MAC 2313 (Calculus III)

Test 2, Wednesday October 19, 2016

Name:

PID:
Remember that no documents or calculators are allowed during the test. Be as precise as possible in your work; you shall show all your work to deserve any of the points assigned to any question. You will not get any credit if you do not show the steps to your answers. Do not cheat, otherwise I will be forced to give you a zero and report your act of cheating to the University Administration. 3 pages. Total=85 points. Always do your best.

1. [15] a) Describe and sketch the largest region where the function h defined by $h(x, y)=\ln \left(y-x^{2}-1\right)$ is continuous.
b) Describe in words, the domain of the function f given by $f(x, y, z)=\sqrt{x^{2}+4 y^{2}-z^{2}}$
c) Find an equation for the level surface of the function g defined by $g(x, y, z)=\int_{x}^{y z} \frac{t}{t^{2}+1} d t$ that passes through the point $P(1, \sqrt{3}, 1)$.

[^0]3. [10] Decide whether the statement is true or false. No explanation is needed.
a) If $z(t)=f(x(t), y(t))$, then $\frac{d z}{d t}(t)=f_{x}\left(\frac{d x}{d t}, y\right)+f_{y}\left(x, \frac{d y}{d t}\right)$.
b) If $f_{x}(1,2)$ and $f_{y}(1,2)$ both exist, then f is continuous at $(1,2)$.
c) If f is differentiable at $(7,2,-9)$, then f is continuous at $(7,2,-9)$.
d) If $\lim _{(x, y) \rightarrow(-1,1)} f(x, y)=3$, then $f(x, y) \rightarrow 3$ as (x, y) approaches $(-1,1)$ along the line $y=1$ and $f(x, y) \rightarrow 3$ as (x, y) approaches $(-1,1)$ along the parabola $y=1+(x+1)^{2}$.
e) If $f=f(x, y, z)$ is differentiable at the point $B(-1,4,-5)$, then the directional derivative of f at B in the direction of the vector $\vec{r}=\frac{1}{2}(\vec{i}-\sqrt{2} \vec{j}+\vec{k})$ is given by $D \vec{r} f(B)=\nabla f(B) \cdot \vec{r}$.
4. [7] Evaluate each limit. If a limit does not exist, explain why.
a) $\lim _{(x, y, z) \rightarrow(-1,1,2)} \frac{x y z}{x^{2}+y^{2}+z^{2}}$
b) $\lim _{(u, v) \rightarrow(1,-1)} \frac{u^{3}+v^{3}}{u^{2}-v^{2}}$
5. [20] a) Find an equation for the tangent plane and parametric equations for the normal line to the surface $3 \sqrt{x^{2}+y^{2}}-2 \sqrt{y^{2}+z^{2}}=1$ at the point $(1,0,1)$.
b) Set $h(x, y, z)=x y \cos (y z)$ Find the local linear approximation of h about the point $P(1,1 / 2, \pi)$, then, use it to approximate $h(1.01,0.498,(0.99) \pi)$.
c) Find a unit vector in the direction in which the function h in b) increases most rapidly at the point P, and find the rate of change of h at P in that direction.
6. [12] Let $f(x, y)=x^{2}+x^{2} y-y^{2}-4 y+1$. Find all the critical points of f and classify each of them as a local maximum, a local minimum, or a saddle point.
7. [6] Use implicit partial differentiation to find the partial derivatives $\frac{\partial y}{\partial x}$ and $\frac{\partial y}{\partial z}$ if $y z+x \sin (x y)=1$.

[^0]: 2. [15] a) Write down the definition of " f is differentiable at $\left(x_{0}, y_{0}\right)$ ". b) Use the definition in a) to show that the function f given by $f(x, y)=2 x y-y^{2}$ is differentiable at $(1,-1)$.
