
Orbital Mechanics

These notes provide an alternative and elegant derivation of Kepler’s three laws for the

motion of two bodies resulting from their gravitational force on each other.

Orbit Equation and Kepler I

Consider the equation of motion of one of the particles (say, the one with mass m) with

respect to the other (with mass M), i.e. the relative motion of m with respect to M :

r = −µ r
r3
, (1)

with µ given by

µ = G(M +m). (2)

Let h be the specific angular momentum (i.e. the angular momentum per unit mass) of m,

h = r × ṙ. (3)

The × sign indicates the cross product. Taking the derivative of h with respect to time, t,

we can write

d

dt
(r × ṙ) = ṙ × ṙ + r × r̈

= 0 + 0

= 0 (4)

The first term of the right hand side is zero for obvious reasons; the second term is zero

because of Eqn. 1: the vectors r and r̈ are antiparallel. We conclude that h is a constant

vector, and its magnitude, h, is constant as well. The vector h is perpendicular to both r

and the velocity ṙ, hence to the plane defined by these two vectors. This plane is the orbital

plane.

Let us now carry out the cross product of r̈, given by Eqn. 1, and h, and make use of the

vector algebra identity

A× (B × C) = (A · C)B − (A ·B)C (5)

to write

r̈ × h = − µ
r3

(
(r · ṙ)r − r2ṙ

)
. (6)
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The r · ṙ in this equation can be replaced by rṙ since

r · r = r2,

and after taking the time derivative of both sides,

d

dt
(r · r) =

d

dt
(r2),

2r · ṙ = 2rṙ,

r · ṙ = rṙ. (7)

Substituting Eqn. 7 into Eqn. 6 gives

r̈ × h = − µ
r3

(
rṙr − r2ṙ

)
,

= µ

(
ṙ

r
− ṙ

r2
r

)
,

= µ
d

dt

(
r

r

)
. (8)

Integrating the latter equation and considering h is constant we get

ṙ × h = µ

(
r

r
+ e

)
, (9)

where the vector e is an integration constant called the Laplace-Runge-Lenz (LRL) vector.

It is clear that the vectors e and h are perpendicular to one another. Hence, e must be a

vector in the orbital plane!

Finally, let us make the scalar product of both sides of Eqn. 9 with the vector r. We have

r · (ṙ × h) = µ

(
r · r
r

+ e · r
)

= µ (r + re cos θ) , (10)

where θ is the angle between the vectors r and e. Applying the vector algebra identity

A · (B × C) = C · (A×B) (11)

to the left-hand side of Eqn. 10 we get

r · (ṙ × h) = h · (r × ṙ),
= h · h,
= h2. (12)
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Replacing the left hand side of Eqn. 10 by Eqn. 12 then gives

h2 = µ (r + re cos θ) ,

or

r =
h2/µ

1 + e cos θ
. (13)

In analytical geometry, the general equation of an ellipse in polar coordinates, r and θ, with

one of the ellipse’s foci as the origin of the coordinate frame (see Figure 3.6 and Eqution

3.42 in the Ryden-Peterson textbook), is

r =
a(1− e2)
1 + e cos θ

, (14)

The distance r is the magnitude of the position vector r, which makes an angle θ with the

reference axis along the line of apsides. This angle is called the true anomaly. The quantity

a is called the semimajor axis and is half the length of the largest diameter of the ellipse,

called the major axis. The two foci are located on the major axis and are equidistant from

the center of the ellipse. That distance is equal to ae. For e = 0, r = a, and the curve is

a circle with radius a. The two foci of a circle coincide with the center of the circle. Note

that the periapse distance, rp, and apoapse distance, ra, are obtained by entering f = 0 and

f = π, respectively, in Eqn. 14. Doing so we get

rp = a(1− e), (15)

and

ra = a(1 + e). (16)

Comparing Eqns. 13 and 14, we conclude that the orbit of m around M is a conic section,

with a semi major axis a and eccentricity e related to h and µ via the equation

h2

µ
= a(1− e2),

or

h =
√
µa(1− e2) . (17)

The magnitude e of the LRL vector e is the eccentricity of the conic section. For 0 ≤ e < 1,

the conic section is an ellipse. In that case, the curve is closed and the mass m describes a

closed orbit around the attracting mass M , located at one of the foci of the ellipse. What

value of the angle θ makes r a minimum? The answer is, of course, that value of θ that makes

1 + e cos θ a maximum, which is when cos θ = +1, or θ = 0, i.e. when r is parallel to e. Thus,
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the LRL vector e is a vector that points from the point of central attraction to the point of

closest approach, the periapse point. The opposite point on the ellipse, when θ = π, is called

the apoapse point.1

For e = 1, r → ∞ as θ −→ ±π, which describes a parabola. For e > 1, the orbit is a

hyperbola. In this case r −→∞ along asymptotes defined by values of θ = θ∞ < π and given

by e cos θ∞ = −1. For e ≥ 1, Equation 13 holds unchanged, and parabolic or hyperbolic orbits

do occur in nature. For example, non-periodic comets describe hyperbolic orbits around the

Sun; they approach the Sun, swing by once, and then move away along their hyperbolic

path, to never come back. For parabolas and hyperbolas, however, the geometric description

of Eqn. 14 takes on a slightly different form. From here on,we restrict ourselves to elliptical

orbits unless specifically stated otherwise.

Kepler II

Let us now consider a right-handed, Cartesian coordinate frame with origin O at the center

of mass of the M,m system, and with the x, y-plane coinciding with the orbital plane. We

also consider a system of polar coordinates (r, θ), with origin at M , and a system of two

orthogonal, corotating unit vectors r̂ and θ̂ with cartesian coordinates (cos θ, sin θ, 0) and

(− sin θ, cos θ, 0), respectively. I refer to Section 3.1.1 in Ryden & Peterson for specifics and

figures. The velocity v = ṙ can be written as

v = vRr̂ + vTθ̂, (18)

with vR and vT the radial and tangential components of v, respectively. It is shown on page

64 of Ryden & Peterson that

vR = ṙ, (19)

and

vT = rθ̇. (20)

1Both these labels can be modified to include the name of the attracting body. For example, for motion

around the Sun, we refer to the point of closest approach as the perihelion point. For the Moon and other

satellites of the Earth we call this point the perigee. In a binary star system, the point of closest approach of

one star as it orbits the other is called the periastron point. Similarly, the point of maximum distance would

be called the aphelion, apogee, apastron.
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In terms of the corotating r̂, θ̂, k̂ frame, the specific angular momentum vector h can be

written as

h = r × ṙ

=

∣∣∣∣∣∣∣
r̂ θ̂ k̂

r 0 0

ṙ rθ̇ 0

∣∣∣∣∣∣∣
= 0r̂ + 0θ̂ + r2θ̇k̂

= r2θ̇k̂. (21)

Since h is a constant vector, r2θ̇ is constant. Consider the position vector r sweeping an area

dA as the mass m moves in its orbit from the position at time t to the position at time t+dt.

dA can be considered to be the area of an infinitesimal triangle with sides r and rdθ, so we

can write

dA =
1

2
r2dθ, (22)

or

dA =
1

2
r2θ̇dt

=
1

2
hdt. (23)

Integrating this from time t1 to time t2, when m is at position 1 and 2, respectively, the area

A swept by the position vector is

A =
1

2
h(t2 − t1). (24)

Hence, equal ∆t’s give equal A’s, which is Kepler’s second law, the law of areas: the position

vector sweeps out equal areas in equal intervals of time.

Kepler III

In Eqn. 24, let ∆t = t2−t1 be the time for one complete revolution of m around M . This time

interval is called the period of the orbital motion. Let P be this period. The corresponding

area A swept by the position vector must then be the area of the entire ellipse, given by the

equation

A = πab, (25)

with a the semimajor axis and b the semiminor axis of the ellipse. The latter is related to

the former via the eccentricity e:

b = a
√

1− e2. (26)
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For ∆t = P , Eqn. 24 then becomes

πa2
√

1− e2 =
1

2
hP, (27)

and with Eqn. 17,

πa2
√

1− e2 =
1

2

√
µa(1− e2)P. (28)

The
√

1− e2 drops out, and after squaring both sides and rearranging variables we get

Newton’s form of Kepler’s third law:

µ = G(M +m) = 4π2 a
3

P 2
. (29)

The Vis Viva Equation

The following is an alternative derivation of Leibniz’ vis viva equation, the important Equa-

tion 3.67 in Ryden & Peterson.

The magnitude v of the velocity v of m with respect to M can be written as

v2 = vR
2 + vT

2, (30)

or, using Eqns. 19 and 20, as

v2 = ṙ2 + r2θ̇2. (31)

In here, the ṙ can be obtained from differentiating Eqn. 14, which leads to

ṙ = a(1− e2) sin θ θ̇ (1 + e cos θ)−2

=
r2

a(1− e2)
e sin θ

√
µa(1− e2)

r2

=

√
µ

a(1− e2)
e sin θ. (32)

The θ̇ comes from Eqn. 21:

θ̇ =
h

r2

=

√
µa(1− e2)

r2
(33)

The vis viva equation then follows by substituting Eqns. 32 and 33 into 31 and carrying out

some algebra:

v2 = µ

(
2

r
− 1

a

)
. (34)
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This is a very important equation. It tells us that, for given masses M and m, the orbital

speed only depends on the distance r between the two bodies and the orbit’s semi major

axis.

Applying vis viva at the periapse point, with r given by Eqn. 15, yields the orbital speed at

periapse passage,

vp =

√
µ

a

√
1 + e

1− e
, (35)

which corresponds to the maximum value v can have. Similarly, vis viva and Eqn. 16 give

the orbital speed at apoapse,

va =

√
µ

a

√
1− e
1 + e

, (36)

which is the minimum orbital speed of m. Note that the product

vpva =
µ

a
(37)

is independent of the eccentricity e.

Energy

The total mechanical energy of the system of two bodies (M,m) is the sum of the kinetic

energy of M , the kinetic energy of m, and the gravitational potential energy of the (M,m)

system. Choose a coordinate frame with origin at the center of mass (CM) of the system.

Vectors r1 and r2 are the position vectors of M and m, respectively. Clearly, the relative

position of m with respect to M is

r = r2 − r1. (38)

Because the position vector of the CM is the zero vector (CM is at O), and using the definition

of the CM, we have

Mr1 +mr2 = 0, (39)

or

Mr1 = −mr2. (40)

Combining the latter with 38 gives

r1 = − m

M +m
r, (41)

and after taking the time derivative,

v1 = − m

M +m
v. (42)
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Likewise we obtain

v2 = +
M

M +m
v. (43)

The total mechanical energy E then becomes:

E =
1

2
Mv1

2 +
1

2
mv2

2 −GMm

r

=
1

2
M

(
m

M +m

)2

v2 +
1

2
m

(
M

M +m

)2

v2 −GMm

r

=
1

2

(
Mm

M +m

)
v2 −GMm

r
. (44)

The quantity in parentheses, Mm/(M + m), has the dimension of mass and is called the

reduced mass of the system. Substituting v2 by the vis viva Eqn. 34, and after some algebra,

we get

E = −1

2
G
Mm

a
, (45)

or, given µ = G(M +m),

E = −1

2

(
Mm

M +m

)
µ

a
. (46)

Note that we have used the viv viva equation for eliptical motion, so Eqn. 45 gives the

total energy of the system for elliptical orbits. Given the masses M and m, E is uniquely

determined by the semimajor axis a of the orbit. Also, E is negative, indicating a bound

system.

For parabolic orbits, both the vis viva (Eqn. 34) and energy (Eqn. 45) equations are still

valid, provided we set a =∞. We then have

Eparab = 0, (47)

and the vis viva equation becomes

v2para =
2G(M +m)

r
. (48)

A particle m moving in a parabolic orbit with this parabolic speed v =
√

2G(M +m)/r will

make it to infinity, i.e. will “escape” the gravitational pull of M . This speed is referred to as

the escape speed, vesc. If m << M , the escape speed reduces to

vesc =

√
2GM

r
, (49)

which is Eqn. 3.62 in Ryden & Peterson.

For hyperbolic orbits, the total energy is positive and given by

E =
1

2
G
Mm

a
. (50)
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Virial Theorem

The −GMm/a part of Eqn. 45 represents the “mean potential energy” of the system, with

the mean taken over one orbital cycle. Thus for a two-body orbit we find the total energy to

be equal to half the time-averaged potential energy. This is the so-called virial theorem for

a gravitationally bound system of many particles. The theorem can be expressed as

< E >=
1

2
< U >, (51)

or, since

< E >=< K > + < U >, (52)

as

< K >= −1

2
< U > . (53)

A rigorous derivation of the virial theorem is in Ryden & Peterson Section 3.4.

The virial theorem is very useful in astronomy in the study of large stellar system such as star

clusters and galaxies, It also plays an important role during the star formation process. When

part of a nebula (a cloud of interstellar gas and dust) collapses gravitationally, its (negative)

potential energy decreases (the inter-particle distance decreases, hence the absolute value of

the PE increases, but since PE is a negative number, the PE decreases). According to the

virial theorem, half of the lost PE goes into KE of the particles, i.e. the internal energy (and

temperature) of the collapsing blob increases. What happens to the other half? That other

half is carried out of the blob of collapsing gas by photons, i.e. it gets radiated away by light.

So, during star formation, before the onset of nuclear fusion, stars in the process of forming

already shine.

Interplanetary Travel

We now have all the ingredients for launching probes and get them from one orbit to another

around the same planetary body, or from one planet to another: see the idea of Hohmann

transfer orbits in Ryden & Peterson, Section 3.3, and our discussion in class.


