MAC 2313 (Calculus III)

Test 2, Friday April 13, 2012

Name:
PID:

Remember that no documents or calculators are allowed during the test. Be as precise as possible in your work; you shall show all your work to deserve the full mark assigned to any question; answers without any explanation won't get any credits. Do not cheat, otherwise I will be forced to give you a zero and report your act of cheating to the University Administration. Good luck.

1. [20] Evaluate each integral.
a) $\int_{1}^{2} \int_{y}^{2} \int_{0}^{\sqrt{3} z} \frac{z}{z^{2}+x^{2}} d x d z d y=$
b) $\int_{\frac{\pi}{2}}^{\pi} \int_{1}^{2} y \sin (x y) d x d y=$
c) $\mathrm{I}=\iint_{R} e^{\left(x^{4}\right)} d A$, where R is the region bounded by the curves $y=0, y=x^{3}, x=2$.
d) Evaluate the line integral along \mathcal{C} given by \mathcal{C} : $x=t, y=3 \sin t, z=3 \cos t, 0 \leq t \leq \pi$.
$\int_{\mathcal{C}} \frac{e^{x}}{y^{2}+z^{2}} d s=$
2. [10] Use the change of variables $u=x-y, v=x+y$ to evaluate $\iint_{R}(x+y) e^{x^{2}-y^{2}} d A$, where R is the rectangular region enclosed by the lines $x+y=0, x+y=1, x-y=1, x-y=3$.
3. [20] a) Set up, but do not evaluate, an iterated integral equal to the surface integral $\iint_{\sigma} y^{2} z d S$, where σ is the portion of the cylinder $x^{2}+z^{2}=4$ in the first octant between the planes $y=0, y=6, x=z$, and $x=2 z$.
b) Use cylindrical coordinates to find the volume and the centroid of the solid bounded below by the paraboloid $z=x^{2}+y^{2}$ and above by the plane $z=3$.
c) Reverse the order of integration in the following integral $\int_{0}^{2} \int_{e^{y}}^{e^{2}} f(x, y) d x d y=$
4. [10] a) State Green's Theorem.
b) Can we use it to evaluate the line integral $\int_{\mathcal{C}}\left(e^{y}+\cos \left(1+e^{\sin x}\right)\right) d x+x e^{y} d y$, where \mathcal{C} is the portion of the circle $x^{2}+y^{2}=4$ going from $(2,0)$ to $(0,-2)$ in the counterclockwise direction? Clearly explain your answer, but do not evaluate the line integral.
5. [15] Find the maximum and minimum values of the function $f(x, y, z)=x+2 y+3 z$ on the ellipsoid $x^{2}+2 y^{2}+$ $2 z^{2}=1$.
6. [12] Let G be the solid in the first octant bounded below by the cone $z=\sqrt{x^{2}+y^{2}}$ and above by the cone $z=4-\sqrt{x^{2}+y^{2}}$. Express the volume of G (Do not evaluate any of the integrals involved, but include all integration limits) using:
a) rectangular coordinates: $V=$
b) cylindrical coordinates: $V=$
c) spherical coordinates: $V=$
7. [15] Let $F(x, y)=(2 x y+\sin x) \vec{i}+\left(x^{2}+\cos y\right) \vec{j}$. a) Show that F is conservative. b) Find a potential function φ for F. c) Evaluate the line integral $\int_{\mathcal{C}}(2 x y+\sin x) d x+\left(x^{2}+\cos y\right) d y$ along the curve \mathcal{C} parametrized by $\vec{r}(t)=\sqrt{1+t} \vec{i}+\sin ^{-1} t \vec{j}, \quad 0 \leq t \leq 1$.
