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Abstract.  Least-squares linear regression and multiple regression are among the most
commonly used analytical techniques of ecologists. However, these techniques only address
a portion of the possible applications of regression methods. We discuss two less commonly
used regression analyses that could find wide application in ecology, logistic regression and
LOWESS regression. Logistic regression is appropriate in cases where the dependent vari-
able is categorical, dichotomous, or polychotomous. It can be used with continuous and/
or discrete independent variables. Logistic regression is motivated by the underlying bi-
nomial or multinomial distribution of dichotomous and polychotomous dependent vari-
ables and transforms the data to explicitly model these distributions. Locally weighted
regression scatterplot smoothing or LOWESS regression is used to model the relationship
between a dependent variable and independent variable when no single functional form
will do. LOWESS regression is motivated by the assumption that neighboring values of
the independent variable are the best indicators of the dependent variable in that range of

independent values.

INTRODUCTION

In many contexts the ecologist examines the prop-
osition that the expected value of a dependent variable,
Y, is a function of an associated value of an indepen-
dent variable, X. The most familiar case is linear re-
gression, in which the expected value of Y is a linear
function of X. If one accepts that the relationship is
linear throughout the range of X, then one can estimate
the parameters of the regression function with the for-
mulae found in every statistical textbook. If one wishes
to test the significance of the relationship, and one is
willing to accept the proposition that Y has a normal
distribution around its expected value with a variance
that is constant throughout the range of X, then one
employs the standard statistical tests also found in ev-
ery textbook. However, in some contexts, the assump-
tions of linearity and normal errors are unacceptable.
In these cases the ecologist may still wish to examine
the proposition that the values of Y are somehow de-
termined by the values of X but is forced to do so
without the familiar companion of normal linear re-
gression.

How best to proceed from this point will depend
upon the nature of the biological problem at hand and

' For reprints of this Special Feature, see footnote 1, p.
1615.

what the investigator is willing to accept. In some cases
the function that relates Y to X can be specified from
considerations that are extrinsic to the data to be an-
alyzed, for example when a theoretical model specifies
a particular function or when other data have indicated
a particular function. In these cases, a variety of non-
linear regression models are available to estimate the
parameters of the specified functions and, in some cases,
to test the fit of the data to the model (see Juliano and
Williams 1987 for an example). In still other cases, the
distribution of the dependent variable is known in ad-
vance, but it is not normal; in many cases linear-re-
gression methods for other distributions of the depen-
dent variable are available (McCullagh and Nelder
1989). Finally, a few specialized cases have been de-
signed for particular types of data for which linear-
regression estimators have been derived from first prin-
ciples (e.g., Pacala and Dobson 1988).

In this paper, we highlight two approaches that may
be used profitably on a broad range of ecological data.
Logistic regression, which we describe in the next sec-
tion, examines the functional relationship between a
binomial dependent variable and an independent vari-
able that may be either discrete or continuous in its
distribution. In the final section we highlight an ap-
proach in which the investigator is inclined to believe
that the functional nature of the relationship between
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Y and X changes within the range of X that is being
examined in such a way that no single functional form
will suffice to describe the pattern.

LoGISTIC REGRESSION

The regression methodologies most familiar to ecol-
ogists are intended for use with continuous or numer-
ical dependent variables (Shanubhogue and Gore 1987).
However, the analysis of a discrete dependent variable
(proportions, rates, or odds arising from dichotomous
or polychotomous dependent variables) requires spe-
cial treatment because the errors associated with such
variables may not be normally distributed. A likely
distribution for dichotomous dependent variables is
the binomial. A regression model that explicitly as-
sumes binomially distributed errors is logistic regres-
sion (Agresti 1990), which addresses the binomial na-
ture of the errors through the use of the logit
transformation. The logit can be generalized for poly-
chotomous dependent variables with a multinomial
distribution (Fienberg 1980, Hosmer and Lemeshow
1989, Agresti 1990). Logistic regression is used in sit-
uations analogous to the use of regression or analysis
of covariance when analyzing normally distributed
continuous dependent variables. Regression, analysis
of variance, analysis of covariance, logistic regression,
log-linear models, and probit analysis are all related as
special cases of generalized linear models derived for
different error distributions and links of mean to vari-
ance (McCullagh and Nelder 1989).

The model.—Modelling the effect of discrete and
continuous independent variables on discrete depen-
dent variables such as survival (dead vs. alive), size
(large vs. small), or color (green vs. not green) requires
that the dependent variable be transformed to a scale
amenable to analysis. The model used for logistic re-
gression is:

In(r(x)/1 — 7(x)) = a + B,R + B,x + B3Rx, (1)
which can be re-written to define w(x) as:

exp(a + B,R + B,x + B3Rx)
1 + exp(a + B,R + B,x + B3Rx)’

m(x) = (2)
m(x) is the logistic regression function (see Cox and
Snell 1989:18-23 for the motivation of this function),
R is a categorical variable, x is a continuous variable,
and a, 8,, 8,, and $, are parameters to be estimated.
m(x) is approximated by the proportion of successes
(p) where success is defined as the occurrence of an
arbitrarily defined outcome (McCullagh and Nelder
1989). Multiple categorical and/or continuous inde-
pendent variables can be incorporated into the model.
Categorical independent variables with more than two
levels are modelled with dummy variables (Anderson

et al. 1980:173-174). 35 in this model refers to a linear
interaction of the continuous and discrete variables.
Nonlinearity in the continuous variable can be intro-
duced by adding polynomials of that variable. When
possible, it is best to use maximum likelihood methods
to fit the model to data.

For logistic regression, the dependent variable (Y)
takes the value O or 1 with Pr(Y = 1 | the independent
variables x) = w(x). Y is transformed as an odds ratio,
the probability that an event occurs relative to its con-
verse. Thus, an odds ratio of one indicates that the
probability of an event and its converse are equal (i.e.,
p = 0.5). The natural log of the odds ratio is the logit
transformation, which has several desirable character-
istics. These include that the zero-to-one range of p is
expanded to —oo and +0co and that the binomial dis-
tribution of errors is modelled. Thus, information is
not lost at extreme values of p, as is the case when a
normal-theory model is fit to dichotomous data (Agres-
ti 1990:84-87). In general, it is not necessary to have
several observations at each x to estimate Y.

Alternatives. — An alternative approach to logistic re-
gression commonly used by ecologists is the angular
transformation, which expands the range of values taken
by p and serves to stabilize the variance. When sample
sizes are unequal for various predictor values, weighted
analysis is most appropriate. This approach is effective
for large sample sizes and p ranging from 0.25 to 0.75.
When 7 is small, the angular transform approximation
overestimates the true variance with the extent of the
overestimation increasing as p deviates from 0.5. The
angular transformation loses information at extreme
values of p (p < 0.10 and p > 0.90) (Cox 1970). Thus,
the angular transformation should be avoided when
small sample sizes or small and/or large proportions
are analyzed (Finney 1964, Cox 1970).

The probit transformation, based on the cumulative
normal distribution, is almost identical to the logit
(McCullagh and Nelder 1989) over the interval 0.1 <
p < 0.9 and they can seldom be differentiated based
on tests of the validity of their fit to data (Finney 1964:
466). Logit and probit regression differ in the shape of
the function relating Pr(Y = 1 | x) to x. Most authors
argue for the logit based on its ease of application and
interpretation (Finney 1964, Cox 1970, Fleiss 1973,
Anderson et al. 1980, Cox and Snell 1989, McCullagh
and Nelder 1989, Agresti 1990). The logistic function,
which motivates the logit transformation, may be con-
sidered more general in its potential applications than
the probit. The logistic function yields equivalent log
odds ratios for several sampling models, while the probit
does not (see McCullagh and Nelder 1989, Agresti
1990).

There are many transforming functions possible
other than logit and probit. For example, both the logit
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and probit assume that p approaches 0.0 and 1.0 sym-
metrically. However, asymmetric distributions are
possible. For example, Agresti (1990:104-107) dis-
cusses the complementary log-log function for cases
where p approaches 1.0 more rapidly than 0.0. When
logit or probit models fail to provide a good fit to data,
other sampling distributions should be explored.

Logits can be fit using weighted least-squares, called
empirical logistic regression (or minimum logit chi-
squared when used in slope and point estimation for
bioassays). Fitting empirical logits is outlined in Cox
(1970) and Trexler et al. (1988). However, when many
zeros are present, this transformation can yield incor-
rect results and it is best to use a maximum likelihood
method.

Model selection. — Logistic regression requires fitting
a hierarchy of models and settling on the most parsi-
monious one. The “adequacy’ of a logit model is as-
sessed in two ways, the significance of its parameters
in explaining variation in the dependent variable and
the fit of its predictions to data (goodness-of-fit). The
contribution of parameters in a logistic regression mod-
el is assessed by comparing the predictive value of
models with and without them. If the removal of a
parameter does not noticeably decrease the predictive
power of a model, the parameter can be excluded. Hos-
mer et al. (1989) describe a technique applying Mal-
low’s statistic (C,) to logit analysis in a stepwise model
selection routine, and BMDP-LR is a statistical pro-
gram that uses stepwise regression techniques in model
building.

The ratio of the likelihood of a given model to that
of the ““saturated” model is called the likelihood ratio,
where the saturated model has as many parameters as
data points, comparable to a linear regression through
two points (Hosmer and Lemeshow 1989). In order to
assess the size (significance) of the likelihood ratio rel-
ative to a standard distribution, it must be re-expressed
as a quantity called the deviance (D), given by:

D = —2-In(likelihood ratio). (8)

The difference of the deviance between two models,
one with and the other without a parameter, tests the
hypothesis that the excluded parameter is equal to zero
and has a chi-square distribution with one degree of
freedom (see Hosmer and Lemeshow [1989:224] for
cases with polychotomous dependent variable). This
hypothesis test is called the likelihood ratio test. If only
the log likelihoods for the two models are known, the
model with and the model without the parameter in
question, the difference of the log likelihoods times —2
is equivalent to the likelihood ratio chi-square test.
Other tests are also used to evaluate the contribution
of specific parameters to a model. The most common
is Wald’s test, which is the ratio of a parameter estimate

to its standard error. The significance of this value can
be assessed by comparison to a standard normal dis-
tribution. However, the validity of this test is in doubt
(Hauk and Donner 1977, Jennings 1986) and it is best
used in a qualitative way. The likelihood ratio test is
the preferred method of parameter evaluation (Hosmer
and Lemeshow 1989).

Goodness-of-fit assesses the relationship of the ob-
served and predicted values of the dependent variables
and the role of individual observations in fitting the
model (i.e., the identification of outliers). The deviance
statistic D (Eq. 8) is distributed as a chi-square with J
— (px + 1) degrees of freedom to test the hypothesis
that the fitted model is adequate. In this case, J is the
number of distinct combinations of all independent
variables and py is the number of parameters in the
model. There should be replication at some combi-
nations of independent variables to apply this test (but
see Hosmer and Lemeshow 1989:139). Analyses com-
parable to assessment of the “leverage” of individual
observations in a least squares analysis are possible
(e.g., Cook’s statistic [Draper and Smith 1981]). In
logistic regression, leverage assesses the contribution
of individual independent variable combinations to
the fit of a model. The change in a summary statistic
such as D that results from deleting all subjects with a
particular independent variable pattern yields a clear
illustration of its contribution to the model’s explan-
atory power (see Hosmer and Lemeshow 1989:154—
168).

An example.— We illustrate the use of logit analysis
with data on the probability of multiple paternity of
broods of offspring produced by female livebearing fish
(sailfin mollies, Poecilia latipinna) caught from natural
populations. Pregnant females were collected and the
genotypes of 24 of their embryos were determined for
three allozymes. These data permitted a conservative
assignment of females into two groups, those with
broods sired by more than one male and those with
broods sired by a single male. A discussion of the pos-
sible sources of error from this approach and estima-
tion of the proportion of females misidentified as singly
mated when actually multiply mated is provided in
Travis et al. (1990). We analyzed those data with least-
squares regression of brood size as the dependent vari-
able and female size and multiple/single sire status as
continuous and discrete independent variables, re-
spectively. That analysis indicated that females car-
rying multiply sired broods tended to have larger brood
sizes than same-sized females with singly sired broods
(Travis et al.. 1990). Here we report a re-analysis of
those data addressing the question, “Is the probability
of multiple paternity related to female size and/or fe-
cundity?” This analysis demonstrates a discrete de-
pendent variable, mating status as single or multiple,
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FiG. 1. A flow chart of the hierarchy of models fit to data
on the odds of multiple paternity for broods of offspring from
female sailfin mollies. The likelihood ratio chi-square for de-
letion of each parameter is listed on the arrow connecting
models. Each of these chi-square values has one degree of
freedom. The log likelihood for each model is enclosed within
the box with its name. Length refers to female standard length,
brood refers to brood size, and L x B refers to the interaction
of length with brood size. Each model included a constant.

and continuous independent variables, brood size and
female size.

Analysis of the 1985 data began by examining the
distribution of the two independent variables for nor-
mality and outliers. In this case, both continuous vari-
ables were log transformed to normalize their distri-
butions. Our logit analysis was conducted using the
LOGIT module of SYSTAT and the BMDP package
LR for comparison. The BMPD package provides a
stepwise analysis of parameters, while models must be
specified one at a time by the researcher with SYSTAT.

A hierarchy of models sequentially eliminating each
variable was tested using SYSTAT to determine the
most parsimonious list of variables needed to model
the 1985 data. The log likelihood ratio chi-square test
was used to evaluate the contribution of each param-
eter by taking differences of the log likelihood estimate
for each model and multiplying by —2. The log like-
lihood ratio chi-square printed by SYSTAT compares
the log likelihood of a given model to a model with its
only parameter a constant. Note that the SYSTAT log
likelihood ratio chi-square will tend to overestimate
the significance of a given parameter if multicollinear-
ity is present. Multicollinearity occurs when two in-
dependent variables are correlated and there is no way
to distinguish their effects separately. Female size and
brood size illustrate this in our 1985 data. When female
size is removed from a model including both female
size and brood size, the decrease in x? is not significant
(Length + Brood — Brood, Fig. 1). However, if only
female size is in the model, it makes a significant con-
tribution to predicting the mating status of females (x*,,
= 15.511, P < .001). Dropping either brood size or

the length x brood interaction from a model including
both has virtually identical effects suggesting multi-
collinearity for these factors (Brood + L X B - L X
B and Brood + L x B - Brood, Fig. 1).

While both female size and brood size can explain
differences in the probability that a female is singly or
multiply mated, brood size is better at predicting mat-
ing status than is female size. When brood size is re-
moved from the model including both brood size and
female size, the decrease in log likelihood is significant
(x2, = 9.79, P = .008). However, when female size is
removed from the model including both brood size
and female size, the decrease in log likelihood is not
significant (x?, = 0.052, P > .75). This indicates that
brood size explains variation in mating status beyond
that explained by female size, but that the converse is
not true.

The Wald’s statistics for the model BROOD +
CONSTANT support our conclusion that brood size
is an important variable in explaining the probability
of multiple mating. The ¢ statistic for the comparison
of the multiple paternity category to the single paternity
category is —1.42 (P = .08). SYSTAT does not permit
a test of the goodness-of-fit of each model or assess-
ment of the influence of individual covariate patterns.
We did this using the BMDP logistic regression package
(LR). Neither the deviance chi-square test nor the other
goodness-of-fit tests reported by BMDPLR suggested
alack of fit by a model containing a constant and brood
size (P > .5 for tests of goodness-of-fit). Only 2 of 16
covariance patterns were found to yield a change in the
deviance chi-square by 10% or more when excluded
from analysis; in only one case did the change in de-
viance exceed 1 (D = 5.248 for the CONSTANT +
BROOD model including all covariance patterns). In
both of these cases the highly influential independent
variable pattern is in the center of the brood size range
[In(brood size) = 3.75 and 3.80], near the point where
the probability changes from high for single paternity
to high for multiple paternity (Fig. 2). In one case, only
one observation was present, rendering it impossible
to observe an intermediate value for probability of
single mating (predicted probability = 0.48, observed
= one singly mated). In the second case, only two ob-
servations were present (predicted probability of single
mating = 0.75, observed = one singly mated and one
multiply mated). There is no biological reason to ex-
clude these points so we leave them in the final analysis.

Further reading and applications. —Logistic regres-
sion has been proposed for several applications rele-
vant to ecologists. These include analysis of selection
experiments (Heisey 1985, Murtaugh 1988), capture—
recapture data (Cormack 1981, Pollock et al. 1984,
Green and Macdonald 1987), habitat selection
(McCullagh and Nelder 1989:128-135), functional re-
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sponses (Trexler et al. 1988), and competition (Schoe-
ner and Adler 1991). Other authors have discussed the
use of log-linear models for applications that may be
expanded to include covariates (Fienberg 1970, Hol-
ford 1980). Some recent ecological articles using logits
include Horton et al. (1988), Hepp et al. (1989), Kaplan
(1992), Rebertus et al. (1989), Stoddard (1987), Trexler
(1985), and Wauters and Dhondt (1985). Several texts
provide clear and informative discussions of logistic
log-linear models and logistic regression. We have found
Anderson et al. (1980), Hosmer and Lemeshow (1989),
and Agresti (1990) to provide clear and informative
discussions of this topic for nonstatisticians. Statistical
programs including SPSSX, SAS, BMDP, and SY-
STAT provide options permitting the use of logistic
regression with parameter estimation by maximum
likelihood.

LocALLY WEIGHTED REGRESSIONS

In many cases it is unreasonable to expect a priori
that a single functional description of the dependence
of Y on X will suffice throughout the range of X that
is being examined. Consider as an example the situa-
tion in which anuran larvae are exposed to size-limited
predators. Within some range of larval growth rates,
the faster the larva grows, the sooner it attains a size
beyond which it cannot be eaten. As a result of this
process, there is directional selection on larval growth
rate through some range of growth rates such that the
probability of survival will be an increasing function
of larval growth rate. However, there may be a range
of growth rates that are all so low that there is no chance
of survival, and there may be another range of growth
rates that are all sufficiently high that they convey
equivalently high probabilities of survival. Thus a sin-
gle functional relationship may not suffice through the
full range of observable larval growth rates. It is of real
interest to identify such heterogeneity if it exists be-
cause we would then be able to identify regions of
growth-rate variation that are effectively neutral with
respect to natural selection. Extensive ranges of such
effective neutrality can alter the conclusions one draws
from such data on the intensity of natural selection.
How can we perform such a diagnosis?

A number of methods are available for this purpose,
but the skeptic may first wonder why one would not
fit a polynomial model to such data, particularly be-
cause higher order polynomials can be bent into almost
any shape to mimic almost any pattern of data. Four
answers can be offered. First, data shaped oddly (e.g.,
sigmoidal trends in Y) can usually be fit by a wide
variety of models that differ in number of parameters
and functional forms, leading to a crisis of confidence
in what interpretation can be drawn from any one such

11

e ®cee
09 e
> -
< o7
=
3]
< 06 °
-]
o
o©
& o3 f
L]
01 + <]
o oo wo ©
_01 1 1 ]
2 3 4 [}

LN (BROOD SIZE)

Fic. 2. Probability of multiple paternity predicted from
logistic regression plotted against observed brood size. @ in-
dicate broods shown to result from multiple matings and O
indicate broods identified as resulting from a single mating.

fitted model (see Trexler et al. 1988 for examples).
Second, polynomial regressions do not fit values locally
and are not very flexible in shape; the shape of the data
at the larger values of X determines the fitted estimates
at the smaller values of X. Higher order polynomials
can often be employed to obtain a function that fits
the local shape of the data, but this method does not
always work. Third, the shape of polynomial regres-
sions can be quite sensitive to outliers, points with
unusually high leverage or influence, and therefore are
not very robust. Fourth, better methods are available
that circumvent these problems.

Rationale.—The method that we consider here de-
rives the predicted value of Y (denoted y,) at a given
X value (x,) from a function of the Y values that are
associated with the neighboring values of that X value.
This procedure assumes that the Y values of neigh-
boring X values will be the best indicators of what the
Y value should be at the given X value. This is a
sensible assumption; the key problems with making
the assumption operational are how many neighboring
X values should be considered and how the Y values
that correspond to neighboring X values should be
weighted in the calculation of the predicted value
of Y.

Many readers will be familiar with this general prem-
ise through their familiarity with “running averages”
in time series. Time series are smoothed by replace-
ment of the observed value y, at x; by the average of
Yi_1, Vi, and y,. . In this case, we use the Y values at
only immediately adjacent X values and weight them
evenly in calculating the “predicted” value of Y. We
could give more weight to y, and proportionately less
weight to y,_, and y,,,, for example using weights of
0.25, 0.50, and 0.25 for the sequential Y values. We
might prefer a “‘smoother” fit in some cases, in which
we would use more points adjacent to our focal value
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X, in the calculation of y, and devise an appropriate
weighting scheme.

This specific method will usually be inapplicable to
most bivariate plots that are not time series because
the X values will not be ordinal, equally spaced indices.
A number of methods are designed for this specific
problem; they take into account the uneven spacing of
X values and the information contained by the X values
themselves. We highlight the use of one such technique
called “LOWESS” regression (Locally Weighted Re-
gression Scatterplot Smoothing: Cleveland 1979). Oth-
er methods, such as cubic splines, may be more ap-
propriate in many contexts (see Schluter 1988). Our
purpose here is to highlight the utility of this class of
models so that readers will be motivated to investigate
them more widely.

Method.—The fitting of a line to a bivariate scatter
of n points in LOWESS regression is done in a series
of iterated steps. First, the user must decide how
“smooth” the fitted relationship should be. A smoother
fit uses more of the nearby points in its estimation of
p, for a given x,, whereas a less smooth fit uses fewer
points and is thereby more sensitive to local variation
in the shape of the relationship. Let g be the number
of adjacent points to be used in the estimation pro-
cedure such that g/n = f, the fraction of all points used
to derive an estimate of y, for each x,. As f increases,
the fitted line will be smoother; /= 1 corresponds to
standard linear regression. In the second step, each
point to be used in the estimation is given a weight.
The focal point has the largest weight, and the weights
decrease symmetrically around the focal X value; points
outside the “frame” (i.e., those points not among the
g nearest neighbors to the focal point along the X axis)
have weight 0. The weight given to a point x, for a
focal point x,, denoted w,(x,), is computed as

w,(x) = T[(x, — x)/d],
where '
Tw) = (1 — Jul|?) for Ju| <1
T(u) = O elsewhere

d

distance from x, to its g" nearest neighbor,
calculated only along the X-axis.

In the third step, a simple linear regression is fitted to
the g points by weighted least squares, using the weights
derived in step 2. Fourth, the estimate y, is computed
for the focal point x, as the fitted value of Y from the
regression. This procedure is then repeated for the next
point until all n points have estimated Y values. Note
that points at either extreme of the independent value
have most of their g neighbors only on one side; this
pattern prevents the fitted values from forcibly de-
scribing a flat line at the extremes.

A “first fit” is now in hand, but the fit is not nec-

essarily robust; outliers may be exercising inordinate
influence on the line. The first step in the next stage,
that of obtaining a robust fit, is to calculate the residuals
from the fitted values

=Yoo= Y

Let m designate the median of the absolute values of
the residuals. If the residuals are normally distributed,
m is =% the value of the root mean square error around
the regression, and 6m is approximately 4 times the
root mean square error. Second, robustness weights,
denoted rw,, are calculated for each point as

rw, = B(r,/6m),

where
Bw) = (1 — w?)? for |u| <1
B(u) = 0 elsewhere.

These values give greater weight to points with low
residuals and deemphasize those points with high re-
siduals. A residual value in excess of 6m produces a
robustness weight that is nearly O, and values <6m
have weights nearly equal to 1. Third, the LOWESS
procedure is repeated, but this time the weights used
for the weighted least squares for each point are pro-
vided by the product of the robustness weights and the
original neighborhood weights. This procedure can be
repeated until there is minimal change in the final prod-
uct.

Example. —1In order to illustrate the technique, we
reexamine data from an experimental study of natural
selection (Travis 1983). Each datum consists of the
average body size of full-sib tadpoles of Hyla gratiosa
at age 4 wk from a single enclosure in the field and the
fraction of the original number of tadpoles placed in
that enclosure that survived to age 4 wk. Tadpoles were
exposed to insect predators that cannot prey on tad-
poles beyond a specific body size and that therefore
should take a greater toll on groups of more slowly
growing tadpoles. A number of full-sib families were
represented in the experiment, and the published result
(repeated with another species by Travis et al. 1985)
indicated that there was a positive relationship between
the average size of tadpoles in an enclosure and the
survival rate that occurred in that enclosure, in other
words that when a cohort had a higher growth rate it
suffered lower cumulative mortality.

The bivariate plot of arcsine-transformed survival
values and larval body masses is illustrated with a
linear regression line in Fig. 3A. The linear regression
is significant (F, |, = 19.6, P < .001) and accounts for
~52% of the variance in transformed survival values.
Visual inspection suggests that, although there is a good
relationship through the lower half of the larval body
masses, there is little relationship at the higher masses.
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(A) Survival rate (angularly transformed) of tadpoles in a single enclosure plotted as a function of the average body

mass of the survivors in the enclosure. Data from Travis (1983). Line indicates the normal least-squares regression. (B)
Residuals from the linear regression depicted in Part A plotted as a function of the independent variable, average body mass.

The graph suggests that at higher body masses variance
in survival rates is large and reflects the influence of
factors other than insect predation. The linear regres-
sion captures the major trend in the data but does not
indicate a region of effective neutrality.

The inadequacy of the fit of the linear regression can
be seen in a plot of residuals against the independent
variable (Fig. 3B); the flat regression line drawn through
that plot indicates an unbiased fit but one in which the
variance around the line increases with increasing mean
body masses. No transformation was found to alleviate
this problem. A quadratic regression (Fig. 4A) provides
a hint that the fitness function will become flatter at
higher body masses but does not indicate much of a
neutral region within the range of body masses exhib-
ited in the study. The fit of a LOWESS regression with
f = 0.67 (Fig. 4B) shows that survival rates increase
steadily with increases in larval body mass up to the

0.6+ A L] 0.6 B

0.5 M 0.5

TRANSFORMED SURVIVAL RATE

75-mg level, beyond which the increase is minimal at
best. This fit indicates that growth rates that produce
body masses >75 mg at age 4 wk convey no increases
in survival rates, indicating the region of effective neu-
trality of growth rate with respect to insect predation.
A LOWESS regression with more local sensitivity, f'=
0.33 (Fig. 4C), produces the same general impression,;
the fitted line becomes irregular and inconsistent in
direction at growth rates >75 mg.

Choosing the parameters of LOWESS. —The LOW-
ESS method appears to carry the burden of consider-
able subjectivity. However, analysis and simulation
studies offer substantial comfort for those who are
skeptical on these grounds (Cleveland 1979). First, it
appears that the use of linear regression within each
set of neighboring points to estimate y, provides an
effective balance between ease of computation and the
ability to reproduce known patterns. Second, two it-
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depicting a LOWESS regression model with /= 0.67. (C) Data from Fig. 3A with a line depicting a LOWESS regression

model with /= 0.33.
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erations (as illustrated above) have proven adequate
to provide a sufficient convergence on a set of y, for a
large number of real and simulated data sets. Although
other weighting functions could be used, the “‘tricube”
used above enhances the accuracy of the distributional
approximation for calculating the standard errors of
the y,.

The greatest subjectivity lies in choosing f: how
“smooth’ should the fit be made? Either of two meth-
ods for choosing f seems effective. The first is a least-
squares criterion (Cleveland 1979). An initial value of
f. f,, is chosen to minimize the sum of the squared
deviations from the set of y, before the robustness step
is employed. The robustness weights are then calcu-
lated, and a new value of f'is chosen so as to minimize
the sum of the product of the robustness weights and
the residuals for the set of y, values. This procedure is
repeated until a negligible change in f is observed.

The second method is much simpler (Cleveland
1985). First, choose an arbitrary value of f and cal-
culate the robust LOWESS estimates y, and the resid-
uals from those estimates, », = y, — y,. If the plot of
the residuals, r,, against the x, shows any dependence
of r, on x,, then f is too large and should be decreased.
In practice, one ought therefore to begin with a small
value of f and increase it slowly to the point at which
the residuals show a pattern, from which a slightly
smaller f is finally chosen.

Statistical testing. — The standard errors of the y, can
be estimated in three ways. First, Cleveland (1979)
offers analytical formulas for the error that are based
on either a chi-square approximation for the error dis-
tribution or a modification of other robust methods.
Second, one can employ maximum likelihood methods
derived explicitly for this problem (Cleveland 1981).
Third, error estimation and more customized statis-
tical testing can be achieved through computer-inten-
sive nonparametric methods such as bootstrapping and
cross-validation (Chambers et al. 1983, Efron and Gong
1983, Efron and Tibshirani 1991).

Further reading. —Chambers et al. (1983) and Cleve-
land (1985) offer a very accessible introduction to
LOWESS regression and a variety of other graphical
methods. The general problem of robustness is ad-
dressed in detailed fashion in the treatments of Huber
(1981) and Hampel et al. (1986). Although some treat-
ments of robust regressions are available in a number
of computer software packages, some of the compu-
tations in some packages do not always give the correct
results (Street et al. 1988).
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