MAC 2313 (Calculus III) Test 1, September 21, 2016

Name:

PID:

Remember that no documents or calculators are allowed during the exam. Be as precise as possible in your work; you must show all your work to deserve the full mark assigned to any question. Do not cheat, otherwise I will be forced to give you a zero and report your act of cheating to the University Administration. Always do your best. Total=85 points on 3 pages.

1 [10] Describe the given surface according to the values of the parameter m; if it is a sphere, state its radius and center. If it is a point, state its coordinates. $x^2 + y^2 + z^2 - 4x - 6my + 10z + 38 = 0$.

2. [10] a) Set $\vec{u} = \vec{i} \cdot 4\vec{j} + 2\vec{k}$, $\vec{v} = 2\vec{i} + \vec{j} + \vec{k}$ and $\vec{z} = -2\vec{i} + \vec{j} + 3\vec{k}$. a) Show that \vec{u} , \vec{v} and \vec{z} are pairwise orthogonal vectors. b) Let $\vec{w} = 3\vec{i} + 2\vec{j} \cdot 4\vec{k}$. Find three scalars a, b and c such that $\vec{w} = a\vec{u} + b\vec{v} + c\vec{z}$.

3. [14] Let $\vec{q} = \vec{i} \cdot \vec{j} + 4\vec{k}$, and $\vec{r} = -2\vec{i} + \vec{j} \cdot \vec{k}$. a) Find the vector component of \vec{q} that is orthogonal to \vec{r} .

b) If θ is the angle between \overrightarrow{r} and \overrightarrow{q} , find $\cos(\theta)$ and $\sin(\theta)$.

c) If a force $\overrightarrow{F} = -2\overrightarrow{q}$ is applied to move an object 4 meters in the direction of the vector \overrightarrow{r} , find the work done by \overrightarrow{F} .

4. [12] Set $\vec{u} = \vec{i} \cdot 2\vec{j} + 3\vec{k}$, $\vec{v} = 2\vec{i} \cdot \vec{j} + \vec{k}$ and $\vec{w} = 2\vec{i} \cdot \vec{j} \cdot \vec{k}$. a) Find the area of the parallelogram having \vec{v} and \vec{w} as adjacent sides. b) Find the volume of the parallelepiped having \vec{u} , \vec{v} and \vec{w} as adjacent edges.

- 5. [20] a) Show that the two lines $L_1: x = 1 3t$, y = 4 + 2t, z = 4 + 3t, and $L_2: x = 3 + t$, y = 4 2t, z = 3 2t intersect, and find their point of intersection A.
 - b) Find an equation for the plane \mathcal{P} that contains both L_1 and L_2 .
 - c) Find the distance between the plane \mathcal{P} and the point C(1, -2, -3).

^{6. [4]} Find an equation and identify the surface that results when the cone $z = \sqrt{3x^2 + 3y^2}$ is reflected about the plane: i) z = 0, ii) x = z.

7 [6]. a) Convert from rectangular to spherical coordinates: i) $(3, -\sqrt{3}, -2)$. ii) Convert the equation $\theta = \frac{\pi}{4}$ from cylindrical to rectangular coordinates, and identify the surface.

8. [9] a) Find the points of intersection of the line L: x = 1 + t, y = 2 - t, z = 5 and the paraboloid $z = x^2 + y^2$. b) Find an equation for the plane that contains both the line L from part a) and the point D(2,3,4).