Remote Sensing Observations of Tide Propagation through Coastal Wetlands

Shimon Wdowinski¹, San-Hoon Hong^{1,2},

Amanda Mulcan¹, Brian Brisco³

- 1. University of Miami
- 2. Korea Aerospace Research Institute
- 3. Canada Centre for Remote Sensing
 - Coastal wetlands
 - Remote sensing technique InSAR
 - InSAR observations
 - Significance
 - Summary & acknowledgements

Coastal wetlands

Coastal wetlands are found in the 'transition zone' between land and sea, having both upland and aquatic characteristics.

- Considered among the most productive ecosystems on earth.
- Important economic values

(flood protection, filter nutrients, carbon sequester, recreation ...)

• Their existence is presently being threatened by climate change (sea-level rise) and human interference (e.g. development).

Vice-mayor DuBois' house before and after he illegally cut mangroves

Tidal flow through coastal wetlands

• These fragile ecosystems depend on a continuous water and nutrient replenishment by ocean tidal flow.

Road construction in the Sian Ka'an wetlands (Yucatan) cut tidal flow circulation and destroyed a large mangrove forest.

Tidal flow through coastal wetlands

- While ocean tides are well known and forecasted, tidal flow movements through coastal wetlands are poorly known because vegetation resists and delay the tidal flow.
- The flow is monitored by stage (water level) stations
 - High temporal but low spatial resolution
 - Located in accessible areas, typically along tidal channels

Study area- Western Everglades

Remote sensing of Coastal wetlands

Optical data: sensitive to vegetation not to water flow

Radar (SAR) remote sensing

Radar amplitude data: also sensitive to vegetation

SAR Interferometry (InSAR)

Radar phase data: sensitive to water level changes

What is InSAR?

Water level change measurements)

Interferograms

Locations of the 3 interferograms

Rsat-2 9/23/08-10/17/08

ALOS 8/8/10-9/23/10

From phase to water level change

Tidal-induced water level changes

Water level changes between two SAR acquisitions

Significance

- Characterization of the tidal flushing zone
 - Width (2-3 km on each side of the channels)
 - Length a few km beyond Channel's end.
 - Seasonal variations need to be evaluated.
- Constraining quantitative flow models of tidal propagation through coastal wetlands.

- InSAR is the only remote sensing technique that is sensitive to water level changes beneath the vegetation.
- Most water level changes occur along tidal channels.
- InSAR observations allow us to characterize the tidal flushing zone.
- InSAR observations can be used to constrain high spatial resolution flow models.

Acknowledgements

SAR data

JAXA – ALOS, L-band data
CSA – RADARSAT-2, C-band data
DLR – TerraSAR-X, X-band data
ASI– Cosmo-SkyMed, X-band data

Support

National Institute for Water Research (USGS)
NASA
ONR
SFWMD