MAC 2313 (Calculus III)
Test 1, September 21, 2016

Name:

PID:
Remember that no documents or calculators are allowed during the exam. Be as precise as possible in your work; you must show all your work to deserve the full mark assigned to any question. Do not cheat, otherwise I will be forced to give you a zero and report your act of cheating to the University Administration. Always do your best. Total=85 points on 3 pages.
1 [10] Describe the given surface according to the values of the parameter m; if it is a sphere, state its radius and center. If it is a point, state its coordinates. $x^{2}+y^{2}+z^{2}-4 x-6 m y+10 z+38=0$.
2. [10] a) Set $\vec{u}=\vec{i}-4 \vec{j}+2 \vec{k}, \vec{v}=2 \vec{i}+\vec{j}+\vec{k}$ and $\vec{z}=-2 \vec{i}+\vec{j}+3 \vec{k}$. a) Show that \vec{u}, \vec{v} and \vec{z} are pairwise orthogonal vectors. b) Let $\vec{w}=3 \vec{i}+2 \vec{j}-4 \vec{k}$. Find three scalars a, b and c such that $\vec{w}=\mathrm{a} \vec{u}+\mathrm{b} \vec{v}+\mathrm{c} \vec{z}$.
3. [14] Let $\vec{q}=\vec{i}-\vec{j}+4 \vec{k}$, and $\vec{r}=-2 \vec{i}+\vec{j}-\vec{k}$. a) Find the vector component of \vec{q} that is orthogonal to \vec{r}.
b) If θ is the angle between \vec{r} and \vec{q}, find $\cos (\theta)$ and $\sin (\theta)$.
c) If a force $\vec{F}=-2 \vec{q}$ is applied to move an object 4 meters in the direction of the vector \vec{r}, find the work done by \vec{F}.
4. [12] Set $\vec{u}=\vec{i}-2 \vec{j}+3 \vec{k}, \vec{v}=2 \vec{i}-\vec{j}+\vec{k}$ and $\vec{w}=2 \vec{i}-\vec{j}-\vec{k}$. a) Find the area of the parallelogram having \vec{v} and \vec{w} as adjacent sides. b) Find the volume of the parallelepiped having \vec{u}, \vec{v} and \vec{w} as adjacent edges.
5. [20] a) Show that the two lines $L_{1}: x=1-3 t, \quad y=4+2 t, \quad z=4+3 t$, and $L_{2}: x=3+t, \quad y=4-2 t, \quad z=3-2 t$ intersect, and find their point of intersection A.
b) Find an equation for the plane \mathcal{P} that contains both L_{1} and L_{2}.
c) Find the distance between the plane \mathcal{P} and the point $C(1,-2,-3)$.
6. [4] Find an equation and identify the surface that results when the cone $z=\sqrt{3 x^{2}+3 y^{2}}$ is reflected about the plane: i) $z=0$, ii) $x=z$.

7 [6]. a) Convert from rectangular to spherical coordinates: i) $(3,-\sqrt{3},-2)$. ii) Convert the equation $\theta=\frac{\pi}{4}$ from cylindrical to rectangular coordinates, and identify the surface.
8. [9] a) Find the points of intersection of the line $L: x=1+t, \quad y=2-t, \quad z=5$ and the paraboloid $z=x^{2}+y^{2}$. b) Find an equation for the plane that contains both the line L from part a) and the point $D(2,3,4)$.

