Appendix 1. Description of the study sites. Values in parentheses are standard errors. * All
 hydroperiod data are for the period 1977-2002 at plot A. Water depth averages include negative
 numbers for depth below ground surface. ** Soil samples are means from the three study plots
 and standard errors reflect inter-plot heterogeneity. *** Data reprinted from Busch et al. (1998).

Description	Site 6	Site 23	Site 50			
Latitude (N)	25° 38.22'	25 ° 41.25'	25 ° 41.46'			
Longitude (W)		80° 44.05'	80 ° 37.06'	80 ° 45.58'		
Hydroperiod (days)*		349.6	319.8	259.8		
Frequency of dry-down*		8/25	11/25	17/25		
Mean water depth with SE (cm)*	46.9 (1.2)	26.8 (1.3)	17.4 (1.8)		
Max-min water depth (cm)*	-18.4 - 114.2	-48.7 - 93.5	-69.0 – 91.1			
Soil total phosphorus $(\mu g/g)^{**}$	385.6 (86.6)	128.0 (42.9)	207.8 (21.8)			
Soil total nitrogen (%)**	3.2 (0.2)	0.5 (0.2)	0.9 (0.1)			
Soil organic carbon (%)**	41.5 (2.9)	16.1 (1.5)	15.9 (0.7)			
Plant Cover (species, common name, stems/m ² unless otherwise noted)***						
Eleocharis cellulosa sp	ikerush	137.9	55.9	46.1		
Rhyncospora tracyi Tr	Rhyncospora tracyi Tracy's beakrush		37.2	44.5		
<i>Cladium jamaicense</i> sa	Cladium jamaicense sawgrass		3.8	15.8		
Panicum hemitomon m	aidencane	12.9	2.5	5.8		
Utricularia spp. (% cover)	24.9	18.1	19.1			
Float mat volume (ml/m ²)	1,689	3,415	2,555			

- 1 Appendix 2: Analysis of the role of upstream flow through control structures
- 2

in determining water depth at our study sites.

4	In this appendix, we report analyses of the relationship between flow rates from the S-12
5	structures in Shark River Slough, culverts east of L-67-E into Northeast Shark River Slough, and
6	precipitation with water depth at our three study sites. Precipitation records were obtained from
7	the Tamiami Ranger Station (formerly Forty-Mile Bend; Fig. 13-1 in Trexler et al. 2003), the
8	closest rain gauge to our study sites that was continuously monitored between 1977 and 2002.
9	Flow rates were obtained from the South Florida Water Management District and U.S.
10	Geological Service, but end in 1999 when monitoring of culverts was stopped. Backwards
11	stepwise multiple regression was used to assess the relative contribution of each water source to
12	water depth at the study sites.
13	
14	Results: Control structures S-12A, B, C, and D permit water to enter the Shark River
14 15	Results: Control structures S-12A, B, C, and D permit water to enter the Shark River Slough upstream of sites 6 and 50, while water enters Northeast Shark River Slough through a
14 15 16	Results: Control structures S-12A, B, C, and D permit water to enter the Shark River Slough upstream of sites 6 and 50, while water enters Northeast Shark River Slough through a series of about 20 culverts. Average monthly water depths at Sites 6 and 50 could be predicted
14 15 16 17	Results: Control structures S-12A, B, C, and D permit water to enter the Shark River Slough upstream of sites 6 and 50, while water enters Northeast Shark River Slough through a series of about 20 culverts. Average monthly water depths at Sites 6 and 50 could be predicted best by water flow through structures S-12C and S-12D, while regional rainfall yielded little
14 15 16 17 18	Results: Control structures S-12A, B, C, and D permit water to enter the Shark River Slough upstream of sites 6 and 50, while water enters Northeast Shark River Slough through a series of about 20 culverts. Average monthly water depths at Sites 6 and 50 could be predicted best by water flow through structures S-12C and S-12D, while regional rainfall yielded little indication of an influence (Multiple regression results, Site 6 : Precipitation $t_{1,263} = 0.796$, P =
14 15 16 17 18 19	Results: Control structures S-12A, B, C, and D permit water to enter the Shark River Slough upstream of sites 6 and 50, while water enters Northeast Shark River Slough through a series of about 20 culverts. Average monthly water depths at Sites 6 and 50 could be predicted best by water flow through structures S-12C and S-12D, while regional rainfall yielded little indication of an influence (Multiple regression results, Site 6 : Precipitation $t_{1,263} = 0.796$, P = 0.427 ; S-12A $t_{1,263} = -0.732$, P = 0.465 ; S-12B $t_{1,263} = -0.940$, P = 0.348 ; S-12C $t_{1,263} = 6.473$, P <
14 15 16 17 18 19 20	Results: Control structures S-12A, B, C, and D permit water to enter the Shark River Slough upstream of sites 6 and 50, while water enters Northeast Shark River Slough through a series of about 20 culverts. Average monthly water depths at Sites 6 and 50 could be predicted best by water flow through structures S-12C and S-12D, while regional rainfall yielded little indication of an influence (Multiple regression results, Site 6 : Precipitation $t_{1,263} = 0.796$, P = 0.427 ; S-12A $t_{1,263} = -0.732$, P = 0.465 ; S-12B $t_{1,263} = -0.940$, P = 0.348 ; S-12C $t_{1,263} = 6.473$, P < 0.001 ; S-12D $t_{1,263} = 4.630$, P < 0.001 ; R ² = 0.525 ; Site 50 : Precipitation $t_{1,263} = -0.257$, P =
 14 15 16 17 18 19 20 21 	Results: Control structures S-12A, B, C, and D permit water to enter the Shark River Slough upstream of sites 6 and 50, while water enters Northeast Shark River Slough through a series of about 20 culverts. Average monthly water depths at Sites 6 and 50 could be predicted best by water flow through structures S-12C and S-12D, while regional rainfall yielded little indication of an influence (Multiple regression results, Site 6 : Precipitation $t_{1,263} = 0.796$, P = 0.427 ; S-12A $t_{1,263} = -0.732$, P = 0.465 ; S-12B $t_{1,263} = -0.940$, P = 0.348 ; S-12C $t_{1,263} = 6.473$, P < 0.001 ; S-12D $t_{1,263} = 4.630$, P < 0.001 ; R ² = 0.525 ; Site 50 : Precipitation $t_{1,263} = -0.257$, P = 0.797 ; S-12A $t_{1,263} = 0.014$, P = 0.989 ; S-12B $t_{1,263} = -1.323$, P = 0.187 ; S-12C $t_{1,263} = 6.919$, P <
 14 15 16 17 18 19 20 21 22 	Results: Control structures S-12A, B, C, and D permit water to enter the Shark River Slough upstream of sites 6 and 50, while water enters Northeast Shark River Slough through a series of about 20 culverts. Average monthly water depths at Sites 6 and 50 could be predicted best by water flow through structures S-12C and S-12D, while regional rainfall yielded little indication of an influence (Multiple regression results, Site 6 : Precipitation $t_{1,263} = 0.796$, P = 0.427 ; S-12A $t_{1,263} = -0.732$, P = 0.465 ; S-12B $t_{1,263} = -0.940$, P = 0.348 ; S-12C $t_{1,263} = 6.473$, P < 0.001 ; S-12D $t_{1,263} = 4.630$, P < 0.001 ; R ² = 0.525 ; Site 50 : Precipitation $t_{1,263} = -0.257$, P = 0.797 ; S-12A $t_{1,263} = 0.014$, P = 0.989 ; S-12B $t_{1,263} = -1.323$, P = 0.187 ; S-12C $t_{1,263} = 6.919$, P < 0.001 ; S-12D $t_{1,263} = 4.227$, P < 0.001 ; R ² = 0.559). Average monthly water depth at Site 23 was

structures S-12C and S-12D (Multiple regression results, Site 23: Precipitation $t_{1,262} = 2.620$, P = 1 0.009; S-12A t_{1.262} = -0.455, P = 0.650; S-12B t_{1.262} = -0.944, P = 0.346; S-12C t_{1.262} = 5.092, P < 2 0.001; S-12D $t_{1,262} = 3.562$, P < 0.001; NESS $t_{1,262} = 8.541$, P < 0.001; R² = 0.546). Rainfall 3 4 affected water level at the study sites, but primarily through its influence on flows from the 5 north. Low rainfall years (annual total < 1m) occurred in 1984 and 1989, and water flow into the 6 Park was low from all sources in 1989 and 1990 (Fig. A1). Rainfall and water flow into the Park 7 were relatively high (for this study period) from 1992 through 1999 (Fig. A1). Water flow into 8 Northeast Shark River Slough, relative to the sum of flows through the S-12 structures into 9 Northwest Shark River Slough, increased after 1983.

10

11 **Discussion:** The environmental factors controlling water depth at our three study sites differed 12 between the northwestern and northeastern sections of Shark River Slough. Water depth at sites 13 6 and 50 was correlated with flow from water delivery structures S-12C and S-12D. While it 14 would be desirable to have precipitation data from gauges closer to the sites, we found no 15 evidence that such information would alter our finding that precipitation affected these sites 16 largely or solely through its influence on management of flow through the water control 17 structures. Northeast Shark River Slough differed in this regard, where our measure of regional 18 rainfall did improve our regression model of water-depth fluctuation. That analysis also 19 indicated management actions that changed flows through the culverts upstream of Site 23 20 affected water fluctuations there. The additional influence of water deliveries from S-12C and S-21 12D must have been through groundwater or from back-flow around the L-67E levee. The 22 combined flow through the S-12 structures greatly exceeded the combined flow through the 23 culverts for most of the study, with the possible exception of 1985 through 1987. Flow into

Northeast Shark River Slough was increased after 1984 as a result of the Experimental Water
 Delivery Program, and its primary effect in our data was manifested as increasing the annual
 minimum water depths at Site 23.

Figure A1. Regional patterns of precipitation and water flow into the study areas between 1977 and 1999. A. Annual rainfall (summation of daily values) collected at the Tamiami Ranger Station (aka, Forty-Mile Bend) gauging station. This was the closest rain gauge to the study continuously monitored through the study period. B. Average flow of water into Everglades National Park through selected water structures. These sites were chosen because of their influence on the study sites; structures S-12A and S-12B were not plotted to limit the clutter on this graph.

5

Appendix 3. Summary of fishes collected at the three study sites. Sites 6 and 23 were sampled from 1978 through 2002, while site 50 was sampled from 1985 through 2002. Sum indicates the total number of specimens of each species collected during the study period, max is the maximum number collected in a single m² sample, and mean is the average number per m² for the study period. Column totals are the total fish collected at a site (sum), the maximum number of fish in a single sample (max), and the average number of fish of all species for the entire study period (mean).

Site		6 2759			23 2364			50 1750			
Sample size											
Species	Common Name	sum	max	mean	sum	max	mean	sum	max	mean	
Gambusia holbrooki	eastern mosquitofish	15,008	109	5.44	6,111	44	2.59	2,264	112	1.29	
Lucania goodei	bluefin killifish	12,873	28	4.67	4,237	15	1.79	1,255	21	0.72	
Heterandria formosa	least killifish	12,903	83	4.68	4,289	35	1.81	442	18	0.25	
Fundulus chrysotus	golden topminnow	3,498	16	1.27	1,223	6	0.52	398	7	0.23	
Jordanella floridae	Flagfish	2,651	141	0.96	1,290	15	0.55	591	10	0.34	
Poecilia latipinna	sailfin molly	3,120	81	1.13	1,144	21	0.48	398	24	0.23	
Enneacanthus gloriosus	bluespotted sunfish	16	1	0.01	44	3	0.02	2	2	0.00	
Lepomis punctatus	spotted sunfish	501	7	0.18	216	5	0.09	48	3	0.03	

Elassoma evergladei	Everglades pygmy sunfish	174	8	0.06	131	4	0.06	5	1	0.00
Lepomis gulosus	warmouth	13	1	0.00	22	2	0.01	1	1	0.00
Ameiurus natalis	yellow bullhead	16	1	0.01	3	2	0.00	12	1	0.01
Erimyzon sucetta	lake chubsucker	111	4	0.04	41	3	0.02	2	1	0.00
Labidesthes sicculus	brook silverside	11	6	0.00	1	1	0.00	4	4	0.00
Lepomis marginatus	dollar sunfish	90	4	0.03	78	3	0.03	4	1	0.00
Micropterus salmoides	largemouth bass	1	1	0.00	3	1	0.00	5	1	0.00
Belonesox belizanus	pike killifish	16	2	0.01	4	1	0.00	3	1	0.00
Lepomis microlophus	redear sunfish	16	2	0.01	14	1	0.01	5	1	0.00
Noturus gyrinus	Tadpole madtom	20	2	0.01	3	1	0.00	17	1	0.01
Lepomis macrochirus	Bluegill	5	1	0.00	4	1	0.00	0	0	0.00
Fundulus seminolis	Seminole killifish	0	0	0.00	2	1	0.00	0	0	0.00
Fundulus confluentus	marsh killifish	129	4	0.05	256	5	0.11	286	4	0.16
Cichlasoma uropthalmus	Mayan cichlid	16	3	0.01	45	7	0.02	43	2	0.02
Lepomus spp (juveniles)	sunfish juvenile	61	3	0.02	18	2	0.01	9	1	0.01
Cyprinodon variegatus	Sheepshead minnow	82	11	0.03	143	6	0.06	242	9	0.14

Notropis petersoni	coastal shiner	25	8	0.01	2	1	0.00	3	3	0.00
Notropis maculatus	taillight shiner	3	1	0.00	2	1	0.00	0	0	0.00
Amia calva	bowfin	1	1	0.00	0	0	0.00	0	0	0.00
Tilapia mariae	spotted tilapia	1	1	0.00	2	1	0.00	1	1	0.00
Astronotus ocellatus	oscar	3	2	0.00	0	0	0.00	0	0	0.00
	Total fish	51,364	292	18.62	19,328	70	8.18	6,040	123	3.45