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Plate motion and crustal deformation
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Non-tectonic crustal deformation
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Space geodetic measurements



Global Positioning sttem - GPS

The Global Positioning System (GPS) is
a satellite-based navigation system.

GPS was originally intended for military applications,
but in the 1980s, the government made the system
available for civilian use.

GPS works in any weather conditions, anywhere in
the world, 24 hours a day. There are no subscription
fees or setup charges to use GPS

Some civilian uses:

— Navigation on land, sea, air
and space

— Geophysics research

— Guidance systems

— Geodetic network densification

— Hydrographic surveys




Interferometric SAR - INSAR

Changes in surface location result in
detectable phase changes

~10 ¢cm of uplift produces ~3 fringes of deformation

Two or more data acquisition of the
same area from nearby location (<
1000 m)

Fringes — 1 cycle (2rt) = %2 A



INSAR time series

« Subset of reliable scatterers
* INSAR time series
Low pass filter for removing atmospheric noise

PS Code: 02PFH Vel <199 Coher:034




GPS

ITnSAR

Absolute (3D) displacements
Continuous measurements
Almost no artifact

Horizontal resolution - 1Imm
Vertical resolution - ~ 3mm
Restricted to receiver sites
Requires stable monuments

Line of sight displacements
Periodic measurements
Orbital & atmospheric
artifacts

Horizontal resolution - 15mm
Vertical resolution - 2mm
Complete spatial coverage
Requires no monuments




Gravity Recoverx and Climate ExBeriment (GRACE)

Observational goals: Measure
Earth’ s time-variable gravity field

Science goals: Study surface
mass redistribution impacted by
climate, geodynamic processes,
and humans

Launched March 17, 2002

Two co-orbiting vehicles, nominal
210-km separation

5-yr lifetime extended multiple times
1.6-hr, near-polar orbit,
Altitude steadily decaying (right)



Crustal response to the changing
climate



Direct Observations of Recent Climate Change
-

Gobal mean
temperature

Global average
sea level

Northern hemisphere
Snow cover

IPCC report (2007)

Difference from 1961-1990
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Summer

Arctic ice loss

Arctic Sea Ice Decline

Since 1979, more than

209 of the Polar Ice Cap
has melted away

Summer Arctic Sea
Ice Boundary in 1979

Source: NASA & Natural Resources Defense Council



Greenland ice loss
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Greenland melting
contributed ~0.2-0.4
mm/yr of sea level rise
for period 1990-2000,
may increase in future.

Greenland vs
Antarctica: Greenland
IS not at pole,
impacted by Gulf
Stream (may melt
faster)



Sea Level Rise

Global average ~1.8 mm/yr from 1900-2000

Composed of ~ 0.3- 0.5 mm/yr from mountain
ice, ~0.70 - 1.0 mm/yr from thermal
expansion

Relatively small contribution from Greenland
(<0.5 mm/yr)

Current rate:

— Roughly double?

— Difficult to measure directly (large decadal
fluctuations)

— Direct measurement of melt contribution from
Greenland, Antarctica is important



Greenland ice loss

B
GRACE Rate of Mass Change

Feb 2003 - Feb 2007. Feb 2003 - August 2010.

Satellite monitoring:

GRACE, Lidar,

SAR/mass balance

In principle, could
also use isostasy
(GPS)

Problem: the past
haunts us (visco-
elastic effects:
peripheral bulge
e e s from LGM; LIA)
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Importance of Glacial Isotatic
Adjustment (GIA)

 Both GRACE and Altimetry depend on a
model for GIA

* GIA models depend on:
— Mantle viscosity structure (poorly known)
— Ice melting history (very poorly known)



Mass Accumulation/Loss Estimates

* Does not depend on GIA

* Requires estimation of interior snow
accumulation, peripheral loss by calving
and melting

* Done for each drainage basin, then
summed



rainage
Basins

Rignot et al
2008



Mass Accumulation/Loss

« Subtract two large numbers, each with
uncertainties, to obtain a small number

» Suggests accumulation rate ~ constant,
but increasing loss at margins

 Consistent with GRACE results



GRACE 2003-2008

GRACE Rate of Mass Change
Feb 2003 - Feb 2007 Feb 2003 - August 2010.
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GPS as a Tool for Monitoring Greenland

» Restricted to rocky coast (but that is where loss
IS concentrated)

 MAL studies indicate interior in approximate
mass balance (outflow to edges balanced by
new snow)

 Need to deal with GIA

* Most GIA models predict that Greenland is
subsiding due to peripheral bulge collapse from
Laurentide glaciation



“Correcting” for GIA

« GIA models are “noise source” if we want
to look at present-day melting

* Focus on perturbations to velocity field
(accelerations) rather than velocity field
itself
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GPS Position Time Series
-
The series account for equipment change, annual
variation, and possible rate changes; use 7 parameter
model (red line). All Greenland sites show
acceleration

THU1+THUZ2, wrms 7.9 mm, vV @ 1992 -6.3 +- 0.21 mm/{yr, acc 1.06 +~ 0.02 mmfyr, Annual amp 3.3 mm, Semi-annual amp 1.6 mm
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Reference Frame Effects

* Previous studies have assumed that
deviations from linear trend reflect long
term drift of GPS reference frame

« Evaluate via regional comparisons
(Fennoscandia, Canada)
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Implications of Accelerating Uplift

Accelerating uplift implies accelerating ice loss in
regions with multi-year land ice

Unlikely to be reference frame effect (not
observed in Fennoscandia or northern Canada

Time scale implies mainly elastic response to
mass unloading

Evidence from phase of annual term supports
elastic response



MODIS
Summer 2006
Western Greenland

0 100 km



Modified 2-D Model:
Finite Width Line Load
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Model results

Applicable to western and southeastern
Greenland, where melting is focused in
narrow coastal band

1 mm/yr of increased uplift =>load
change of ~5*107 N/m?

For 1700 km coastal strip in W
Ggeenland, implies acceleration ~8 GT/
yr

Corresponding SE Greenland value ~12
GTl/yr?

~ agreement with GRACE result



June 2001

June 2002

June 2003

LS

~June 14,2001

June 13,2002
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Installed in year 3 ()

Existing site part 4
of GNET

GNET:

will provide
basin-by-
basin

view of ice
health



Vertical displacement (mm)
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Seasonal signal analysis

GPS time series
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Uplift (mm)

Seasonal signal analysis

Summer uplift 2008-2010 Uplift
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Ocean currents, coastal uplift, and ice mass balance

- [em/yr]
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Red arrows indicate the mean path of the warm North Atlantic Current (NAC);
orange arrows indicate Irminger Current (IC), white arrows indicate East
Greenland Current (EGC), West Greenland Current (WGC) and Labrador Current

(LC).



Conclusions

e Perturbations to the vertical velocity field
measured by GPS are sensitive to recent land
iIce melting

o Uplift of Greenland, Iceland and Svalbard is
accelerating

e A simple elastic model for coastal melting in
Greenland gives ice loss is approximate
agreement with other techniques

e Seasonal analysis of GPS time series indicates
that the uplift in 2010 was unusual high for
southern Greenland

 The unusual 2010 conditions were caused by
the warm Irminger water



Crustal response to
Anthropogenic activities

Deformation occurs due to

1) Changes in hydrological loads
o Surface water
 Ground water

2) Sediment compaction



Dead Sea water level drop
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The lowest place on Earth is rising (Nof et al., 2012)
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Satellite-based estimates of groundwater depletion
in India

Matthew Rodell, Isabella Velicogna®>* & James S. Famiglietti’
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Urban subsidence



Venice subsidence

* The city is located

within the Venice waggo 71

Lagoon. rz
 |tis located on an A

archipelago of 128 [

small islands




Alta Aqua



Venice Lagoon (Bock et al., 2012)
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New Orleans Flooding & Subsidence

Lake Pontchartrain

Dixon et al. (2006)



St. Bernards Parish:
PS displacement tlme series in LOS

PS Code: 02PFH Vel: <195 Coher:034
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Mexico City

« Mexico City is built on lake deposits

It subsides at very high rate, up to 25 cm/yr
« The subsidence causes structural damage in many buildings and

to the infrastructure

Imagery: Date

Osmanoglu et al. (2011)



Mexico City

Differential subsidence in Mexico City causes structural damage
to building and infrastructure

Osmanoglu et al. (2011)



Mexico City
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Morelia (Mexico)
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Subsidence is controlled by geological fault

Cigna et al. (2011)



A new NASA project

Applications of InSAR time series imagery for subsidence
hazards and water resources exploitation in
four Mexican metropolitans
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ALOS data processing (Estelle)
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Conclusions
B 0 e

* INSAR, GPS and GRACE are very powerful techniques for
monitoring non-tectonic crustal movements

 The observed deformation occurs in response to climatic or
anthropogenic changes in hydrological load or sediment
compaction

* Our multi-year Greenland study show a noticeable ice melt
acceleration since the mid-1990’ s.

* Our seasonal analysis of the Greenland GPS data indicates
unusual high uplift in 2010, most likely due to the influence of the
warm Irminger current.

* Land subsidence due groundwater extraction occurs in many
urban areas and can cause significant structural damage to

buildings and infrastructure.



SUBSIDENCE & DEFORMATION FORUM

Land Subsidence around Java Island

Where are the places of subsidence around Java?
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sussIDENCE & DEForRmATIoN ForUM
 SSSS——

In period of 1974-2010 a
significant subsidence
happened in Jakarta
area. Four meter
recorded in the north of
Jakarta, two meter in
west area, and one and a
half in the east. Seventy
cm recorded for central
part while 25 cm for
southern area
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