Density-Dependent Population Growth

Logistic Population Growth

 Density-independent models assume
unlimited resources such that b and d are

constant

e Consider:
b \ d /




Density-Dependent Population Growth

where b’ =b —aN
b= birth rate under ideal uncrowded conditions
a=strength of density limitation

Consider:
dN/dt = (b'-d")N : \
N

and whered’ =d + cN

and parameters as in b, thus per capita death rate
Increases with N (when c Is positive)

Note: these are the most simple functional forms (linear)
of resource limitation
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Reality check.... density dependence 1s
probably not linear, for example Allee Effect

Allee Effect L\
N |

> /% " N Generally
d attributed to
N
N

/\ problems in the

social system at

(b’-d)

/ \ low density

r
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Back to the logistic model:

dN/dt = (b’ - d')N
dN/dt = [(b-aN) — (d+cN)IN (substituting)
dN/dt = [(b-d) — (a+c)N]N

Multiply through:

= [(b-d)/(b-d)] [(b-d)-(a+c)N]N

= [(b-d)][(b-d)/(b-d) — (a+c)N/(b-d)]N
Set (b-d)=r

dN/dt = rN[1-(a+c)N/(b-d)]

Note a, b, ¢, d are all constants, so

K=(b-d)/(a+c) which is called Carrying Capacity

* b & d rates w/o resouce limitation; a & ¢ measure strength of
density dependence
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Growth is most rapid at N = K/2
\

\
v N;>Kdecreases to K faster than N, < K increases to K
\

s .

time
Logistic Exponential
S 5
S =
K/2 N

N
Note: timetoreach K oc r
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Assumptions
« K Is constant
 Density dependence is a linear function of N

o~

N N

Logistic Exponential

(1/N) dN/dt
(1/N) dN/dt
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b’
~
~
~
~

rate

K = max sustainable pop size... where b=d,
b>d below b<d above (fig. 2.1 Gotelli)

Substitute into logistic: dN/dt = rN[1-(N/K)]

This is the classic egn from Verhulst (1838) where (1-(N/K)) is the
unused portion of K.

If K=100 but N=7, 1-(7/100) = 0.93 or 93% of resource is unused.

... this 1s a damping function on exponential growth. If N>K, then 1-
(N/K) is negative and population declines

... dN/dt = 0 when N = K, a stable equilibrium; no matter how far N 1s
perturbed, it returns to K
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K
1+[(K-N)/N, ]Je™

» Which is S-shaped f

Time

* ... by integration N, =

* per capita growth rate declines one unit for each
individual added... (1/N)(dN/dt) = (b-d) =r
when N is small (max growth rate)
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Variations:

1) Time Lags (t)... control at time =t from N in past
N..=Natt-r
Thus:  dN/dt = rN(1- (N,../K))

So solution depends onr and t
and response time Is inversely o r; response = 1/r

Note units: r = Ind/(Ind*time) = per capita change
1/r = (ind*time)/ind = time

where ind = individuals
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)

Population size (N)

Ratio of time lag to response |
controls growth:

rt 0< rr<0.368 gradual
Increase toward K /
rt 0.368 < rt <1.57 damped g
oscillation
] ] ;E | _ Period .\mpnluuh-
rt rt> 157 stable limitcycles— .

Figure 2.5 Logistic growth curves with a time lag. The behavior of the model
depends on r7, the product of the intrinsic rate of increase and the time lag. (a)
“Small” rt behaves like the model with no time lag. (b) “Medium” r7 generates
dampened oscillations and convergence on carrying capacity. (c) “Large” r gener-
ates a stable limit cycle and does not converge on the carrying capacity.
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Stable limit cycle has K as midpoint; will return if
perturbed

Cyclic population characterized by amplitude and
period between high and low oscillation

Period = time between peaks

Amplitude = range between high and low
Amplitude increases o T

Period =4 t forall r
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2. Discrete time model

Ni1 = Ni + AN(1-(N/K))

Recall N.;//N=A .. Ny; = AN,
set N=K when A=1

Now let A=1.0 — B(N-K)

where —B i1s slope  Popincr
/ .

Pop decr
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Discrete Time Model

So, N-K Is the deviation from equilibrium
density... set =z,

s A = 1-B(Ni-K)
=1-Bz,
Return to N,,; = AN, and substitute
Niva = (1-BZ)N; = Ni + AN(1-(N/K))
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Growth '*

size (N)

Population

Note: discrete model has built-in time lag
of 1 generation. Dynamics depend on
BK =L

(b)

ze (N)

Population s

L <2.0 approach K with damped
oscillations

ze (N)

Population s

2<1.<2.449 stable 2-point limit cycles

size (N)

L>2.57 chaos*, complex non-repeating

*seemingly random complexity from
simple deterministic equation; Not N
random, susceptible to initial

con d Itlons 4 Figure 2.6 The behavior of the discrete logistic growth curve is determined by the
size of r,. (a) “Small” r, generates damped oscillations (r; = 1.9). (b) “Less small” 7,
generates a stable two-point limit cycle (r; = 2.4). (c) “Medium” r, generates a more
complex four-point limit cycle (r; = 2.5). (d) “Large” r, generates a chaotic pattern of
fluctuations that appears random (r,; = 2.8).

Populatior
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Population size (N)
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Figure 2.7 Divergence of population tracks with chaos. Both populations followed
the same logistic equation, but the starting N for one of the populations was 50 and
the other was 51. Note that, as more time passes, the two populations begin to
diverge from one another.
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3. Random variation in K

Note: the approach to K is asymmetrical (decline
faster N>K than increase N<K)

S (52 _
N=K-—* soNalways <K
2
. more variable environment leads to smaller N
Also, size of r o to tracking of variation
... bigger r, closer tracking of variable K

... N is smaller for same Gi with small r
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Logistic growth with random variation in K
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Figure 2.8 Logistic population growth with random variation in carrying capacity.
Note that the population with the larger growth rate (r = 0.50) tracks the fluctuations
in carrying capacity, whereas the population with the small growth rate (r = 0.10) is
less variable and does not respond as quickly to fluctuations in resources.
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(a)

4. Periodic variation in K P A
(seasonality)

- Acts like time lag, depends
on r and period of cycle (c), \

thus N OC rC Time (f)
- rc large, pop tracks K cycles
at N<K (insects?)

- rc small, converge on N<<K | -
(small mammals?) —

Time (f)

Population size (N)

Population size (N)

Figure 2.9 Logistic growth with periodic variation in the carrying capacity. The car-
rying capacity of the environment varies according to a cosine function. As with
random variation, the population with the large growth rate (r = 10) tends to track
the variation (a), and the population with the small growth rate (r = 0.2) tends to
average it (b). The dashed line indicates K. (From May 1976.)



