Geodesy in the 21st century

Shimon Wdowinski University of Miami Susan Eriksson UNAVCO

Geodesy

Geodesy is the science of accurately measuring the Earth's size, shape, orientation, gravitational field and the variations of these quantities with time.

Historical perspective Geodesy is one of the most ancient Earth Science disciplines with roots in the Greek era (600-100 BC).

Eratosthenes (276 BC - 194 BC) measured the shade angle between Alexandria and Syene (Egypt) and distance. He calculated the Earth's circumference as 252,000 strades (roughly 46,000 km, only 15% higher than the current estimate).

Space Geodesy

- Space or satellite geodesy completely revolutionized the field of geodesy in both accuracy and availability of measurements.
- This era began in the 1970's with the utilization of exciting radiotelescope technologies (Very Long Baseline Interferometry –VLBI).

Initial accuracies – 5-10 cm.

Current accuracies – sub-cm.

Space geodetic technologies

- Positioning techniques
- Global Navigation Satellite Systems (GNSS)
- Altimetry
- Interferometric Synthetic Aperture Radar (InSAR)
 - Gravity missions

Positioning techniques

 Very Long Baseline Interferometry (VLBI)

Satellite Laser Ranging

- Lunar Laser Ranging
- Doppler Orbit determination and Radiopositioning Integrated on Satellite (DORIS)

Global Navigation Satellite Systems (GNSS)

• Global Positioning System (GPS)

- GLObal NAvigatsionnaya
 Sputnikovaya Sistema
 (GLONASS)
- Galileo (European, 1st launched 2005)
- **Beidou-1** (China, test launch 2000)
 - **IRNSS** (India, in planning)

Altimetry (Radar or Laser)

- SeaSAT
- GeoSAT
- TOPEX/Posiedon
- Jason-1
- ERS-2
- ENVISAT
- ICESAT
- CryoSAT

Lidar

(Light Detection and Ranging)

Airborne Lidar

Terrestrial Laser Scanner

Interferometric Synthetic Aperture Radar (InSAR)

Data acquisition

- Repeat path (satellites)
- Simultaneous by two antennas (space shuttle)

• SeaSAT

- ERS-1/2
- JERS-1
- RADARSAT-1
- Space Shuttle
- ENVISAT
- ALOS
- RADARSAT-2
- TerraSAR-X
- COSMO-SkyMed

Calculating phase changes

Gravity missions

Measurements of small changes in the Earth's gravitational field

- LAGEOS-1/2
- Ajisai
- CHAMP
- GRACE
- GOCE

GRACE

Applications

(a) Tectonic plate motion (SE)

(e) Global/regional water budget (Hydro)

(i) Magmatic-induced deformation (SE)

(m) Hydrocarbon production (GT)

(b) Geoid determination (SE)

(f) Precipitable water (Atmosphere)

00:20 UTC

(j) Glaciar flow (Cryosphere)

(n) Landslides (Geo-hazard)

(c) Bathymetry (Ocean)

(g) Total Electron Content (Ionosphere)

(k) Urban and infrastructure subsidence (GT) (l) Aquifer-system response (Hydro)

(o) Wetland water level changes (Hydro)

(d) Glacial Isostatic Adjustment (SE)

(h) Earthquake deformation cycle (SE)

(p) River and lakes water level (Hydro)

Solid Earth

(a) Tectonic plate motion (SE)

(d) Glacial Isostatic Adjustment (SE)

(b) Geoid determination (SE)

50 -40 -30 -20 -10 0 10 20 30 40 50

Earthquake-induced deformation (SE)

(i) Magmatic-induced deformation (SE)

Slow slip events

Slip and tremor activity observed for the Victoria area, from Rogers and Dragert, Science, 2003.

Global and continental-scale hydrology

GRACE: Short-term changes of the geoid reflect mainly water and ice mass redistribution

Altimetry: Remote monitoring of water resources

Regional-scale hydrology

Aquifer system deformation (Las Vegas)

Soil moisture

Wetland water level changes

InSAR monitoring of water resources (Everglades, south Florida)

Double bounce effect

Geotechnical

New Orleans subsidence (2002-2004) prior to Hurricane Katrina

Surface subsidence due to oil extraction

Cryosphere

GRACE: changes in the mass of Greenland's ice sheet coverage

InSAR: Glacier flow

Oceanography

Seafloor determination using satellite **altimetry**

Measuring the Atmosphere and Ionosphere

GPS measurements are sensitive to changes in the atmosphere and ionosphere.

Perceptible water

Total Electron Content

Summary

- Space geodetic techniques can measure small changes of the Earth's solid and aquatic surfaces with cm- and sub-cm level accuracy
- The measurement can be applied to a variety of application, including
 - Lithosphere (earthquakes, volcanoes, subsidence)
 - Hydrosphere (oceans, rivers, lakes, wetlands)
 - Cryosphere (icecap, glaciers)
 - Atmosphere & Ionosphere (Perceptible water, TEC)
 - Antroposphere (urban subsidence, oil fields)

Geodesy in the 21st century

Space geodesy has application in areas of great societal impact such as climate change, water resources, and natural hazards and disasters.

New Orleans subsidence

Sea level change