.11)	1.49(0.09)	0.26	0.93	4.8 to 7.6	1.1 to 80
	N	24	4.34(0.23)	1.54(0.18)	0.31	0.88	5.2 to 7.3	3.8 to 63
	All	167	4.38(0.06)	1.49(0.04)	0.26	0.94	4.8 to 8.1	1.1 to 350
$\log (RLD) = a + b * M$	SS	93	-2.57(0.12)	0.62(0.02)	0.15	0.96	4.8 to 8.1	1.5 to 350
	R	50	-2.42(0.21)	0.58(0.03)	0.16	0.93	4.8 to 7.6	1.1 to 80
	N	24	-1.88(0.37)	0.50(0.06)	0.17	0.88	5.2 to 7.3	3.8 to 63
	All	167	-2.44(0.11)	0.59(0.02)	0.16	0.94	4.8 to 8.1	1.1 to 350
$\mathbf{M} = a + b * \log (\mathbf{RW})$	SS	87	3.80(0.17)	2.59(0.18)	0.45	0.84	4.8 to 8.1	1.5 to 350
	R	43	4.37(0.16)	1.95(0.15)	0.32	0.90	4.8 to 7.6	1.1 to 80
	N	23	4.04(0.29)	2.11(0.28)	0.31	0.86	5.2 to 7.3	3.8 to 63
	All	153	4.06(0.11)	2.25(0.12)	0.41	0.84	4.8 to 8.1	1.1 to 350
$\log (RW) = a + b * M$	SS	87	-0.76(0.12)	0.27(0.02)	0.14	0.84	4.8 to 8.1	1.5 to 350
	R	43	-1.61(0.20)	0.41(0.03)	0.15	0.90	4.8 to 7.6	1.1 to 80
	N	23	-1.14(0.28)	0.35(0.05)	0.12	0.86	5.2 to 7.3	3.8 to 63
	All	153	-1.01(0.10)	0.32(0.02)	0.15	0.84	4.8 to 8.1	1.1 to 350
$\mathbf{M} = a + b * \log (\mathbf{RA})$	SS	83	3.98(0.07)	1.02(0.03)	0.23	0.96	4.8 to 7.9	3 to 5,184
	R	43	4.33(0.12)	0.90(0.05)	0.25	0.94	4.8 to 7.6	2.2 to 2,400
	N	22	3.93(0.23)	1.02(0.10)	0.25	0.92	5.2 to 7.3	19 to 900
	A11	148	4.07(0.06)	0.98(0.03)	0.24	0.95	4.8 to 7.9	2.2 to 5,184
$\log (RA) = a + b * M$	SS	83	~3.42(0.18)	0.90(0.03)	0.22	0.96	4.8 to 7.9	3 to 5,184
	R	43	~3.99(0.36)	0.98(0.06)	0.26	0.94	4.8 to 7.6	2.2 to 2,400
	N	22	-2.87(0.50)	0.82(0.08)	0.22	0.92	5.2 to 7.3	19 to 900
	All	148	~3.49(0.16)	0.91(0.03)	0.24	0.95	4.8 to 7.9	2.2 to 5,184

*SRL—surface rupture length (km); RLD—subsurface rupture length (km); RW—downdip rupture width (km), RA—rupture area (km²). †SS—strike slip; R—reverse; N—normal.

Earthquake potential

	San Jacinto	S. San Andreas
Locking depth (rupture width)	9-12 km	17-20 km
Magnitude	6.3-6.8	7.4-7.6
Rupture length	15-20 km	100-120 km
Average Displacement	1.5-3 m	4-7 m
Slip rate	15-21 mm/yr	22-28 mm/yr
Repeat time	105-170 yrs	200-300 yrs

The Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2)

By 2007 Working Group on California Earthquake Probabilities*

USGS Open File Report 2007-1437 CGS Special Report 203 SCEC Contribution #1138 Version 1.0

2008

Participation Probabilities

Table A. 30-year probability of M \bullet 6.7 events on the Type-A faults, rounded to the nearest percent.

Fault	WGCEP (2007) Mean [Min-Max]	WGCEP (2003) Mean [2.5% and 97.5%]	WGCEP (1995) Mean
S. San Andreas	59% [22-94]		53%
Hayward-Rodgers Creek	31% [12-67]	27% [10-58]	
San Jacinto	31% [14-54]		61%
N. San Andreas	21% [6-39]	23% [3-52]	
Elsinore	11% [5-25]		24%
Calaveras	7% [1-22]	11% [3-27]	
Garlock	6% [3-12]		