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Preface

This monograph contains the documentation of the binary star program originally de-
veloped in the early 1970s by Wilson and Devinney, and later revised by Wilson and
Wilson & Van Hamme. The reference date for the eighth revision described here is July
2015.

We would appreciate if anyone who downloads the programs and its associated data
files to send a brief message to rewilson@astro.ufl.edu stating that the files have
been copied. That will help in keeping track of how many copies of the program have
been downloaded. Reprints of work that uses the programs are also appreciated. Please
cite relevant features of the model/program via the papers below, and cite these papers
rather that saying that the program was used.

• Wilson R. E. & Devinney E. J. 1971, ApJ, 166, 605 (initial paper)

• Wilson R. E. 1979, ApJ, 234, 1054 (simultaneous light/RV solutions and several
generalizations)

• Wilson R. E. 1990, ApJ, 356, 613 (improved reflection effect)

• Van Hamme W. & Wilson R. E. 2007, ApJ, 661, 1129 (3rd body light time effect)

• Wilson R. E. 2008, ApJ, 672, 575 (Direct Distance Estimation [DDE] logic)

• Wilson, R. E., Van Hamme, W. & Terrell, D. 2010, ApJ, 723, 1469 (flux calibra-
tions for DDE implementation)

• Wilson R. E. 2012, AJ, 144, 73 (precision starspot algorithm)

• Wilson R. E. & Van Hamme, W. 2014, ApJ, 780, 151 (unified solutions of light
curves, RV curves, and eclipse timings)

v





Documentation

1 Introduction

The main theory, organization, concepts and much of the mathematics of the model have
been described and quantified in papers by Wilson & Devinney (1971), Wilson (1979,
1990, 1993, 2008, 2012a,b), Van Hamme & Wilson (2003, 2007), Wilson, Van Hamme,
& Terrell (2010), and Wilson & Van Hamme (2014). Some of the model’s lesser known
capabilities are briefly discussed in Wilson (2012a). The reader is referred to those
papers for background. Since it would be impractical to cover the programming ideas
within a reasonable length, only the 1993 paper goes significantly into programming, and
there only in abbreviated form. This booklet also is not an explanation of programming
ideas—its purpose is to tell how to use the model.

The overall program consists of a main FORTRAN1 program (LC) for generating light
and radial velocity curves, spectral line profiles, images, conjunction times, and timing
residuals, plus a differential corrections main program (DC) for parameter adjustment
of light curves, velocity curves, and eclipse timings by the Least Squares criterion. About
three dozen subroutines are used by both main programs.2 The present program has
grown over the years from much simpler beginnings. Growth has consisted of occasional
improvements in regard to generality, speed, and elimination of bugs, perhaps about
every six months, punctuated by eight revisions. The revision of 1982 introduced ec-
centric orbits, asynchronous rotation, capacities to do several new kinds of constrained
solutions, computation of velocity curves (with proximity and eclipse effects), simulta-
neous light and radial velocity solutions, and a simple star spot capability. Most features
of the 1982 version are described in Wilson (1979). The revision of 1992 had options
for detailed reflection and non-linear (logarithmic law) limb darkening, adjustment of
spot parameters, an optional provision for spots to drift over the surface, capability for
following light curve development over large numbers of orbits, and greater speed. The
third revision (1998) included semi-transparent circumstellar clouds, a simple spectral
line profile capability for fast-rotating stars, inclusion of the Marquardt λ factor in differ-
ential corrections solutions, generation of sky coordinates for images, an option to work
with either observed times or phases, additional solution parameters (T0, P0, dP/dt, and
dω/dt), conversion of the entire program to double precision, and some other improve-
ments that are listed in §21.2 on pages 50–51. The fourth revision (2003) was mainly
a conversion from the previous effective wavelength characterization of bandpasses to
one based on integrations over actual bands of standard photometric systems. The ra-
diative functions depend on effective temperature, log g, and chemical composition and
are applied locally. A few changes also were made in the constraints applied to some

1Apparently the f77 FORTRAN compiler used by most persons over recent decades is becoming less
available. However, LC and DC should run just as well under the newer f90 compilers.
2In this monograph, program and subprogram names are in boldface type (e.g. LC), FORTRAN
variable names are in sans serif style (e.g. XINCL), and FORTRAN statements and file names are in
typewriter style (e.g. open(unit=22,...).

1
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overcontact binaries (mode 3 operation). The fifth revision of 2007 included light-time
and velocity shifts due to third bodies (hereafter 3b’s), adjustment of corresponding 3b
parameters (see §10.5 on page 22), computation of x, y limb darkening coefficients as
functions of local Teff , log g, and [M/H] for any of three laws (see §10.1 on page 18
and §10.4 on page 22), option of magnitude or flux input to DC (see explanation of
control integer MAGLITE in §12.3 on page 30), simplified re-dimensioning (provided by
A. Prša), and several additions and improvements in output quantities and formats.
Instructions for re-dimensioning are in the LC and DC main programs. The primary
purpose of the sixth (2010) revision was to introduce absolute flux solutions (described
in §17.1 on page 41) that allow Direct Distance Estimation (DDE). In these absolute
solutions, distance (actually log10 d) is an ordinary solution parameter with a standard
error, and with no spherical star assumption in any part of the process. Accordingly
one need not hesitate to derive DDE distances for semi-detached or over-contact bina-
ries (i.e. there is no reason to favor well-detached binaries for distance estimation with
DDE). Also possible are improved solutions for ellipsoidal variables, and for EBs with
very shallow eclipses, via independently known distance (inverse distance estimation, or
IDE). Absolute flux solutions also can estimate temperatures of both EB components
under suitable circumstances. Input integer IFCGS tells LC and DC whether to operate
in the program flux unit or in centimeter-gram-second (cgs) units. Set IFCGS to 0 for
arbitrary flux and luminosity units, or set IFCGS to 1 for standard units (respectively
erg s−1 cm−3 and erg s−1 cm−1). The seventh (2013) revision added a high-precision
star spot algorithm (see §4.11 on page 11) that allows for developing spots character-
ized by times of onset, maximum size and disappearance. Spot drift is independent of
star rotation. The radiative treatment is now based on cubic spline fits to stellar atmo-
spheres (formerly Legendre polynomials), and the original list of 25 photometric bands
introduced in 2003 is expanded to 93 bands (see §15 on page 36). Time/phase smearing
is a light curve option (see §9 on page 17). DC can now (optionally) find its own curve-
dependent weights (see §4.9 on page 10). The eigth revision (2015) has added eclipse
timings as a data input option. For details of this capability, see §10.6 on page 23. A
94th band (Lunar UV Telescope) is added in this minor update of 2016.

2 Running the Programs

To make things simple, the light and velocity curve program (LC) and the differential
corrections program (DC) are supplied complete with input data sets, so that all one
needs to do to get started is to run the programs with the sample input data. There
should be few, if any, machine-dependent problems, as those have been eliminated via
feedback from users. If such a problem is found, please communicate it to R.E.W.
However, there may be a trivial problem with the arcsine and arccosine routines, which
are DASIN and DACOS on some systems and DARSIN and DARCOS on others. That problem
can easily be fixed. Then just change the input numbers to run a particular binary star
problem. Be sure to keep at least one copy of the supplied sample data in case the input
formatting gets scrambled or shifted. Of course, one always can re-construct the correct
format by comparing the program’s READ and FORMAT statements with the input lines,
but save the original data anyway in the interest of keeping things simple. It is not
recommended to change the programs, but if you must, be sure to keep a copy of the
original version for comparison. Tinkering can introduce bugs that may not show up in
particular cases but jump out at you later on.

Compilation is quite direct as LC is supplied in one composite file and so is DC,
including all required subroutines. Most subroutines are in both modules, with memory
cost of the redundancy being of little significance. Some auxiliary data files (for limb
darkening, etc.) need to be in the sub-directory where the program is run, or links to
them must be provided.
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3 Output Options for the LC Program

The kind of output produced by LC is determined by control integer MPAGE and can
be light curves (MPAGE=1), radial velocity curves (MPAGE=2), spectral line profiles
(MPAGE=3), relative star dimensions vs. phase (MPAGE=4), sky coordinates for pro-
ducing images (MPAGE=5), conjunction times and eclipse timing residuals (MPAGE=6
and KSTEP=0), or computed conjunction times (MPAGE=6 and KSTEP=1, 2, 3, . . .).

For MPAGE=1 (light curves), the first five output columns in the block after the header
information contain time (col. 1), phase (col. 2), separate light for stars 1 and 2 (cols.
3, 4), and the combined system light from stars 1 and 2 plus third light (col. 5). Star
1 is, by definition, the one at superior conjunction near phase zero when
parameter PSHIFT is entered as zero. It will be the one eclipsed near phase zero
if there are eclipses. Light is in the program unit, which is explained in Wilson (1993).
The program unit is, in a sense, an absolute unit of observable flux because it can
be converted to standard physical units if absolute star luminosities and a definite
observer distance are specified. Light (observable flux) and luminosities are discussed
in §6 on page 14. Column 6 contains the light of column 5 re-scaled (normalized) to a
specified input value (labeled FACTOR) at a specified input phase (labeled PHN). For
example, one can require that the normalized light be 1.2000 at phase 0.1500. This re-
scaling provision is only for convenience in working with graphs, and has no relevance
to differential corrections solutions. That is, the DC program works only with direct
flux and does not even know about normalized light. Column 7 is the star separation,
with the unit being the relative orbital semi-major axis (a = a1 + a2). Column 8, called
“set-level magnitude,” is system brightness expressed in magnitudes, pinned so as to
pass through a definite point in a graph of magnitude vs. phase. The point is specified by
input quantities MZERO and PHN. For example, if MZERO is +7.300, column 8 will read
7.300 at the phase of normalization (PHN), which is the same phase of normalization
used for column 6. Column 9, called “direct magnitude,” is −2.5 log10 `, which is the
exact inverse of flux used by DC for its solutions, as generated in DC by ` = 10−0.4m

in the case of magnitude input. Here ` = `1 + `2 + `3 (column 5). Accordingly, LC’s
direct magnitudes will give theoretical light curves that correspond to DC solutions
and can be used to make graphs to compare theory with observation. Column 10 is the
light-time shift (∆t, in days) caused by the third body.

For MPAGE=2 (radial velocities), the first two output columns are again time and phase.
Columns 3 and 4 are dimensionless radial velocities for the two stars (in circular relative
orbit circumference, 2πa, per orbit cycle). Columns 5 and 6 are eclipse-proximity correc-
tions that are included in columns 3 and 4, respectively, and in the same dimensionless
unit. Columns 7 and 8 are velocities in kilometers per second if velocity unit VUNIT was
entered as 1.00, or, in general, in unit VUNIT km/s. Column 9 is the light-time shift.

For MPAGE=3 (spectral line profiles), the output is by blocks according to phase, with
results for stars 1 and 2 given first and second, respectively, within each phase block.
Column 1 is the equivalent velocity difference between the reference wavelength and
the wavelength of the profile point, in unit VUNIT. Column 2 is the corresponding
wavelength difference, in microns. The reference wavelength is entered with the main
binary star parameters (labeled “wv lth” in the output). Column 3 has the actual
wavelengths of the profile points, in microns. Column 4 is the profile in terms of a flat
continuum at flux 1.00000. Column 5 is the profile in terms of a continuum that can be
shifted vertically and can have a slope. Guard against generating excessive output with
MPAGE=3 (usually one does only one phase at a time). Input for MPAGE=3 operation
is described in §8 on page 16. Extra data lines beyond those for other MPAGE values
are required. The program will crash without those lines if MPAGE=3.
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For MPAGE=4 (star figures), LC lists the pole, point, side, and back relative radii (R/a)
of each star vs. time and phase. This provision can be useful for eccentric orbit cases,
as it shows the variation of figure with phase.

For MPAGE=5 (images), LC produces only two output columns for each time/phase,
beyond the usual header information. Those columns are ysky and zsky rectangular plane
of sky coordinates of the projected surface elements of the two stars. A picture of the
binary at a given phase can be made by sending just those two columns to a plot program
such as GNUPLOT, MONGO, etc. Any spots or parts of spots that may be in view will
show in the pictures, although there is no distinction in the pictures between bright and
dark spots. The images show only spot location, not spot surface brightness (there is
no gray scale). The origin (0, 0) of the image coordinates is at the binary system center
of mass.

For MPAGE=6, LC computes conjunction times or their differences from observed
eclipse times (i.e. residuals), both with and without a dP/dt term in the latter case.
Only for MPAGE=6 does LC input include observations (for MPAGE=1 to 5, input
consists of integers that specify program operation and parameter values but no ob-
servations). Of course the reason is that residuals are the needed output and residuals
require observations.

Control integer KTSTEP is entered only with MPAGE=6 and allows computed conjunc-
tion times to be spaced by an arbitrary number of whole orbit cycles rather than only
by one cycle. The times include dP/dt and third body light-time effects, which may
be useful for planning observations over long intervals. The case KTSTEP=0 is not for
conjunction times but for observed minus computed timing residuals, which are needed
to make eclipse timing diagrams. Of course the observed times must be included in the
LC input file. Residuals for both a linear (dP/dt=0) and a non-linear ephemeris are
written, and light-times due to a third body are included.

4 How To Use the LC and DC Programs

Adjustment of parameters while fitting light and velocity curves normally involves both
subjective (LC) and objective (DC) iteration. It is assumed that the user has reasonable
background knowledge of binary stars and can show good judgment in deciding which
parameters to fix from theory, which to fix from other kinds of observations, and which
to adjust. Solution constraints, if there are to be any, must also be decided upon. In most
situations, some of the decisions are obvious while others are debatable, and seldom will
two persons make the same set of choices, even if given exactly the same circumstances.
Therefore, this section goes only into the “mechanics” of solutions, which means how to
use the LC and DC programs. Historical background is in Wilson (1994a) and Wilson
(2001) while intuitive ideas are discussed in Wilson (1994b, 2006).

4.1 Getting Started

Getting started should only be a matter of running the programs with the supplied
sample input data and changing the numbers to those of particular binaries. Most
persons will want to begin with a quick graphical fit, so as to be somewhere near to a
proper solution. The following discussion specifically concerns non-absolute light curves
in LC, although absolute light curves and radial velocities would be fitted in much
the same way. It is best to be ready to feed either column 5 (light in program units)
or column 6 (normalized light) to a plot program such as MONGO or GNUPLOT.
Remember that the normalized light column has no counterpart in DC, so after a
few first cuts with normalized light (to reach rough agreement with the observations)
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switch from use of column 6 to use of column 5. At this point one should effect a
correct transfer such that the column 5 numbers will be approximately the same as
the column 6 (normalized) numbers that may have been made to fit the light curve(s).
This little problem involves the estimation of a scaling constant, or sometimes more
than one. Please consult §6, Luminosity vs. Light (Flux), on page 14 if you are not
conversant with the distinction between “light” or “flux” on the one hand (an output
quantity), and “luminosity” on the other (an input quantity). This will sound trickier
than it is, but do not be concerned with making a perfect transfer from column 6 to
column 5 output because you are iterating anyway in DC and only need to get close.
Remember that the light of each star scales with its luminosity, while third light (`3)
is just a direct add-on. Also remember that in all modes of program operation except
modes 0 and −1, the luminosity of star 2 (L2) is computed by the program and scales
with that of star 1 (L1), assuming fixed values for all other parameters. Therefore the
main, or perhaps only, scaling parameter in most situations is L1. The simplest case is
in mode 1, 2, 3, 4, 5, or 6 with no third light. Then, for example, doubling L1 will double
column 5 output light. If there is third light, that also should be doubled if column 5
light (`1 + `2 + `3) is supposed to double. In mode 0, L2 does not scale with L1, so L2

also would then need to be doubled. In mode −1, L1 has only minor influence (through
reflection heating), so L2 and `3 mostly control the scaling, although L1 also needs to
be scaled in the general case. So to make column 5 agree with column 6, bump L1 and
`3 (most modes) or L1, L2, and `3 (modes 0 and −1) up or down by a fixed factor.

4.2 LC Program Controls and Fixed Quantities

These are brief statements about essential purpose. The first entry is the FORTRAN
name and the entry in parentheses is the output name written by LC. The quantities
are defined more properly elsewhere in this document, usually in connection with their
use in the DC program. See the index of FORTRAN names for page numbers.

FORTRAN names of most quantities are the same in the LC and DC programs. Slight
exceptions are for quantities that are single numbers in LC and arrays in DC, for
example names X1 in LC and X1A in DC, where the added “A” stands for “array.”

MPAGE (mpage): The kind of output produced by LC (light curve, RV curve, etc.).

KTSTEP (ktstep): Positive integer that steps computed superior and inferior conjunction
times by KTSTEP whole orbit cycles. Entered only with MPAGE=6. If KTSTEP=0,
output is timing residuals instead of conjunction times.

NREF (nref): The number of reflections in detailed reflection computation.

MREF (mref): Specifies whether simplified or detailed reflection is to be applied.

IFSMV1, IFSMV2 (ifsmv1, ifsmv2): These tell whether spots are allowed to move in
longitude or are to be stationary.

ICOR1, ICOR2 (icor1, icor2): Tell whether computed RV’s are to include proximity and
eclipse corrections or not.

IF3B (if3b): Tells whether there is a light time effect due to a kinematic third body.

LD1, LD2 (LD1, LD2): Tells the limb darkening law to be applied (linear, log, or square
root) for stars 1 and 2.

KSPEV (kspev): Tells whether spots are to grow and decay or not.

KSPOT (kspot): Tells whether the old simple spot model or a more accurate one, based
on position vectors, applies.
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NOMAX (nomax): Tells whether the spot growth and decay timewise profile is trape-
zoidal or triangular.

IFCGS (ifcgs): Tells whether light curves are to be computed in arbitrary units or abso-
lute physical units.

JDPHS (JDPHS): Tells whether time or phase is the independent variable in light and
RV curves.

PSHIFT (Ph. shift): A constant shift that can be applied to move a light or RV curve
in phase.

DELPH (del phs): Phase spacing of abscissas in Gaussian quadrature for phase or time
smearing simulation.

NGA (NGA): Number of Gaussian quadrature abscissas in phase or time smearing sim-
ulation.

STDEV (fract. sd.): Fractional standard deviation of simulated scatter in output light
or RV. Enter zero for zero output noise.

NOISE (noise): Specifies how output scatter (simulated noise) is to vary with light level.

SEED (seed): A seed number that determines individual noise excursions of output light
or RV points.

HJDST (JD start): Start time for output points. Applied only if JDPHS=1. The time
system does not have to be Julian Date.

HJDSP (JD stop): Stop time for output points. Applied only if JDPHS=1. The time
system does not have to be Julian Date.

HJDIN (JD incr): Increment for times of output points. Applied only if JDPHS=1.

PHSTRT (Ph start): Starting phase for output points. Applied only if JDPHS=2.

PHSTOP (Ph stop): Stop phase for output points. Applied only if JDPHS=2.

PHIN (Ph incr): Increment for phases of output points. Applied only if JDPHS=2.

PHN (Ph norm): Phase of normalization for columns of normalized light and set mag-
nitude.

PHOBS (Ph Obs): Phase at which a spectroscopic temperature was estimated (for use in
a possible side computation to convert directly estimated temperature to flux-weighted
mean surface temperature).

TOBS (Tobs): Spectroscopic temperature at phase PHOBS.

TAVSP (Tavesp): Computed flux-weighted mean surface temperature.

LSP (LSP): Tells whether TOBS and TAVSP are for star 1 or star 2.

MODE (MODE): Integer to determine which model constraints, if any, are to be applied
(for example semi-detached, with star 2 exactly filling its lobe).

IPB (IPB): Control integer that can sever the temperature-luminosity connection.

IFAT1, IFAT2 (IFAT1, IFAT2): Tells whether blackbody or stellar atmosphere radiative
physics applies to stars 1 and 2.
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N1, N2 (N1, N2): Grid fineness integers for stars 1 and 2 (number of latitude rows per
hemisphere).

VUNIT (V UNIT(km/s)): Radial velocity input unit in kilometers per second.

IBAND (band): Photometric band identifier. For example IBAND is 6 for Johnson B and
7 for Johnson V.

4.3 LC Program: Internally Computed Output Quantities

VFAC (V FAC): Conversion factor from dimensionless velocity units (circumference of
the relative orbit per orbit cycle) to kilometers per second.

NSPOT1, NSPOT2 (Nspot1, Nspot 2): Numbers of spots on stars 1 and 2.

TPOLE1, TPOLE2 (Tpole 1, Tpole 2): Polar effective temperatures on stars 1 and 2.

4.4 LC Program: Binary System Parameters

HJD0 (J.D. zero): Ephemeris reference time – usually heliocentric Julian Date, although
any consistent time system can be adopted.

PZERO (Pzero): Orbit period in mean solar days at time HJD0.

DPDT (dPdt): Rate of period change, assumed constant (dimensionless).

ARGPER (Arg. Per): Argument of periastron in radians.

DPERDT (dPerdt): Rate of change of argument of periastron in radians per mean solar
day.

THE (Th e): Semi-duration in phase (phase range 0 to 1) of the eclipse of star 1 (ordi-
narily only for X-ray binaries – applied only in mode −1).

ECC (ecc): Binary system orbital eccentricity.

SMAXIS (s-m axis): Semi-major axis of binary system relative orbit (a = a1 + a2) in
solar radii.

F1, F2 (F1, F2): Ratios of axial rotation rate to mean orbital rate for stars 1 and 2.

VGAM (Vgam): Radial component of the systemic velocity in unit VUNIT.

XINCL (Incl): Binary system orbital inclination (zero in plane of sky, 90 degrees edge-on).

G1, G2 (g1, g2): Exponents in bolometric gravity brightening (a.k.a. darkening) law for
stars 1 and 2.

ABUNIN ([M/H]): System metallicity as usually defined logarithmically, relative to the
Sun.

FSPOT1, FSPOT2 (Fspot1, Fspot2): Spot angular drift rates in longitude for stars 1
and 2. Rate 1.0000 means that drift just matches the mean orbital angular rate.

T1, T2 (T1, T2): Flux-weighted mean surface temperatures for stars 1 and 2 in unit
10000 K.

ALB1, ALB2 (Alb 1, Alb 2): Bolometric albedos for stars 1 and 2.

POT1, POT2 (Pot 1, Pot 2): Modified surface ’potentials’ for stars 1 and 2.
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RM (M2/M1): Mass ratio of binary components, m2/m1.

X1BOLO, X2BOLO (x1(bolo), x2(bolo)): Bolometric limb darkening coefficients for stars
1 and 2 in linear cosine law, and in the linear terms of the logarithmic and square root
laws. See §10.1 on page 17 for forms of the laws.

Y1BOLO, Y2BOLO (y1(bolo), y2(bolo)): Bolometric limb darkening coefficients for stars
1 and 2 in logarithmic or square root terms

A3B (a3b): Semi-major axis of the relative 3b orbit in solar radii.

P3B (P 3b): Period of the 3b orbit in mean solar days.

XINC3B (incl 3b): Inclination of the 3b orbit to the plane of the sky, in degrees.

E3B (e 3b): Eccentricity of the 3b orbit.

PER3B (arg. perr. 3b): Argument of periastron of the 3b orbit in radians.

TC3B (T conj 3b): Time of superior conjunction of the EB center of mass in its reflex
motion about the triple system barycenter, in the adopted time system (usually HJD
or HJED).

RM3B (m3/(m1+m2)): Ratio of 3b mass to EB mass.

L1, L2 (L1, L2): Component bandpass luminosities (input), integrated over 4π stera-
dians at each star. Only their ratios matter, for example L2/L1 or L1/(L1+L2), since
non-absolute EB solutions of uncalibrated light curves cannot directly supply luminosi-
ties in physical units. Usually L1/(L1+L2) for each photometric band is reported in
publications. Luminosities in physical units (erg/s/cm) and in solar units are in the
output of program LC, based on the physical and geometric input parameters.

X1, X2 (x1, x2): Limb darkening coefficients in the linear cosine law.

Y1, Y2 (y1, y2): Coefficients in the non-linear limb darkening terms.

EL3 (el3): Third light at a user-specified phase in the same unit as input light (flux).

OPSF (opsf): Opacity in a specific band, κsb, explained in §7, and related to attenuation
by circumstellar clouds.

MZERO (m zero): A reference magnitude that can shift a magnitude light curve (LC
output) vertically. See §3.

FACTOR (factor): A scaling factor for LC output curves in flux (not magnitude). See
§12.2 and §4.6.

WL (wv lth): Wavelength of light, in microns, now used only for circumstellar matter
and spectral line profiles.

CALIB (calibration): Flux in erg s−1cm−3 for a zero magnitude star in a given photo-
metric band. One of the cm factors represents effective bandwidth.

4.5 Input Temperatures from Spectra

A small and easily resolved problem concerns the distinction between directly observed
temperature (Tobs) and mean surface temperature (Tmean), given that Tmean (the actual
model parameter) is a global quantity while Tobs depends on phase and inclination due
to phenomena such as gravity brightening and the reflection effect. Rigorous conversion
from Tobs to Tmean is covered in the appendix to Wilson (2008), with full explanation and
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mathematics. The LC program asks for input of an observed (presumably spectroscopic)
temperature (TOBS) and its phase (PHOBS) and computes a mean surface temperature
(labeled Tavesp). LC knows the orbital inclination since that is a system parameter.
Input integer LSP is 1 or 2 depending on whether those temperatures are for star 1 or
star 2.

4.6 Early Rough Curve Fitting Experiments

In subjective (trial & error) fitting with normalized output the idea is to select some
phase where the synthesized curve is made to match the observed curve so that one can
concentrate on form rather than the scale. Usually one chooses some innocuous phase
outside eclipse where the brightness is not changing very fast. Vertical shifts of the
whole normalized curve are made by changing input quantity FACTOR, if working in
direct light, or MZERO if working in magnitudes. After you switch to column 5 output
(getting ready for DC), control of vertical scaling passes to L1, L2, and `3, as explained
above. After gaining some experience with LC, you will be using the normalized output
only for a few preliminary runs and staying with program-unit light thereafter.

To start running DC, begin with the sample data, which contain control integers, initial
parameter estimates, radial velocity curves for stars 1 and 2, light curves in four bands,
and eclipse times. Run DC and inspect the output to be sure you understand everything.
You may want to change a few things in the input to verify that the output responds
as expected.

4.7 Sigmas and Del’s for the DC Program

To begin a solution with your own data, change the sample input numbers to those
appropriate to the observed binary, being careful to keep the original format. By this
time you should have made a reasonable number of fitting experiments with LC, decided
on the mode of program operation, decided on the parameter set and subsets to be
adjusted, and made (perhaps rough) estimates of the SIGMA’s (standard deviations) of
the observed curves (see next sub-section). You should also give a reasonable amount of
thought to the sizes of the increments (DEL’s) used in forming the numerical derivatives.
It is easy to fall into the error of trusting the DEL’s in the sample data to be appropriate
for your binary, and sometimes they will be, but you cannot rely on that assumption.
For example, suppose the mass ratio DEL is 0.01 and you just leave that value in for
two binaries with mass ratios of 5.00 and 0.10. The increment for the first binary is one
part in 500 (probably too small), while that for the second is one part in 10 (grossly
too large, of course).

There is no input DEL for the spot timing parameters because their derivatives are
hybrids, part analytic and part numerical. The analytic parts need no increments and
the numerical parts use the spot radius DEL.

4.8 Three Kinds of Weights

Weighting of observations is discussed in Wilson (1979, pages 1064-1065), Wilson (1988)
and Kallrath & Milone (2009). Briefly, DC applies three kinds of weights, which are “in-
trinsic” weights (assigned by the user to the individual observations), “curve-dependent”
weights (based on estimated standard deviations [SIGMA’s] at a reference phase), and
“level-dependent” weights (computed by DC according to the input parameter NOISE,
which tells how observational scatter scales with light level). NOISE should be set to 1
for scatter that scales with the square root of the light level, such as counting statis-
tics, and to 2 for scatter that scales with the light level, such as scintillation noise or
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fluctuations in sky transparency. If NOISE is set to 0, no level-dependent weighting is
applied. Level-dependent weighting does not apply to velocity curves. SIGMA’s pertain
to the directly entered velocity and light values. An exception is where the SIGMA’s
were actually measured from individual observations, but normal points (i.e. averages)
are entered. In that case, the number of individual points in each normal point should
be incorporated in the assigned weight of each point. In some papers the SIGMA’s have
been used to manipulate relative curve weights (usually RV vs. light curve weights).
However, the SIGMA’s need to be CALCULATED, not set arbitrarily. One can start
with approximately correct SIGMA’s but they cannot be off by large factors in a relative
sense. Of course, only ratios of weights matter. See §4.10 for a recent provision that
allows DC to calculate its own curve-dependent SIGMA’s and weights.

4.9 Standard Deviations Generated by DC for Curve-dependent Weight
Estimation

DC writes a table of standard deviations (σ) for the 1 or 2 velocity curves, NLC light
curves, and the dataset of eclipse times, immediately after writing the input data, and
then after each iteration of each subset solution (so for that iteration). The table heading
is “Standard Deviations for Computation of Curve-dependent Weights.” The σ’s are
listed in the order their curves occur in the input. Originally they were intended for
use in subsequent DC runs to calculate curve-dependent weights so as to specify the
relative influences of the various curves, and that option remains. That is to say, one
can enter rough guesses for the σ’s for the first few iterations, then enter the calculated
ones for the middle and fine-tuning runs. The rough guesses can be made by putting
a straight line through a representative section of the data. However, the automated
weighting of §4.10 will usually make such personal intervention unnecessary.

DC estimates σ’s for the whole curves and also estimates combined σ’s within two
restricted phase ranges. The idea here is that some phase ranges may have anomalous
excursions or increased scatter, often due to unknown phenomena, so as to give false
estimates of observational precision. The start/stop phases for the restricted ranges
are labeled “phase 1, phase 2, phase 3 and phase 4” in the DC output, and their
FORTRAN names are SPHAS1, SPHAS2, SPHAS3 and SPHAS4. With respective values
of, say, 0.07000, 0.43000, 0.57000 and 0.93000, they would define two phase ranges, one
from 0.p07000 to 0.p43000, and one from 0.p57000 to 0.p93000. Usually it is best to choose
a modest range for the “representative phases,” or perhaps an average of two such
ranges. Often one would adopt intervals around the maxima. The table also contains
the reference flux and reference magnitude (for each band) that are averages over the
two chosen phase ranges. To have only one range count, enter a null range for the other
one (such as 0.75 to 0.75). The reference flux can be used to compute σ at a general light
level, given σref at the reference level. The relation is σ = σref(F/Fref)

n/2, where F is
flux and n is the NOISE exponent described in §12.3 (page 30) and in §18 (page 45). In
the unlikely and easily prevented event that no points of a given light curve fall within
either of the specified phase ranges, DC adopts the average for the entire phase range
of 0.0000 to 1.0000 and writes a message to that effect as a warning about the problem.

4.10 Automated Curve-dependent Weight Computation

Curve-dependent weighting (where a common weight is applied to each light or RV
curve, or to a collection of eclipse timings) can be tedious and often neglected. Such
weights might be separately computed from observational scatter as a preliminary step
in the analysis or might be supplied by the observers. An alternative to separately
computed or observer-specified curve-dependent weights is to let DC compute curve-
dependent weights from DC’s σ estimates. This DC facility eliminates a step in the
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solution process, thereby decreasing the likelihood of weighting being bypassed or han-
dled with insufficient care. The procedural decision can be decided on a curve by curve
basis (see explanation for control integer KSD on page 30). For example, with two veloc-
ity curves and three light curves, one could have DC adopt observer-specified input σ’s
for the first velocity curve and the middle light curve and apply DC’s own σ estimates
for the other three curves. That could be a good strategy if the best information on
precision is from the observers for some curves and from observational scatter for others.
The option for automated curve-dependent weighting came in with the 2013 version,
for light curves and RV curves, and now extends to eclipse timings. The importance
of consistent weighting must be emphasized, as the three data types typically differ in
order of magnitude and in units. Without proper weighting, astrophysical results would
depend strongly on the arbitrary scale factors associated with units. Proper weights
assure that the several kinds of data contribute to results quantitatively according to
their precision. The “curve by curve” description means that whether weights are to
be computed by the machine or just assigned is specified individually for each curve or
timing dataset.

4.11 Computational Spot Algorithms, Old and New

The old spot algorithm that dates from about 1985 has now been superseded by a far
more accurate one (Wilson 2012b) whose spots have fractional areas based on position
vectors. The old logic remains in the program to enable comparisons with results from
the new logic, but usually the new scheme will be preferable. Set KSPOT=1 for the
old logic or KSPOT=2 for the new logic. Remember not to try star spots that are
unduly small in angular radius if KSPOT=1 because there are then no fractional areas
to the spots—they have staircase-like boundaries where their idealized circular outlines
encounter the finite grid elements. Of course, the roughness of the simple KSPOT=1
treatment becomes particularly troublesome for small spots, and very small spots might
not show up at all. The new (KSPOT=2) logic also allows spots to age (i.e. grow and
decay), parameterized by times of onset, maximum size and disappearance that can be
adjusted by DC. Spot motions in longitude are now governed by drift parameters Fspot1
and Fspot2 for stars 1 and 2, respectively, rather than by star rotation parameters F1
and F2, as before, so spot motion is now decoupled from star rotation. To have spot
motions and star rotations be the same, set Fspot1 equal to F1 and Fspot2 equal to F2.

4.12 LC Input from DC output

If input integer IFLCIN is set to 1, DC writes an input file for the LC program (called
lcin.input from DC) from the numbers that enter its very last iteration of a given
submission. Of course the purposes are to avoid copying mistakes and to save typing.
If DC does the base set and then, for example, four subsets, the LC input file will
correspond to the last iteration of the fourth subset (so the order of subset computation
and the number of iterations for the last subset both matter for the LC input file).

4.13 Do Non-absolute Light Curve Computations Respond to Absolute
Dimensions?

Persons familiar with very old program versions will notice a (usually subtle) response of
light curve output to changes in absolute masses and dimensional scaling in the LC and
DC versions of 2003 and later. In versions of 1998 and earlier, one could enter any period
or orbit size without affecting light curves, as the scaling of observable light (output)
from luminosities (input) involved temperature but not log g or chemical composition.
That was because the old stellar atmosphere routine applied only to main sequence stars
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of normal composition, but now log g and composition do affect light curve output, and
the programs essentially compute log g from GM/R2 (really from local conditions, in-
cluding rotation and the other star’s gravity), with M and R dependent on period and
absolute size. In those old program versions one could even enter grossly wrong P ’s and
a’s without adverse light curve effects, and some users may have become accustomed to
that circumstance. However, correct P , a, and [M/H]’s should be used with the newer
radiative treatment. Actually, the attendant effects are small, barring radically wrong
values, but one should be consistent. Where orbit size is unknown, make a best guess
rather than entering unrealistic numbers. In a non-simultaneous light-velocity solution,
be sure that the final semi-major axis (a) from the velocities is also used for the light
curves. That condition will be satisfied automatically in a simultaneous solution. LC
and DC are made to be mutually consistent but will have different L2’s and light if ab-
solute dimensions and masses differ between the two programs. Naturally, the foregoing
warnings do not apply for blackbody computations, where the programs’ light curves
are unaffected by absolute masses and dimensions, although absolute flux computations
(IFCGS=1) will of course show first-order responses to dimensional changes.

5 Operation Modes (Solution Constraints)

Imagine that you know or are convinced of something about possible parameter values,
and your “fact” is not in the form of a definite parameter value, but rather is a functional
relationship among parameters. You do not claim to know the value of parameter c, but
if someone tells you the values of parameters a and b, you then can compute c. The
most common example is connected with one of the stars accurately filling a limiting
lobe, as in a semi-detached case. It is impossible (or anyway, inadvisable) to say in
less than a small monograph why we believe in the phenomenon of lobe filling and
our ability to recognize semi-detached binaries as such. Of course, there are binaries
for which we cannot be sure—the lobe may or may not be filled—but there are many
for which we would “bet the ranch” that they are. In fact, for more than a few of
the classical Algol type binaries, conflicts between mass ratios determined from radial
velocities and mass ratios found from a lobe filling condition (through light curves) were
eventually resolved in favor of lobe filling and light curves. S Cancri is a good example.
For the simple case of a circular orbit and synchronous rotation, the mass ratio, m2/m1,
of a semi-detached binary determines the relative size of the lobe filling star, Rlobe/a.
Since the model expresses star size via the Ω potential energy function, Ω = Ωlobe is
determined by the mass ratio and cannot be adjusted under a semi-detached or double
contact constraint (modes 4, 5, 6). If we have lobe filling with non-synchronous rotation
there is a functional relation among three parameters (now also F to express the rotation
rate), and we add parameter e if the orbit is eccentric. Application of the lobe filling
condition, or another condition, reduces the number of free parameters by one. Because
every parameter enlarges and complicates the parameter correlation matrix and thus
weakens the solution, one should take advantage of every opportunity to eliminate free
parameters. Essentially we thereby introduce information from sources external to the
light and velocity curves, and we tell the Least Squares program “here is something
about the binary that you cannot figure out from the data, but we are letting you know
so that you can eliminate a whole dimension of incorrect solutions.” Each such condition
can be represented as a constraint among possible parameter values, and a constraint
or set of constraints is identified with a particular operation mode of LC and DC.
Parameters that are set by constraints are no longer free parameters. The program
computes them from the constraint relations and ignores their input values. Of course,
they cannot be adjusted. Unfortunately, a few authors of other programs have failed to
understand the idea of constrained solutions and have made comments something like
“our program allows each star to have the radius that gives the best fit to the light
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curve, so that application of a lobe filling constraint is unnecessary.” This remark is
akin to saying “we amputate the legs so as to make walking unnecessary.”

Mode −1: This mode is for X-ray binaries for which the eclipse duration of a compact
object is known from X-ray observations. The compact star must be star 1. The applied
constraint is that the surface potential of the ordinary star (star 2) must be such as to
produce the observed X-ray eclipse duration. Therefore, the program computes the Ω2

potential from the input q, F2, e, ω, i, and X-ray eclipse semi-duration, φe (FORTRAN
name is THE). Note that solutions are not limited to circular orbits or synchronous
rotation—any e between 0 and 1 is allowed, as is any F2. Note also that lobe filling
is not implied. It is recommended to use equal temperatures for the two stars in most
situations where one would apply mode −1 logic. With component 1 a neutron star, for
example, it will be unrealistic to deal with the actual surface temperature (which usually
will be in a bizarre surface distribution—perhaps 50,000,000 K in a small hot spot or two
and far lower over the rest of the star. The tiny ultra-hot spot will contribute negligible
optical flux anyway. Usually it will be best to assign star 1 a temperature equal to that
of star 2, so as to be sure of having zero bolometric correction in the reflection effect,
thereby keeping things relatively simple.

Mode 0: No constraints are applied in mode 0, and the component luminosity ratio is
not even required to be consistent with the surface temperatures. That is, the program
uses L1 and L2 as supplied, and does not recompute L2 based on the input temperatures.

Mode 1: This is a mode for overcontact binaries, such as W UMa stars. Six or seven
constraints are applied, depending on whether fixed or computed limb darkening is
specified (viz. comments on LD1, LD2 on page 27). The first is that the surface potential
of star 2 is equal to that of star 1 (Ω2 = Ω1). Another is that the polar temperature
of star 2 is set by the gravity brightening law of the entire common envelope, which is
done via Eqn. 8 of Wilson (1979). Other constraints are that the gravity brightening,
bolometric albedo, and perhaps limb darkening parameters, of stars 1 and 2 are the
same.3 Finally, the luminosity of star 2 is computed from the other parameters via
blackbody or stellar atmosphere radiation formulas. Therefore parameters Ω2, g2, T2,
A2, L2, x2, and y2 are not free in mode 1. A consequence of mode 1 operation is smooth
variation of surface brightness over the entire common envelope with no discontinuity
where the stars join together, and thus one continuous gravity brightening law. In mode 1
light curve fitting experiments, there will be essentially no freedom to change the relative
primary and secondary eclipse depths, which will be set almost entirely by geometry
(although also a little by gravity brightening, limb darkening, etc.).

Mode 2: This mode is for detached binaries with no constraints on the potentials.
The only constraint is that the secondary luminosity, L2, is computed from the other
parameters via the specified radiation prescription (blackbody or stellar atmosphere).
That is, L2 is coupled to the temperatures. The temperature-luminosity coupling can
be severed by setting control integer IPB to 1 (normal value = 0). Mode 2 is the same
as mode 0 except for the one constraint, and is exactly like mode 0 if IPB is set to 1.

Mode 3: This mode is for overcontact binaries and is like mode 1 except that the
constraints on g2, T2, A2, x2, and y2 are not applied. The other two mode 1 constraints
(on Ω1 and L2) are applied in mode 3, but T2, A2, g2, x2, and y2 are free. This treatment
is changed from the 1998 version (see §21.3 on page 51). The stars can be overcontact
in mode 3, yet have much different surface brightnesses. In structural language, they
can be in geometrical contact without being in thermal contact.

Mode 4: This mode is for semi-detached binaries with star 1 accurately filling its
limiting lobe, which is the classical Roche lobe for synchronous rotation and a circular

3Naturally the x2 = x1 and y2 = y1 conditions are applied only for fixed x, y coefficients, not for
actively computed x, y’s.
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orbit, but differs from the classical Roche lobe for non-synchronous and eccentric cases.
The applied constraints are that Ω1 has the lobe filling value and that L2 is coupled to
the temperatures (unless IPB=1).

Mode 5: The same as mode 4, except that it is star 2 that fills its limiting lobe. This
is the usual mode for Algol-type binaries.

Mode 6: This mode is for double contact binaries, in which both stars accurately fill
their limiting lobes (Wilson 1979). Astrophysically this makes sense only if at least one
of the stars rotates non-synchronously. Mode 6 applies the surface potential constraints
of modes 4 and 5 together.

Note on lobe filling: The program operates under a general definition of a limiting
lobe that applies for non-synchronous as well as synchronous rotation and for eccentric
as well as circular orbits. The classical Roche lobe is a special case that obtains for
the synchronous, circular orbit case. In the general definition, a limiting lobe is an
equipotential for which the effective gravity is zero on the line of star centers at periastron
(Wilson 1979). In a strict sense, equipotentials do not exist in the eccentric orbit case,
but in essence the concept of equipotentials still is useful in most realistic situations
(Avni 1976; Wilson 1979).

6 Luminosity vs. Light (Flux)

It is essential to emphasize the very important, yet commonly ignored, distinction be-
tween “light” or “flux” on the one hand, and “luminosity” on the other. As simple
as this point is, it has led to remarkable confusion in the literature. The problem has
its roots in models of past decades that could have made the distinction but did not,
and it has carried over into the general binary star literature of today. A luminosity
as discussed here is characterized by a bandpass and bandpass properties (sometimes
written “band” for brevity). Where it is necessary to refer to a bolometric luminos-
ity, the qualifier “bolometric” can specifically be attached. In some papers, unqualified
luminosity means bolometric luminosity, but in this document unqualified luminosity
means bandpass luminosity.

A discussion of this point is in the description of subroutine LUM in Wilson (1993).
The main thing to remember is that luminosity is a global quantity, represented by
a single number for each star and band. It does not depend on aspect (neither on
inclination nor on phase). Some authors write of “normalizing luminosities by the sum
of the luminosities outside eclipse.” However, luminosity has nothing to do with eclipses
or their absence, nor with any other aspect-dependent variation. Flux (or, in more
relaxed terminology, “light”) is a directly observable (aspect-dependent) quantity, while
luminosity is a model parameter that cannot be observed directly but must be inferred
as part of a photometric solution. The luminosities, L1 and L2, still can be normalized by
their sum (a common and reasonable practice), but two points need to be kept in mind.
The first is that the normalization must be made only after completion of a solution,
not during its progress. The reason is that the luminosities are the main handles for
scaling of (output) flux. As such they need to float freely so that the model is able to
match the observed fluxes, which often are in an arbitrary unit, since the measurements
are commonly made with respect to the flux from a comparison star. The second point
is that L1 and L2 are not the same kind of quantity as third light (a flux), are not to
be compared directly with third light, and are not in the same units. This is important
because many papers have listed values of third light with no indication of what the
number means. Not only is the written `3 thereby rendered useless, but strictly speaking
the entire solution is made meaningless because `3 usually is significantly correlated
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with other parameters. An estimate of third luminosity, based on third light, involves
an assumption about the direction dependence of the third source’s radiation. If that
radiation is emitted isotropically, then third luminosity, L3, will be 4π times `3, which is
per 1/4π of the area of a sphere centered on the binary (“a steradian’s worth of area”).
That L3 value is to be compared with the un-normalized L1 and L2. A meaningful way
to specify the unit of a published `3 is to express it in the light (relative flux) of the
multiple star system at a definite phase. For example, suppose the solution output light
is 1.0500 at reference phase 0.2500 for a particular light curve. Then divide `3 and its
error estimate by 1.0500, list those numbers, not the direct `3 program output, and tell
the reference phase in a footnote to the table of results.

7 Circumstellar Light-attenuating Regions

Light curves of some interacting binaries show effects of attenuation of star light by
circumstellar matter. Most such matter is gaseous, although dust attenuation may be
significant in a few cases. The attenuation may be due to Thomson scattering, Rayleigh
scattering, another scattering process, or true absorption. Since circumstellar matter
follows dynamical trajectories, one might expect there to be little interest in attenuating
regions that are fixed in a coordinate frame that rotates with the binary, but such is not
entirely the case. A few binaries (e.g. RZ Sct, AX Mon) have approximately stationary
loci of circumstellar gas that distort their light curves. The loci may be stream-stream,
stream-disk, or stream-wind interaction regions. Efforts to represent such light curve
distortions via bright or dark star spots sometimes can rule out a spot explanation
and point to essentially fixed attenuation regions (hereafter “clouds,” for brevity). The
model includes n spherical semi-transparent clouds specified by their locations (x, y, z)
[in a rectangular frame that co-rotates with the stars], cloud radius (rcloud = Rcloud/a),
density (ρ), electron density (ne), and mean molecular weight per free electron (µe). The
x coordinate is zero at the center of star 1 and increases toward star 2. The x, y, z system
is right handed and serves for the entire binary system. The part of the line of sight
that passes through the various clouds is computed individually for the lines of sight
to all surface points and individually for all clouds. Regions of variable density can be
made by nesting individual clouds. Regions of non-spherical shape can be approximated
by overlapping spherical clouds. Each cloud is allowed its own attenuation law, whose
general form is

dτ

ds
= σene + (κλ + κsb) ρ,

where τ is optical thickness, σe is the Thomson scattering cross section per electron, s
is distance along the line of sight (in cm), κλ is a wavelength-dependent opacity, and
κsb is an additional opacity for a specific band (κ’s are in cm2/g). The κsb term might
represent, for example, opacity due to absorption lines averaged over a particular band.
The κλ term is

κλ = κ0λ
α,

where κ0 and α are input quantities. Each cloud has its individual κ0, α, and κsb.
However, to make it easy to change the κsb’s of all clouds together, the κsb’s are not
entered directly as individual numbers. Instead one enters an overall κsb and the fraction
of it that applies for each cloud. Thus

κsb = fiκsb0,

where all the fi can be unity if κsb is to be the same for all clouds, or non-unity if κsb
is to differ from cloud to cloud. The program figures absolute lengths from the system
geometry, including the orbital semi-major axis.
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At present the clouds only attenuate starlight that passes through them, but they may
be made to scatter starlight toward the observer in a future program version.

8 Spectral Line Profiles

Profiles of absorption and emission lines are generated for MPAGE=3. The profiles are
for rotation only, although other broadening mechanisms may be added later. Blending
is incorporated, including blending of mixed absorption and emission lines. Lines can
originate either from an entire star or from designated sub-areas of the surface, as
explained below. Only LC (not DC) computes line profiles. Spectra are formed by
binning, with the spectra of the two stars formed separately. The user can add them
(weighted by observable flux) if spectra of the binary are needed. Computations for each
star are characterized by four quantities related to spectral and accuracy characteristics
(BINWM1, SC1, SL1, NF1 for star 1 and BINWM2, SC2, SL2, NF2 for star 2) that have
the following meanings:

BINWM1(2): The bin width in microns. Too small a bin width gives noisy profiles. Too
large a bin width gives insufficient spectral resolution.

SC1(2): The continuum scale (continuum flux at the reference wavelength). The unit is
decided by the user.

SL1(2): The continuum slope in flux units per micron.

NF1(2): Grid fineness for micro-integration on each surface element. NF1(2)=1 means
that there is no micro-integration. NF1(2)=n breaks each surface element into n2 pieces,
each with its own radial velocity, thus improving integration accuracy.

With MPAGE=3, an LC input line with the above quantities is required for each star,
even if one of the stars is assigned no spectral lines (see sample input file lcin.dat3).
DC program input does not have the analogous data lines.

Following the star-dependent input are data for individual spectral lines in two sets (for
star 1, then star 2). The quantities are (FORTRAN names):

WLL1(2): The line rest wavelength in microns for a line of star 1 (or 2).

EWID1(2): The line equivalent width for a line of star 1 (or 2), in microns—the tra-
ditional measure of line strength. Absorption and emission lines both have positive
equivalent width by program convention. Whether a line is in absorption or emission is
controlled by parameters DEPTH1 and DEPTH2 (see next).

DEPTH1(2): Rectangular line depth for a line of star 1 (or 2). Line profiles are formed by
binning of Doppler shifted elements that have rectangular profiles, each with a depth and
a width. The user supplies the depth and the program then calculates the rectangular
line width needed to reproduce the specified equivalent width. The depth is relative to a
unit continuum, so 0.80000 means that 80 percent of the continuum flux is missing within
the rectangular profile element, or that the residual flux is 20 percent of the continuum.
Negative depths correspond to emission lines, so −0.50000 means 50 percent above the
continuum. Depths must be less than 1.0000 (i.e. an absorption line cannot go to zero
flux or below), but can be less than −1.0000 (an emission line can go arbitrarily high).

KKS: This integer specifies a surface region associated with a given spectral line. If
KKS=0, the line is not specific to a location but applies to the entire star. If KKS=1,
then the line applies only to the first spot on that star; if KKS=2 it applies only to the
second spot, and so on. Naturally the star must have spots for this scheme to work, but
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the spots need not be hot or cool spots—they can have temperature factors of unity.
Negative KKS specifies avoidance of regions. Thus KKS=−4 means that the spectral
line applies everywhere on the star except within spot 4. If you find this confusing, just
set KKS=0 and the line applies in the old simple way—everywhere on the star.

If computed absorption lines have flat bottoms, you probably used too small a depth.
What happens is that the computed line is a superposition of many elemental bar-like
lines, so if the bars are not deep, then they have to be wide in order to have the specified
equivalent width. So essentially the problem is one of DEPTH being too small for a given
equivalent width. The “flat-bottom” problem may be especially troublesome for slowly
rotating stars. The converse problem is where the equivalent width is very small and
DEPTH is large (like 0.99). The elemental bars are then very narrow (needle-like). This
situation can produce raggedy lines, especially for fast rotating stars. The remedy is to
use a smaller DEPTH.

9 Time/Phase Smearing

Some datasets (notably the Kepler mission’s 30-minute ‘long cadence’ sets) are inte-
grations over intervals that may not be sufficiently short to fully resolve variations of
astrophysical interest. The variations may be resolved but smoothed so as not to cor-
respond to the un-smoothed behavior. Sharp features such as eclipses can thereby be
widened and reduced in amplitude, perhaps even enough to lose their resemblance to
the original features. LC and DC deal with this problem by integrating the model out-
put over a phase window specified by parameter DELPH (Wilson 2012b). The program
uses the binary period to convert to the corresponding time window. The integration
is by Gaussian quadrature with accuracy specified by the number of abscissae (NGA),
which can be as few as 2 or as many as 10 in the present program. To bypass smearing,
enter NGA=1. Although Gaussian quadrature is very accurate for a given number of
abscissae, there is a cost in computing time, essentially by a factor of NGA. For most
applications, NGA=3 should easily suffice, and NGA=2 may be OK.

10 Model Parameters

These are the same for the LC and DC programs, although not all of the parameters are
among the 50 that can be adjusted by the present version of DC. The actual number of
parameters subject to adjustment is greater than 50 for two reasons. First, although DC
can adjust the parameters of at most two star spots in any one run, successive runs can
adjust the parameters of other spots (viz. definitions of KSPA, KSPB, NSPA and NSPB
in §12.3 on page 29). Second, curve-dependent parameters (limb darkening coefficients,
relative bandpass luminosities, third light) have n values for n simultaneously fitted
light curves. For example, specifying the adjustment of `3 in a simultaneous solution of
four light curves will produce four `3 corrections, one for each curve. The word “curve”
is used here in the sense of “light curve” or “radial velocity curve,” etc. Parameters are
identified below according to their FORTRAN names.

10.1 Curve-independent parameters that cannot be adjusted by DC

THE (φe): The semi-duration of primary eclipse in phase units (i.e. range 0 to 1 for a
cycle). This parameter is applied only in mode −1 and usually relates to binaries in
which star 1 has negligible size compared to star 2. The idea is to fix φe according to X-
ray eclipses of a neutron star, black hole, or white dwarf, and require the overall solution
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to be consistent with that value. Although mode −1 logic was originally intended for X-
ray eclipses of compact objects, it also will work for optical eclipses of any star for which
R1/R2 is extremely small (if the eclipse duration is somehow known independently of
the light curve), such as for a main sequence star with a red giant companion. The
orbit can be eccentric and rotation can be non-synchronous. Parameter φe is ignored
in all other operation modes. See the explanation of mode −1 in §5 on page 13. The
mathematics for the general case with any eccentricity and any rotation is in Wilson
(1979).

XBOL1, XBOL2 (xbol1, xbol2): The coefficients of cos γ in the bolometric limb darkening
law. They are used only in computation of “detailed” reflection (Wilson 1990), with
MREF=2. See ybol1, ybol2 below for the complete law and explanation.

YBOL1, YBOL2 (ybol1, ybol2): If control integer LD1(2)=+2 or −2, these are the coeffi-
cients of the cos γ ln(cos γ) term in the bolometric logarithmic limb darkening law. The
complete logarithmic law is

I

I0
= 1− x+ x cos γ − y cos γ ln(cos γ),

which was advocated by Klinglesmith & Sobieski (1970). If LD1(2)=+3 or −3, they
are the coefficients of the bolometric square root law. The complete square root law
(Diaz-Cordovés & Giménez 1992) is

I

I0
= 1− x+ x cos γ − y (1−√cos γ) .

Coefficients for all these darkening laws have been tabulated by Van Hamme (1993).

XCL, YCL, ZCL: Rectangular coordinates of the centers of spherical circumstellar clouds
(see §7 on page 15).

RCL: Radii of individual circumstellar spherical attenuating regions in unit of a.

EDENS (ne): Electron density in cm−3 for individual attenuating clouds. For a given
cloud, ne is constant, although clouds can be nested or overlapped.

XMUE (µe): Mean molecular weight per free electron in atomic mass units for individual
attenuating clouds, and constant throughout a given cloud.

ENCL (α): Exponent in the wavelength-dependent term of the attenuation law for in-
dividual attenuating clouds (see §7 on pages 15–16). The program internally computes
density, ρ, from ne and µe.

10.2 Curve-dependent parameters that cannot be adjusted by DC

WLA: Array of observational wavelengths in microns of light/velocity curves. Wave-
lengths need to be entered for velocity curves, although they have little effect on the
output, and any wavelength somewhere near the spectral region of interest should be
adequate. Wavelengths are no longer used for light curves, which are based on integrated
bandpass radiation since the 2003 revision (see §15 on pages 36–40). Wavelengths are
still entered for use as reference wavelengths for line profiles and for opacity computa-
tions in circumstellar attenuation.

Y1A, Y2A (y1, y2): These are the bandpass-specific limb darkening coefficients in the
non-linear terms. The laws have the same forms as for bolometric limb darkening (see
page 18). In the case of definite (i.e. fixed, not locally computed) limb darkening, there
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is one value for each of these coefficients for each light or velocity curve or set of line pro-
files. LC uses both wavelength and bandpass input for line profile computation (wave-
length for basic profiles, bandpass for weighting by flux). Integer parameter LD1(2)=+1
or −1 applies for the linear cosine law (in which case y1 and y2 are assumed to be
zero), LD1(2)=+2 or −2 for the logarithmic law, or LD1(2)=+3 and −3 for the square
root law. Negative LD1(2) is for internally computed x, y’s and positive LD1(2) for fixed
x, y’s. LD1(2) should not be negative for star temperatures outside the range of Kurucz
atmosphere temperatures (listed in Table 1 on page 37).

10.3 Curve-independent parameters that can be adjusted by DC

XLAT: The “latitude” of a star spot center, measured from 0 at the “north” (+z)
pole to π radians at the “south” pole. XLAT’s are subscripted by star (1 or 2) and by
spot number on a star (viz. explanation of KSPA, NSPA, KSPB and NSPB in §12.3 on
page 29).

XLONG: The longitude of a star spot center at the ephemeris reference time (HJD0),
measured counter-clockwise (as viewed from above the +z axis) from the line of star
centers (0 to 2π radians). XLONG is subscripted in the same way as XLAT.

RADSP: The angular radius of a star spot, in radians. The angle is subtended by the spot
radius at the center of the star. RADSP is subscripted in the same way as XLAT. Note
that spot radius and spot temperature are usually strongly correlated so typical solutions
for both parameters may be unlikely to succeed. A reasonable strategy might be to step
one parameter and solve for the other, then publish a small table of mutually consistent
radius/temperature combinations. Possibly the radius-temperature correlation might be
acceptably small for very well separated bands such as B and K.

TEMSP: The “temperature factor” of a spot that specifies the ratio of local spot tem-
perature to local temperature that would obtain without the spot. A TEMSP larger or
smaller than unity corresponds to the spot being hotter or cooler than the un-spotted
surface, respectively. TEMSP is constant for a given spot, but local temperature will
vary over a spot if the underlying un-spotted temperature varies. TEMSP is subscripted
in the same way as XLAT. See the comments on correlation between spot radius and
spot temperature just above.

E (e): Binary orbital eccentricity.

PERR0 (ω0): Initial argument of periastron for star 1 in radians. The argument of
periastron for star 2 differs by π radians. PERR0 is ω at the ephemeris reference time, t0.
The program is written so that, as the argument of periastron changes, both conjunctions
migrate in phase in the same way as in a real binary (neither conjunction is locked at
zero phase).

DPERDT (dωdt ): The first time derivative of ω. DPERDT can be adjusted only if JDPHS=1
and observation times (rather than phases) are entered. The instantaneous argument of
periastron is ω = ω0 + dω

dt (t− t0). The program does not consider any more complicated
variations of ω. The unit is radians per adopted time unit (usually mean solar day).

A (a): The length of the semi-major axis in solar radii (6.96000×105 km) of the relative
orbital ellipse. It is the sum of the two absolute semi-major axes, so a = a1 + a2.

F1, F2 (F1, F2): The ratio of the (constant) axial rotation rate to the mean orbital rate
for stars 1 and 2, respectively. The angular rotation is assumed to be uniform (not
latitude dependent). Value unity represents synchronous rotation in a circular orbit. In
eccentric cases it is expected that rotation will tend to synchronize to a value near the
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periastron angular rate because of the strong dependence of the tide raising force on
distance. Periastron-synchronized F is given by

F =

√
1 + e

(1− e)3 .

The F ’s affect star figures, surface brightnesses (through the gravity effect), limiting
lobe sizes, and thus both light curves and radial velocities.

VGA (Vγ): The radial velocity of the (possibly multiple-system) barycenter in the unit
VUNIT km/s. Vγ is assumed constant, and the EB center of mass radial velocity follows
from motion about the barycenter if there is a third body.

PSHIFT (φ0): A constant shift applied to computed phases. Usually one enters 0.0000
for φ0, but it may be convenient to shift the phases. For example, a phase shift of about
half a cycle can effectively interchange the star labels (1 vs. 2) without altering the
observational data. The main purpose of φ0 is to allow the DC program to adjust for
a zero point error in the ephemeris used to compute the phases. The unit is the orbital
period. One should not adjust both PSHIFT and HJD0 because they will be perfectly
correlated.

XINCL (i): The binary orbital inclination to the plane of the sky, in degrees. If the
inclination is in the range 0 to 90◦, the binary orbits counter-clockwise as projected
onto the plane of the sky, while above 90◦ it orbits clockwise, according to the program’s
coordinate conventions. Those conventions were different prior to the revision of 1992.

GR1, GR2 (g1, g2): The exponents in the bolometric gravity brightening (a.k.a. darken-
ing) law for stars 1 and 2, respectively. A value of 1.000 means that bolometric flux is
proportional to local effective gravity, while 0.000 means that it is constant over the
surface (ignoring other effects such as spots, reflection heating, etc.). The g’s are ex-
pected to be unity for radiative envelopes, while they should be smaller for convective
envelopes, perhaps about 0.3. Some other programs use a gravity brightening expo-
nent expressed in terms of effective temperature, for which the usual symbol is β. The
quantities are related by g = 4β.

TAVH, TAVC (T1, T2): The mean surface effective temperatures of stars 1 and 2, respec-
tively, not including re-radiation (reflection) or spots. The mean is weighted by the local
bolometric flux. The program accepts T1 and T2 as model parameters and converts to
local surface temperatures for internal computations. The conversion between mean and
polar temperatures is made via Eqn. 8 of Wilson (1979), and the local surface tempera-
tures are then computed from the polar temperatures and the gravity brightening law.
The unit is 10,000 K.

ALB1, ALB2 (A1, A2): The bolometric albedos for reflection heating and re-radiation
on stars 1 and 2, respectively. The bolometric albedo is the local ratio of re-radiated
bolometric energy to received bolometric energy. It is assumed to be constant for each
star. The expected value for radiative envelopes is 1.0, while for convective envelopes
it should be perhaps 0.5, although observations sometimes indicate values between 0.5
and 1.0.

PHSV, PCSV (Ω1,Ω2): These are the “potentials” for stars 1 and 2, respectively, that
originally were defined by Kopal (1954) for the synchronous, circular orbit case. They
would be actual potentials, except that a term was deleted in Kopal’s convention. The
deleted term depends on mass ratio but not on position, so Ω gradients are equivalent to
potential gradients. Fixed Ω specifies a constant potential energy (gravitational plus ro-
tational) over the surface of each star. A generalized defining equation (Eqn. 1 of Wilson
1979), based on contributions by Plavec (1958), Limber (1963), and Avni (1976), allows
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the Ω’s to serve also for non-synchronous rotation and eccentric orbits. Together with
the mass ratio, rotation rate, orbital eccentricity, argument of periastron, and phase,
the Ω’s specify the size, figure, surface gravity, and certain other geometric properties
of the stars. Special values of the Ω’s correspond to exact filling of limiting lobes.

RM (q): The mass ratio of stars 2 and 1, m2/m1.

HJD0 (t0): This is the zero point of the orbital ephemeris. Usually one uses Heliocentric
Julian Date, although that is only a convention and any consistent system of time can
be used.

PZERO (P0): The binary orbit period at the reference time t0, ordinarily in mean solar
days. P0 affects computed radial velocity amplitudes and is used to compute phase from
time (if JDPHS=1) and time from phase (if JDPHS=2). P0 can be adjusted only if
JDPHS=1 and observation times (rather than phases) are entered.

DPDT (dP/dt): The first time derivative of the orbital period. Second and higher deriva-
tives are not used in the present program. DPDT can be adjusted only if JDPHS=1 and
observation times (rather than phases) are entered. This quantity is dimensionless.

A3B (a3b): The length of the semi-major axis of the relative third body orbit in solar
radii.

P3B (P3b): The third body orbit period in mean solar days.

XINC3B (i3b): The third body orbital inclination to the plane of the sky, in degrees.
This parameter should not be adjusted if a3b is adjusted since a3b and i3b are perfectly
correlated.

E3B (e3b): Third body orbital eccentricity.

PERR3B (ω3b): Argument of periastron of third body orbit, in radians.

TC3B (tc3b): Time of superior conjunction of the EB center of mass with the third body,
in HJD or whatever time system has been adopted.

DPCLOG: Logarithm (base 10) of distance (d) in parsecs.

AEXTINC: Interstellar extinction (Aband in magnitude) in the designated photometric
band. AEXTINC refers to a definite photometric band (the band designated by control
integer LINKEXT), so it has only one value and it is not band-dependent.

10.4 Curve-dependent parameters that can be adjusted by DC

HLA, CLA (L1, L2): Bandpass luminosities for stars 1 and 2, respectively. There has
been some confusion about the units of luminosity and of light, which is partly due to
a tradition in the binary star field of normalizing luminosity and light separately, and
failing to recognize that they are fundamentally distinct (although connected) quantities
(viz. §6 on page 14). The program luminosity unit is effectively user-supplied, and
determines the unit of output light (i.e. `1 or `2 bandpass flux). The output flux will
integrate to the luminosity over a sphere at any large distance, centered on the binary
system. The computed fluxes will be in the unit 1/4π luminosity units/(steradian’s worth
of area). Now this may not sound like correct flux units—with “steradian” in there it
sounds like intensity. However, that last item, “steradian’s worth of area” is indeed an
area, not a solid angle. So to be formally correct, replace “steradian’s worth of area” with
“d2 cm2,” where d is the assumed binary–observer distance in cm. Pictorially, imagine
the observer’s detecting instrument covering 1 steradian (a little on the big side, but
one can always re-scale to more practical units). To keep things simple, imagine that the
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star radiates isotropically and that we enter a luminosity of 4π, in our chosen unit, for
one of the stars. The program will produce an output flux of 1.000 for that star for all
phases and inclinations (outside eclipse), and since that flux refers to 1 steradian, the 4π
steradians surrounding the star would have 4π units, which is just what we entered as the
luminosity. If we specify the luminosity unit to be, say, 1× 1033 erg/s/micron, then the
luminosity is 4π×1033 erg/s/micron, and the flux (light) is 1×1033 erg/s/micron/d2 cm2

(constant in this special case).

X1A, X2A (x1, x2): These are the wavelength-specific limb darkening coefficients in the
linear terms. The laws have the same forms as for bolometric limb darkening (see
page 18). Parameters x1 and x2 are adjustable only if the input darkening coefficients
are specified as being definite (i.e. not to be re-computed), which is decided by input
quantities LD1 and LD2 being positive. There is one x1 and one x2 value for each light
or velocity curve or set of line profiles. For negative LD1 or LD2, local surface com-
putation of limb darkening coefficients as functions of Teff , log g, and [M/H] is done
by subroutine LIMDARK, which interpolates tabulated band-integrated coefficients
calculated with the method of Van Hamme (1993). In this case, limb darkening tables
need to be accessible to the program, see further §15 on page 36. Flux-weighted mean
x, y’s for both stars are written by LC if MPAGE=1.

EL3A (`3): Third light. There is one value for each light curve, but of course no value for
a radial velocity curve. The unit should be the total system light at a specified phase.
For example, suppose `3 (program input-output value) for some particular light curve is
0.0500, the specified phase is chosen to be 0.2500, and the total system light produced
by LC at phase 0.2500 is 1.0400. Then the number to be published for the `3 of that
curve would be 0.0500 divided by 1.0400, or 0.0481. The standard error written by DC
for `3 also should be divided by 1.0400 for publication. A footnote can be placed in the
publication to tell the reference phase.

10.5 Ephemerides from Whole Curves, along with Apsidal Motion and
Third Body Parameters

Ephemeris parameters T0, P0, and dP/dt can be found from whole light and velocity
curves by DC, as an alternative to ephemerides from eclipse timings. % The simple but
necessary mathematics for rigorous conversion from time to phase and phase to time is
in §4 of Wilson (2005) along with a history of its use in LC and DC, and with citations
to a number of application papers. DC also can extract apsidal motion and third body
(3b) orbit parameters (2007 version and later). The 3b parameters are numbered 30 to
35 in §11 on page 25. Observational phenomena that affect 3b parameter results are
light-time and radial velocity shifts (not third light, `3). Analysis of light and velocity
shifts and third light effects may be done together, with the two kinds of results being
essentially independent. Relevant history, strategies, and logic of the 3b development and
a similar one by Hadrava (2004) are in Van Hamme & Wilson (2007), as are the forms
of 3b derivatives required by DC. Rather than repeat here the experience described in
Van Hamme & Wilson (2007), we recommend that potential users of DC’s 3b capability
read that paper. A solution that includes 3b parameters is basically the same as other
solutions, except that (1) the increased number of parameters may make application of
the MMS imperative (see §13.1 on page 32), and (2), a satisfactory starting estimate
for P3b may require separate use of power spectral analysis. Simultaneous processing
of light and velocity curve data is an important advantage of DC’s 3b facility, as the
two types taken together reduce the severity of the well known data gap problem for
period searches. However, even with that advantage, initial application of power spectral
analysis often will be needed to sift the correct period from apparent periods that are
only artifacts of the timewise observing gaps. Note the example of VV Orionis, where
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recent papers find no evidence for a supposedly well established 3b period (Terrell,
Munari, & Siviero 2007; Van Hamme & Wilson 2007).

10.6 Unified Ephemeris Solutions

A thorough account of unified ephemeris solutions is in Wilson & Van Hamme (2014).
The remainder of this subsection is excerpted from that paper.

Ephemeris solutions for time-related parameters directly from light and RV curves lead
naturally into use of those information sources together with eclipse times. If the original
light curve data from which timings were measured have survived, then they can simply
be entered into DC and the published timings ignored. However that will seldom be
the case.

Time-related binary system characteristics such as orbital period, period rate of change,
apsidal motion, and variable light-time delay due to a third body, have historically been
measured in two ways that can be mutually complementary. The older way is via eclipse
timings, while ephemerides by simultaneous whole light and velocity curve analysis have
appeared recently. Each has its advantages, for example eclipse timings typically cover
relatively long time spans while whole curves often have densely packed data within
specific intervals and allow access to systemic properties that carry additional timing
information. Synthesis of the two information sources can be realized in a one-step
process that combines several data types, with automated weighting based on their
standard deviations. Simultaneous light-velocity-timing solutions treat parameters of
apsidal motion and the light-time effect coherently with those of period and period
change, allow the phenomena to interact iteratively, and produce parameter standard
errors based on quantity and precision of the curves and timings. Logic and mathematics
of unified ephemeris solutions that coherently utilize light curves, velocity curves, and
eclipse timings are in Wilson & Van Hamme (2014). All three data types together,
each separately, or any subset (radial velocities with light curves; radial velocities with
timings; light curves with timings) can be processed, with automated precision-based
weights. DC can determine which star is eclipsed, thus detecting any incorrect initial
eclipse type assignments. A reasonably correct starting ephemeris (perhaps including
dP/dt and a light-time term) is needed, otherwise an anomaly will become obvious in
the run of residuals as time extends well beyond the reference time. A trend to more
positive or negative residuals will appear until there is a large abrupt jump, which is
the signature of an ephemeris with insufficient validity range.% Some timing residuals,
especially ones far from the reference time, can then be off by orders of magnitude,
and perhaps even correspond to the wrong eclipse (type I when star 1 is at superior
conjunction vs. type II when star 1 is at inferior conjunction). A solution could get into
permanent trouble if there were no escape process. The remedy is to have DC ignore
minima when the type computed from the ephemeris disagrees with the designated
type. The revised ephemeris from the next iteration should have a greater applicable
range, perhaps including all observed minima. This “clip and solve” process is repeated
until all observed timings have small residuals, and has been automated. At succeeding
iterations the remaining timings improve the initial ephemeris enough so that fewer
timings need be ignored in the following iteration, then still fewer in the next, until all
the timings are utilized. Occasional disagreements due to wrong I vs. II assignments (as
opposed to an inaccurate ephemeris) will be obvious from residuals that continue to be
off by much of a cycle.
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11 Parameter Order

The DC program now has 60 parameter channels, 50 of which are assigned to specific
parameters while the other 10 are for future expansion. The 60 DC parameter channels
are assigned as follows:

(1) - Spot A latitude in radians

(2) - Spot A longitude in radians

(3) - Spot A angular radius in radians

(4) - Spot A dimensionless temperature factor

(5) - Spot B latitude in radians

(6) - Spot B longitude in radians

(7) - Spot B angular radius in radians

(8) - Spot B dimensionless temperature factor

(9) - Orbital semi-major axis in solar radii, a = a1 + a2

(10) - Orbital eccentricity, e

(11) - Argument of periastron in radians, ω0, at the reference epoch

(12) - Dimensionless rotation parameter for star 1, F1

(13) - Dimensionless rotation parameter for star 2, F2

(14) - Phase shift = phase of primary conjunction (for ω = π/2), φ0

(15) - System center of mass radial velocity (systemic velocity), Vγ

(16) - Orbital inclination in degrees, i

(17) - Gravity law exponent for star 1, g1

(18) - Gravity law exponent for star 2, g2

(19) - Mean surface temperature of star 1 in 10,000 K, T1

(20) - Mean surface temperature of star 2 in 10,000 K, T2

(21) - Bolometric albedo of star 1 (dimensionless), A1

(22) - Bolometric albedo of star 2 (dimensionless), A2

(23) - Modified dimensionless surface potential of star 1, Ω1

(24) - Modified dimensionless surface potential of star 2, Ω2

(25) - Mass ratio, q = m2/m1

(26) - Reference epoch in ephemeris (conventionally in Heliocentric JD), t0

(27) - Orbital period at reference epoch, P0

(28) - First time derivative of the orbital period, dP/dt

(29) - First time derivative of the argument of periastron, dω/dt
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(30) - Semi-major axis length of third body orbit in solar radii, a3b

(31) - Period of third body orbit in days, P3b

(32) - Inclination of third body orbit to the plane of the sky in degrees, i3b

(33) - Eccentricity of third body orbit, e3b

(34) - Argument of periastron of third body orbit in radians, ω3b

(35) - Time (conventionally Heliocentric Julian Date) of superior conjunction of the EB
center of mass with respect to the third body, Tc3b

(36 to 40) - Not used, reserved for future expansion

(41) - log (base 10) of distance in parsecs

(42) - Interstellar extinction in designated photometric band, in magnitude

(43) - Onset time of spot A

(44) - Start time of constant maximum size for spot A

(45) - End time of constant maximum size for spot A

(46) - Disappearance time of spot A

(47) - Onset time of spot B

(48) - Start time of constant maximum size for spot B

(49) - End time of constant maximum size for spot B

(50) - Disappearance time of spot B

(51 to 55) - Not used, reserved for future expansion

(56) - Bandpass luminosities of star 1, L1

(57) - Bandpass luminosities of star 2, L2

(58) - Bandpass linear limb darkening coefficient for star 1, x1

(59) - Bandpass linear limb darkening coefficient for star 2, x2

(60) - Bandpass third light, `3

12 Control Integers, Units, Scaling Factors, Special Quantities

These numbers control program operation and are set according to the aims of the user.
They are given here by their FORTRAN names.

12.1 Those Common to LC and DC

JDPHS: This is 1 if the independent variable is time and 2 if it is phase. Setting JDPHS=1
in LC causes time (ordinarily Heliocentric Julian Date) to be stepped from HJDST to
HJDSP in uniform intervals of length HJDIN (see further §12.2). Phases for those times
are computed according to the supplied ephemeris, including the effect of dP/dt. Setting
JDPHS=2 in LC causes phase to be stepped from PHSTRT to PHSTOP in uniform
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intervals of length PHIN (described in §12.2). Times for those phases are computed
according to the supplied ephemeris, again including the effect of dP/dt. Regardless of
whether JDPHS is 1 or 2, mutually consistent time and phase are listed in the output
(columns 1 and 2, respectively). At present, the ephemeris includes only the initial epoch
(t0), the period at that epoch (P0), and the first time derivative of the period (dP/dt).
Third body light time also affects the connection between time and phase.

MODE: This integer can be −1, 0, 1, 2, 3, 4, 5, or 6 according to the constraints or lack
of constraints to be applied. The operation modes are described in Wilson (1993) and
in §5 on pages 12–14.

IPB: Assign IPB=0 for normal MODE 1, 2, 3, 4, 5, or 6 operation in which star 2’s
luminosity (L2) is to be computed from temperatures T1 and T2, the luminosity of
star 1, and the radiation laws (as well as other information known by the program
about system geometry, etc.). If you want to set L2 independently (perhaps because
you have no trust in the radiation laws in a particular situation), set IPB=1 and the
program will use the input L2 value. Modes 0 and −1 always accept the input L2, so
they operate as if IPB=1. See Van Hamme & Wilson (1986) for ideas on the use of IPB
in practical situations.

IFAT1, IFAT2: These control whether a blackbody or a stellar atmosphere formulation is
used for local emission on stars 1 and 2, respectively. Set IFAT1(2)=0 or 1 for blackbody
or atmosphere, respectively.

N1, N2: These are the grid size integers for stars 1 and 2, respectively. Each is the
number of latitude rows per hemisphere. The number of surface elements in longitude
scales with N1(2) and scales approximately with the sine of the “latitude” coordinate,
which runs from 0 at the “North” (+z) pole to π radians at the “South” (−z) pole.

VUNIT: This is the unit for radial velocity input and output, in km/sec. Usually it is a
round number, such as 100 km/sec, of the order of the input velocities for DC.

MREF: The reflection effect can be handled either in detail (viz. Wilson 1990) or by
the inverse square law, with corrections for penumbral and ellipsoidal effects. The latter
method is much faster and is adequate for many realistic situations. Set MREF=1 for
the simple treatment and MREF=2 for the detailed treatment. It is not advisable to use
the detailed treatment for eccentric orbit cases because the required computing time
will be almost prohibitively long. Cases for which the detailed treatment is especially
recommended include super-synchronous rotators and overcontact binaries. However,
computing time for detailed reflection scales with grid integer to the 4th power (actually
with N12N22), so you might keep machine time within reason, even with MREF=2 in
eccentric systems, by use of coarse grids.

NREF: If detailed reflection is selected (MREF=2), then NREF specifies the number of
reflections in a multiple reflection effect. Set NREF=1 for 1 reflection from each star,
NREF=2 for 2 reflections, etc. More reflections use more computing time. If MREF=1,
the value of NREF is irrelevant.

IFSMV1, IFSMV2: These integers tell whether spots on stars 1 and 2, respectively, are
to drift in longitude. If IFSMV1=0, star 1’s spots remain at fixed longitudes, referenced
to the line of star centers. This behavior is expected for hot spots due to an accretion
stream unless stream dynamics vary. If IFSMV1=1, then star 1’s spots drift in longitude
as time progresses at a rate set by parameter Fspot1, and similarly for star 2 and Fspot2.
This behavior might be expected for magnetic spots. There is no motion in latitude in
either case. Solutions for moving spots needs good starting estimates and attention to
specifics.
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ICOR1, ICOR2: These integers refer to proximity and eclipse effects on radial velocities
for stars 1 and 2, respectively. Value 0 turns the effects off, 1 turns them on.

IF3B: This control integer tells the program if a kinematic third body is assumed in the
model (IF3B=1) or not (IF3B=0).

LD1, LD2: These integers set the limb darkening laws for stars 1 and 2, respectively.
LD1(2)=±1 for the linear cosine law, LD1(2)=±2 for a logarithmic law, and LD1(2)=±3
for a square root law. For positive LD1 or LD2, the x, y coefficients are fixed and equal
to the input values. For negative LD’s, subroutine LIMDARK ignores the input [x, y]
and computes x, y coefficients locally in terms of Teff , log g and [M/H]. Mathematical
expressions for the logarithmic and square-root laws are on page 18.

KSPEV: Controls whether spots age (grow and decay) in radius. Currently there is no
aging in spot temperature. Set KSPEV=0 for no aging, KSPEV=1 for aging. Solutions
for spot aging need good starting estimates for spot parameters and careful monitoring
of solution progress.

KSPOT: Controls whether the old simple spot algorithm (KSPOT=1) or the much more
precise Vector Fractional Area algorithm (Wilson 2012b) for KSPOT=2 is applied.

NOMAX: Setting NOMAX=1 eliminates the interval of constant size that otherwise exists
at spot maximum (spot aging profiles then become triangular). Spot aging profiles are
trepezoidal for NOMAX=0.

IFCGS: Control integer IFCGS=0 for a conventional solution in arbitrarily scaled flux
and IFCGS=1 for an absolute solution with flux unit erg s−1 cm−3.

NGA: Number of Gaussian abscissas in the Gaussian quadrature of time/phase smearing.
With NGA=1 there is no phase smearing. LC and DC allow NGA to be as small as 2
and as large as 10. There is no radial velocity smearing as of now, although that may
soon be added.

DELPH: The duration of a light curve observation (assumed to be the same for all
observations) for phase smearing computations as a decimal fraction the orbit period.

CALIB: Flux calibration constant in erg s−1 cm−3 for a star of magnitude 0.00. It is an
array in DC and a single quantity in LC. Table 3 on page 44 lists bands that have
CALIB values determined and published.

IBAND: Photometric band identification integer.

12.2 Those for LC only

HJDST: The time at which program LC is to start computing output points. HJDST
and the next two quantities, HJDSP and HJDIN, are utilized only if JDPHS=1. They
are ignored if JDPHS=2.

HJDSP: The time at which program LC is to stop computing output points.

HJDIN: The time increment for output points. HJDIN=0.001 will produce output points
spaced by 0.001 days.

PHN: The phase of normalization, which is the phase at which the column of normalized
light is normalized to the input value FACTOR and the magnitude column is caused to
equal the magnitude zero point, whose name is ZERO.

PHSTRT, PHSTOP: The first and last phases at which output points are to be produced
by program LC. PHSTOP should be larger than PHSTRT, but neither has to be in the
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range 0 to 1. For example, PHSTRT=−3.2000, PHSTOP=27.4422 is a valid phase range.
PHSTRT, PHSTOP, and the next quantity, PHIN, are utilized only if JDPHS=2.

PHIN: The phase increment for output points. PHIN=0.020 will produce output points
every 0.020 in phase, within the range PHSTRT to PHSTOP.

MPAGE: This integer is 1, 2, 3, 4, 5, or 6 according to whether the output is a light
curve, radial velocity curves, spectral line profile(s), star radii, sky image coordinates,
or conjunction times, respectively.

KTSTEP: This integer is 1, 2, 3, . . . and is to step computed conjunction times by
1, 2, 3, . . . whole orbit cycles. With KTSTEP=0, timing residuals (in the sense ‘observed
minus computed’) rather than conjunction times are generated.

ZERO: This is the reference level for output magnitudes (the magnitude at phase PHN).

FACTOR: This is the scaling factor for the normalized light column. The number in that
column will equal FACTOR at phase PHN.

12.3 Those for DC only

DEL’s: Most of the partial derivatives needed by DC must be computed numerically.
The DEL’s are the parameter increments applied when approximating those derivatives
by finite differences. Some derivatives can be computed analytically and require no
DEL’s. That is why the number of DEL’s is smaller than the number of parameters.
However, the numerical labels of the DEL’s match those of the parameters (e.g. DEL
number 25 goes with parameter 25). The order in which the DEL’s appear in the input
lines can be read from the output of DC, where they are labeled by parameter name,
or from the DC input in Appendix B, where they are labeled by order of listing. Give
some thought to reasonable values for the DEL’s. DEL’s that are too large will cause
systematic errors in the derivatives, and DEL’s that are too small will cause excessive
numerical noise.

KEP or KEEP: These mean the same thing generically. The difference in meaning in a
programming sense is not something the user needs to be concerned with. The KEEP’s
determine which parameters are to be adjusted, and they have only two possible values,
0 to allow adjustment and 1 to keep a fixed value. There are 60 parameter channels,
with numbers 1 to 35 and 41 to 50 assigned to band-independent parameters and 56 to
60 assigned to band-dependent parameters. Channels 36 to 40 and 51 to 55 are reserved
for future expansion. Accordingly, there are 60 KEEP’s but only numbers 1 to 35, 41 to
50, and 56 to 60 are now meaningful. All KEEP’s are entered together on an input line,
separated into blocks so as to be easy to count off. There is one such input line for the
base set, early in the data stream, and a set of n such input lines at the end of the data
stream (for the n subset solutions). The subsets must indeed be subsets, not supersets,
since a given parameter cannot be adjusted in a subset unless it is adjusted in the base
set. The order of appearance of the KEEP’s within the string of 1’s and 0’s is the same
as that of the 60 parameter channels, which are listed in §11 (on pages 24–25) and also
written with every run of DC.

IFDER: Write control integer IFDER is set to 1 for “yes, write” or to 0 for “do not write.”
It decides whether the matrix of parameter derivatives and residuals, or observational
equations (both the unweighted and the weighted versions), are written. Since the ob-
servational equations for the first iteration pertain to the input parameters (and they
change only a little for subsequent iterations), they are written only for the base set.

IFLCIN: Set IFLCIN=1 for DC to write an input file for the LC program or IFLCIN=0
not to write one. The generated file is based on all RV curves, light curves, and eclipse
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timings in the DC solution. It is named lcin.input from DC and it overwrites any
previously generated file of the same name. So copy lcin.input from DC to a file with
another name if you want to save it. The file represents input to the last DC iteration
of the last DC subset (or the base set if there are no subsets).

IFOC: Stands for ‘IF Observed-Computed.’ Causes output of two extra columns in DC’s
unweighted observational equations – one column for the observations and the other for
computed values at the same times or phases. This is just a convenience for making
quick plots without need to run LC.

NITERS: The number of iterations for the base set or a subset (see §14 on page 35 for
details).

XLAMDA (λ): The Marquardt multiplier (see §13.2 on page 33). XLAMDA is the next
to last entry on the “KEEP” lines and is in D format.

VLR: The fraction of DC’s output corrections to be applied to the input parameters to
form the output parameters. VLR values smaller than 1.000 may improve convergence.
VLR should not be greater than 1.000 or negative. For more on VLR, see §13.3 on page 34.

KSPA, NSPA, KSPB, NSPB: Each of the two stars may have many spots, but DC can
adjust the parameters of at most two spots in any one run. This remark does not imply
a limit to the number of spots adjusted overall, since other spots can be adjusted in
other runs. Think in terms of spot A and spot B, which may be on the same or different
stars. KSPA, NSPA, KSPB, and NSPB are best understood as a set. Given that some
spot parameters are to be adjusted (which is determined by KEEP’s 1 to 4 for spot A
and KEEP’s 5 to 8 for spot B), the four integers (KSPA, etc.) determine for which of
the (perhaps) many spots on the two stars those parameters will be adjusted. KSPA=1
means that spot A is on star 1, and KSPA=2 means that it is on star 2. NSPA determines
which spot on the thus determined star is spot A. If KSPA=2 and NSPA=3, then star 2’s
third spot is spot A. Star 2 might have some large number of spots, say 10, and spot A
will be the third one. Of course, the program will do something crazy if you ask it to
adjust the third spot on a star that has only two spots—we have not bothered to find
out what. The order assigned to the spots is just the order in which their parameters are
read in the input lines. Naturally, KSPB and NSPB apply the same way in identifying
spot B. If you want to adjust, say four spots, you can use the MMS (see §13.1) and
adjust two of them in one DC run, the other two in the next run, and so on.

IFVC1, IFVC2: These integers tell DC whether or not to expect a radial velocity curve
in the input stream for star 1 and star 2, respectively (0 for no, 1 for yes). Velocity
curves precede light curves in the input. So with IFVC1=0 and IFVC2=1, DC expects
the first curve it sees to be a velocity curve of star 2.

NLC: This integer is the number of light curves in the input stream. With IFVC1=1,
IFVC2=1, and NLC=3, DC expects to encounter two velocity curves (the first for star 1,
the second for star 2) and then 3 light curves. It will do a simultaneous adjustment of
these five curves, producing one corrected value for each parameter that is the same for
all curves (e.g. mass ratio) and 3 corrected values for each parameter that differs for the
3 light curves (e.g. limb darkening). The 3 curve-dependent parameter results for a given
stellar component are written in direct succession. Input and output parameters, their
differences (corrections from input values), corrected values, and estimated standard
errors are listed by parameter number (see list in §11 on pages 24–25). Curve-dependent
parameters are listed also by curve number, according to the input order of the curves.
“Curve 0” means “curve-independent.”

IFTIME: An integer that indicates the presence (IFTIME=1) or absence (IFTIME=0) of
eclipse timings in the data input stream.
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KO: DC can process multiple parameter subsets in a given run, as explained under the
method of multiple subsets (MMS, see §13.1 on page 32). Control integer KO provides
three options to the user who has established a “scratch pad” data file on the local
computer. Such a scratch file should be designated as input-output unit 9. The purpose
of this provision is to save computing time by writing all of the derivatives and residuals
on the scratch file so that they can be read back for further subset solutions in a
later submission (in case you think of some subsets that you first thought were not
needed). Weighting can be changed for the re-submission. The later run(s) then will take
extremely little computing time, since all the hard computation has been done. This
feature is much less important than it once was because of improvements in machine
speed and intrinsic program speed, but it is still available. Multiple subsets can be
processed within a given run without using the scratch pad (set KO=2, KDISK=0). KO
can be 0, 1, or 2, as follows:

KO=0: Do the base set and stop. Actually KO=0 serves little purpose, as simple omission
of subsets has the same result.

KO=1: Read in the derivatives and residuals that were written to the scratch pad in
a previous run. Process these according to the weighting schemes, subsets, Marquardt
λ’s, and VLR factors entered for this run. Do not re-compute any derivatives. A run
with this option should take only a few seconds or less of computing time.

KO=2: Write the derivatives and residuals generated in this run on the scratch pad
for future use. KO=2 can be used with KDISK=0 if the user does not wish to change
the present contents of the scratch pad (or if there is no scratch pad). In this case the
program still can process multiple subsets of the parameter list but, of course, cannot
come back later to process this run’s data further.

KDISK: Set KDISK=1 to use the scratch pad, or KDISK=0 not to use it. Caution: the
program will crash if no scratch pad has been set up and you set KDISK=1.

ISYM: DC can carry out its solutions with either asymmetrical (ISYM=0) or symmet-
rical (ISYM=1) derivatives. Solution convergence is somewhat better with symmetrical
derivatives, but they take almost twice as long to compute as asymmetrical derivatives.
Because of the improved convergence, fewer iterations may be needed with ISYM=1,
but the individual iterations will take more machine time. Recommendations are to use
ISYM=0 for strong (well determined) solution situations, and ISYM=1 when convergence
is a problem or you are in the final fine-tuning stages. Setting ISYM=1 is particularly
advisable when large increments (DEL’s) are used to compute the numerical derivatives.
See Wilson & Biermann (1976) or Wilson (1979), Eqns. 20-21.

NPPL: (number of points per line) The number of data triplets (time or phase, velocity
or light, weight) on each line of the input data stream. The number of points per output
line is the same. NPPL can be as small as 1 or as large as 5.

MAGLITE: Control integer that is 0 if DC input is flux (light) or 1 if DC input is
magnitude.

N1L, N2L: These are the coarse (low) grid integers. As explained in §16 (Special Features)
on page 40, they apply to certain derivatives for which computing time can be saved by
using coarse grids. Otherwise they are just like N1 and N2.

NOISE: This integer is on the same input lines as the curve-dependent parameters for
light curves, so there is one value for each light curve (no values for velocity curves
or eclipse timings). NOISE specifies how level-dependent weights are to be applied (see
discussion of weighting in §18 on page 45).
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KSD: An integer array that is 0, 1, or 2 for each input sub-dataset (velocity, light, or
eclipse timings). The KSDs tell DC whether to apply the input standard deviations (σ’s)
to compute curve-dependent weights (KSD=0), to apply DC’s internally computed σ’s
for the weights (KSD=1), or to apply σ’s based on one or two restricted phase ranges
for the weights (KSD=2).

SIGMA: The estimated standard deviations of the various observed light and velocity
curves. SIGMA specifies the relative weights of the curves in the solution (weight is
inversely proportional to SIGMA squared). See the discussion of weighting in §18 on
page 45.

SPHAS1, SPHAS2, SPHAS3, SPHAS4: The start/stop phases of two phase ranges for
calculating sums of squares of residuals (see §4.9 on page 10).

LINKEXT: Integer to set the designated band for interstellar extinction. LINKEXT should
be 0 if there is no designated band and should be the same as the band number (IBAND)
otherwise. There must be a designated band if multi-band curves are to be solved for
interstellar extinction. Extinction in bands other than the designated band are computed
via ratios determined by Cardelli, Clayton, & Mathis (1989). The ratios are expressed
via fitted functions from that paper that are based on effective wavelength.

DESEXTINC: Interstellar extinction (in magnitude) in the designated band.

XUNIT: This quantity is intended only for flux (as opposed to magnitude) input, and
allows rescaling of observed fluxes so that the input flux numbers can be in a convenient
range. If input fluxes are simply inverted magnitudes (e.g. 10−0.4V for V magnitudes),
then XUNIT should be unity. However, it may be convenient to enter rescaled (i.e.
wrongly scaled) fluxes in cases where they would otherwise be of order, say, 10−10 or
103. Then XUNIT can be the multiplier that restores the flux numbers to directly in-
verted magnitudes. If working in (presumably standard) magnitudes with control integer
MAGLITE=1, of course, then don’t worry about XUNIT—just set it to 1.0000.

13 Solution Convergence and Related Issues

The most essential guideline relevant to solution convergence is to compare the mean
weighted residual [input] and mean weighted residual [predicted] that are written with
each DC iteration. Here is an example:

Mean residual for input values Mean residual predicted Determinant
0.9837237712112231D-03 0.9837202893928959D-03 0.979816D+00

Convergence is shown when the input number becomes smaller as the iterations go by.
The mean input residual will approach the mean predicted residual when the solution
is reasonably linear and free from serious correlation problems. Correlations can often
be large (near ± 1.0000) without seriously degrading a solution if there are not “too
many” large ones and the solution is approximately linear (meaning that 2nd and higher
derivatives in the DC equation of condition are not important). Even in the best of
circumstances, the input mean residuals will eventually (given enough iterations) jiggle
around within a small range. The range is not zero for several reasons such as solution
non-linearities and finite precision of the numerical model. Often the jiggling range
can be reduced by going to finer grids or by reducing the list of adjusted parameters.
Whether such tactics have astrophysical significance is best judged for individual cases.
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There are three main reasons for poor convergence or convergence failure in differential
corrections solutions, and it is important to understand all three. The problems can
occur in combination, but let us try to understand them separately.

1. One problem is a broad, shallow minimum in parameter space. This problem can
result in slow convergence, even when only a few parameters are being adjusted, if
the minimum is very shallow indeed. It is a problem not only for DC, but for any
minimization scheme, since it is intrinsic to parameter space itself. Nothing can be done
except to compute with precision (use a fine grid) and do many iterations.

2. A second problem, also easy to understand, is lack of precision in computing residuals
and derivatives. Since many derivatives in DC are computed numerically, we have two
obvious sources of error connected with finite differencing, which approximates the true
derivative of a synthesized observable, f , by the slope near to a given operating point,
either asymmetrically,

∂f

∂pn
=
f (pn + δpn)− f (pn)

δpn
,

or symmetrically,
∂f

∂pn
=
f
(
pn + 1

2δpn
)
− f

(
pn − 1

2δpn
)

δpn
.

Here, pn is a parameter and δpn is its increment. Pseudo-random errors arise from
limited precision in the computed f while systematic errors come from approximation
of ∂f/∂pn by δf/δpn. A symmetrical derivative is a better representative of the true
derivative, but takes longer to compute. Of course, the systematic error can be reduced
by taking smaller δpn, but the increment should not be too small or errors in computa-
tion of f will become important. Inaccuracy in computing f can be reduced by use of
a finer numerical grid, but at the cost of increased machine time.

3. The third problem is more subtle, particularly because it is due to a combination of
two conditions, neither of which causes convergence difficulty when acting alone. It is
important to realize that this third problem is quite distinct from the other two and can
degrade convergence even if the other problems are completely absent. The two inter-
acting conditions that cause the problem are non-linearity in the appropriate equation
of condition and parameter correlation. The first of these conditions can be expressed
equivalently by saying that second or even higher order derivatives are required in the
differential corrections equation of condition (which normally is written with only first
derivatives). One way of seeing into the nature of this problem is to notice that a cor-
rect solution algorithm needs to know about parameter correlations, but a linear Least
Squares algorithm cannot compute them correctly because it has no knowledge of the
higher order derivatives. As a result there will be virtual tradeoffs among the invisible
higher order terms that result in incorrect predictions of parameter corrections. It usu-
ally is not practical to add second order terms to the equation of condition for several
reasons, so three procedures that improve convergence greatly while keeping only linear
terms will now be discussed.

13.1 Method of Multiple Subsets (MMS)

One realistic remedy for poor convergence is to break the full parameter set into subsets
and thus reduce the complexity of the correlations (Wilson & Biermann 1976). This pro-
cedure, in which subsets A and B, or A, B and C, etc., are solved iteratively in a closed
loop has come to be known as the Method of Multiple Subsets (MMS), and it works very
well in practice. It seems that a DC solution has only minor difficulty in dealing with
one or two fairly strong correlations among parameters. The real difficulty comes when
there are many large or even moderately large correlations, and this circumstance ac-
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counts for the success of the MMS. Two important points need to be emphasized. First,
the published standard errors should come from a final run that includes all adjusted
parameters together—not from the subset solutions (which will give unrealistically low
error estimates because they see only part of the correlation matrix). It must be said
that even the standard errors for the full set will be of questionable accuracy when
there is a complicated correlation matrix, but they will have to do in the absence of
more rigorously computed standard errors. The second point is that one must resist the
temptation to apply the corrections written in this final run (which is for error estimates
only). It is the nature of the problem that, when the MMS is needed, it is needed all the
way to the end. Even if you start from the exactly correct Least Squares minimum, the
correlation problem discussed here will produce relatively large, erroneous corrections
for the full parameter set. This outcome has nothing to do with the accuracy of the
derivatives computed by DC, but only with the form of parameter space. Some persons
have misunderstood this point and assumed that correlation problems occur only away
from the correct solution and that they will disappear at the correct solution. Not only
do the problems not then disappear, but they do not even lessen in severity.

13.2 Levenberg-Marquardt (L-M)

A very good trick for effecting convergence is the Levenberg-Marquardt procedure (Lev-
enberg 1944; Marquardt 1963), which has been utilized with excellent success in several
binary star solution programs such as those by Hill & Rucinski (1993), by Kallrath et al.
(1998), and by Djurasevic (1992). The L-M algorithm operates on the matrix of normal
equations so as to effect a compromise between the ordinary DC corrections (which
usually give fast convergence but sometimes lead to convergence failure) and those of
the method of steepest descent (convergent but sometimes slow). The DC normal equa-
tions are re-scaled as prescribed by Marquardt, so as to have diagonal elements of unity,
although it would be possible to apply the procedure without re-scaling. At the heart
of the scheme is a quantity λ that is added to each diagonal element of the re-scaled
normal equations. A decision faced by all those who adopt the scheme is that of how
to fix the value of λ, and various kinds of iterations have been used in the literature to
optimize λ, including one in the original Marquardt (1963) reference. The DC program
operates on a somewhat different idea, following experience that—at least in binary star
problems—a broad range of λ’s typically gives nearly the same corrections. Usually such
λ’s are very small, and one finds results for say λ = 10−4, 10−5, or 10−6 that differ by
so little that the choice is inconsequential. Because the DC program already has been
set up to make solutions for many subsets of the main parameter set, it is easy to do
solutions for many λ values, so that no iteration on λ is needed. One simply includes a
line of data for each such solution. For example, if not sure of the λ value to use, just
do solutions (same DC submission) for as many as deemed potentially interesting, all
for the same parameter set or subset. The lines will look like this:

1111 1111 0111110 01110 11010 11111 11111 11111 01111 11111 11111 11110 06 1.000d−04 1.000
1111 1111 0111110 01110 11010 11111 11111 11111 01111 11111 11111 11110 06 1.000d−05 1.000
1111 1111 0111110 01110 11010 11111 11111 11111 01111 11111 11111 11110 06 1.000d−06 1.000

where the first 60 integer 1’s and 0’s on each line are the KEEP’s. The two digit inte-
gers (06, 06, 06 in the example lines) are the numbers of iterations (NITERS) for the
subset solutions. The 1.000d−nn is the Marquardt λ and the 1.000 is the vector length
reduction parameter VLR (see next subsection) for each solution. The λ value makes
little difference within a wide range, although 10−11 or 100 may give much different an-
swers. Execution time for the first iteration of each subset solution is negligible because
DC remembers the residuals and parameter derivatives from the first base set solution.
Subsequent iterations require usual execution times.
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13.3 Vector Length Reduction (VLR)

A correction vector in parameter space can be inaccurate due to non-linearities and
correlations that affect its length and direction. A common result is that an attempted
improvement overshoots the proper solution. However, the vector usually points at least
approximately in the right direction, so an easily implemented fix for convergence diffi-
culties is to apply some fraction of the computed corrections so as to shorten the vector
without changing its direction. Of course all corrections are to be reduced by the same
factor since correct individual changes are unknown—the idea is simply to make the vec-
tor shorter. DC’s input now includes a multiplier that makes Vector Length Reduction
(FORTRAN name VLR) easy. Ordinarily VLR is set to unity, but can be 0.5 to apply
half the corrections, 0.25 to apply a quarter of the corrections, etc. Many iterations may
be needed if VLR needs to be very small (say 0.10), but at least the scheme has always
worked, in our experience. No decisions need be made about subset groupings, as in the
MMS, which is a convenience for automatically iterated solutions. See §6.1 of Wilson
(2006) for further remarks on VLR.

13.4 MMS, VLR, or L-M?

Either the MMS or Levenberg-Marquardt algorithm will nicely solve most convergence
problems of the correlation – non-linearity type. The L-M algorithm is the more con-
venient because it does not extend the level of iteration. However, L-M alone cannot
handle the most severe convergence problems, where a combination of L-M and MMS
and/or VLR may be needed. So DC has several options for dealing with convergence
problems.

13.5 Error Distributions and Standard Error Estimates

Estimated standard errors are written along with the parameter corrections for the
base set and subset solutions. Published comments occasionally appear to the effect
that the DC program produces unrealistic error estimates, although the errors are
computed from the covariance matrix by the standard method. For example, a 1997
paper comments about DC: “. . . the estimates of errors of the adjustable parameters are
unrealistically small. The reason is partly the strong correlation between the relatively
many parameters, and partly the non-normal distribution of measurement errors.” Such
remarks have some formal validity, but are misleading for the following reasons:

1. Strong correlation between the relatively many parameters

In significantly non-linear situations the standard errors will be only approximately
right, but that is also the case with all other binary star fitting programs that now
exist. The shortcoming is not peculiar to DC. However, an impression that the problem
is peculiar to DC obviously has arisen, and one can speculate as to why that is so. An
obvious point is that some solution programs avoid such complaints by not computing
error estimates at all, or by doing so with invented rules that produce comfortably large
estimates. However, some other solution programs do compute standard error estimates,
but usually not for adjusted mass ratios. Experience shows that mass ratios cause most
of the problems with fitting and with error computation. This is so because the mass
ratio often has major correlations with other parameters, and it also shows particularly
non-linear behavior. Programs that cannot adjust the mass ratio (most programs) will
not encounter the problem.

2. Non-normal distribution of measurement errors
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The cited phrase probably does not literally refer to measurement errors, whose dis-
tributions for light curves are as close to Gaussian as one is likely to find for any as-
trophysical measurements. (Observers measure light with respect to nearby comparison
stars whose brightness and color are close to that of the variable star. The observers
typically expend considerable thought and effort to eradicate possible systematic er-
rors.) The phrase more likely refers to non-normal distribution of residuals, which one
finds when a real binary does not match the model very well (perhaps the binary has
un-recognized spots or circumstellar gas, etc.), or if the solution is at an incorrect local
minimum. If interpreted in this way, the statement is correct, although trivial. Under
any interpretation, the comment has nothing to say about DC.

D. Terrell has carried out experiments by solving synthetic light curves by means of DC.
The light curves contained simulated Gaussian errors and, of course, their parameters
were known. He found that the parameter errors agreed with those expected from the
standard output errors.

14 Interactive Branching and Iteration of Solutions

Beginning with the 2010 version, DC can do iterative solutions by setting the number
of iterations (integer NITERS) greater than 1. For previous versions, many persons were
surprised at having to re-submit the program at each iteration. The lack of automatic
iteration was not an oversight but a way to cause users to look at the progress of a
solution. Even without automatic iteration, some persons believe whatever comes out of
the machine, although some results may violate common sense. In this highly non-linear
problem, the solution process can indeed get into trouble and produce inappropriate
corrections. To some extent it is possible to have a program detect inconsistent and
strange results. DC has a few such kinds of detection and message generation, and
further messages about such problems may be worked into future versions. However,
until such screening has been made very extensive, users are encouraged to think about
every iteration. The DC of 2010 and later allows inspection of each iteration without
requiring re-submission. Each iteration of the base set and subsets is displayed and each
base set and subset solution of however many iterations begins from the input parameter
values for that DC submission. The new way works the same as the old way except
that the machine now chases down the iterated corrections to a Least Squares minimum
(within the usual jiggle, of course), separately and independently for the base set and
each subset, if enough iterations are done.

There is another important reason to examine each iteration. In real situations an
experienced person will decide which parameters to adjust and which to hold fixed as
part of an interactive process with the iterative solution. Occasionally the set of adjusted
parameters will remain unchanged from start to finish, but usually it will not. Because
of this reality, DC is set up for interactive branching, by which each iteration produces
solutions of as many subsets of the main (base) set as are requested (control integer KO
must be set to 2). Notice that the sample input data supplied with the program request
several subset solutions via extra lines of KEEP’s at the end of the data block. There
is no limit to the number of such subset solutions—you can ask for a hundred or more
if you like. The first iteration of each subset requires almost no machine time since the
observational equations have already been computed and their solution takes almost no
time compared to their generation. So the idea is to decide, after each submission, which
set of adjustable parameters to follow from that point on (to the next such change). If
you decide not to change parameters and convergence was satisfactory, the solution is
finished. Interactive branching is discussed in Wilson (1988).
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The most cogent reason for personal monitoring of DC iterations is simply this: there
is more to astrophysics than parameter estimation. Recognition of strange and unusual
behavior points the way to the really major insights and discoveries. Many close bina-
ries are not well represented by even our best generic models, and in some cases the
problem is not due just to approximate computation but to quite unsuspected features.
To drive this point home, imagine applying one’s favorite “standard” light curve model
automatically to one of the classic strange objects—perhaps one with an unusual kind
of circumstellar disk. Persons familiar with β Lyrae might be amused by imagining the
outcome for that binary. One will get answers (meaningless ones, naturally), but will
have at best only a much reduced chance for insights into the real problems. Often one
really needs to get in there and watch things develop.

15 Photometric Bands and Radiative Physics

The radiative treatment was re-done for 2003, with the previous effective wavelength
prescription replaced by a bandpass prescription (Van Hamme & Wilson 2003) based
on model stellar atmospheres by Kurucz (1993). Since the 2003 version, the radia-
tive routine has computed bandpass-integrated normal emergent intensities, as well as
Planck intensities, by means of Legendre polynomials whose coefficients were stored
in data files atmcof.dat and atmcofplanck.dat. Beginning with the 2013 version,
band-integrated model and Planck intensities have been based on cubic spline fits
to model (and Planck) intensities, with the cubic spline coefficients precomputed and
stored in data files atmcof.dat and atmcofplanck.dat. These files are online at http:
//faculty.fiu.edu/~vanhamme/lcdc/, together with other supporting data files that
are needed by LC and DC (effwvl.dat, and 19 files called limcof bp preamble *.dat,
with * for each file to be replaced by a chemical composition label). A path to these files
must be set within the computing system or they must be in the same sub-directory
as the programs. Besides 94 bands (viz. Table 2 on page 38), there are coefficients for
19 chemical compositions and 11 surface gravities (Table 1 on the next page). Note
that if local interpolation in [Teff , log g] for x and y limb darkening coefficients is re-
quested (with the law-specifying integers LD1 and/or LD2 being negative, see §12.1 on
page 27), a path to the bandpass-specific limb darkening tables must be set or the limb
darkening files must be in the same sub-directory as the program. The limb darken-
ing tables are in data files named limcof_bp_*.dat, with the asterisk to be replaced
by the chemical composition indicator. They can be downloaded from the webpage
http://faculty.fiu.edu/~vanhamme/limb-darkening/.

15.1 Band IDs, Chemical Composition, Temperature and Gravity Ranges

Allowed temperature ranges for stellar atmosphere emission vary according to log g and
are listed in Table 1 on the next page, together with 19 abundances (relative to the
Sun). Bands, band identification numbers (IBAND), and references for band response
curves are in Table 2 on page 38. Chemical composition needs to be specified via input
parameter ABUNIN. If ABUNIN is not one of the 19 Kurucz values (Table 1 on the next
page), it is reset automatically to the nearest Kurucz value, as there is no interpolation
in [M/H]. (Important note: program logic requires that data files atmcof.dat and
atmcofplanck.dat remain unchanged. Please make these files “write protected” so
they cannot be changed inadvertently.)
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Table 1. Temperature Limits

[M/H] Range log g Teff Range [M/H] Range log g Teff Range
[cm s−2] [K] [cm s−2] [K]

−5.0 . . . + 0.5 0.0 3500 . . . 6000 −5.0 3.5 4000 . . . 31000
+1.0 0.0 3500 . . . 5750 −4.5 . . .− 4.0 3.5 3750 . . . 31000

−5.0 . . .− 3.5 0.5 3500 . . . 7000 −3.5 . . .− 2.5 3.5 3500 . . . 31000
−3.0 0.5 3500 . . . 7250 −2.0 3.5 3500 . . . 29000

−2.5 . . . + 0.2 0.5 3500 . . . 7500 −1.5 . . . + 0.1 3.5 3500 . . . 31000
+0.3 0.5 3500 . . . 7250 +0.2 . . . + 0.3 3.5 3500 . . . 30000
+0.5 0.5 3500 . . . 7000 +0.5 3.5 3500 . . . 29000
+1.0 0.5 3500 . . . 7250 +1.0 3.5 3500 . . . 27000

−5.0 . . .− 3.0 1.0 3500 . . . 7500 −5.0 . . .− 4.5 4.0 4250 . . . 35000
−2.5 1.0 3500 . . . 7750 −4.0 4.0 4000 . . . 35000

−2.0 . . .− 1.5 1.0 3500 . . . 8000 −3.5 4.0 3750 . . . 35000
−1.0 1.0 3500 . . . 8250 −3.0 . . .− 2.5 4.0 3500 . . . 35000

−0.5 . . .− 0.1 1.0 3500 . . . 8500 −2.0 4.0 3500 . . . 32000
0.0 1.0 3500 . . . 8250 −1.5 . . .− 0.1 4.0 3500 . . . 35000

+0.1 . . . + 0.3 1.0 3500 . . . 8500 0.0 4.0 3500 . . . 39000
+0.5 . . . + 1.0 1.0 3500 . . . 8250 +0.1 . . . + 0.2 4.0 3500 . . . 35000
−5.0 . . .− 3.0 1.5 3500 . . . 9000 +0.3 4.0 3500 . . . 34000
−2.5 . . .− 1.5 1.5 3500 . . . 8500 +0.5 4.0 3500 . . . 33000
−1.0 . . . + 0.5 1.5 3500 . . . 9000 +1.0 4.0 3500 . . . 31000

+1.0 1.5 3500 . . . 8750 −5.0 4.5 4750 . . . 40000
−5.0 . . . + 0.1 2.0 3500 . . . 14000 −4.5 4.5 4250 . . . 40000
+0.2 . . . + 0.5 2.0 3500 . . . 10500 −4.0 4.5 4500 . . . 40000

+1.0 2.0 3500 . . . 10000 −3.5 . . .− 3.0 4.5 4000 . . . 40000
−5.0 . . . + 0.2 2.5 3500 . . . 19000 −2.5 4.5 3750 . . . 40000

+0.3 2.5 3500 . . . 18000 −2.0 . . .− 0.1 4.5 3500 . . . 40000
+0.5 2.5 3500 . . . 17000 0.0 4.5 3500 . . . 49000
+1.0 2.5 3500 . . . 11000 +0.1 . . . + 0.3 4.5 3500 . . . 40000
−5.0 3.0 3500 . . . 26000 +0.5 4.5 3500 . . . 37500
−4.5 3.0 3750 . . . 26000 +1.0 4.5 3500 . . . 35000

−4.0 . . .− 3.5 3.0 3500 . . . 26000 −5.0 5.0 5000 . . . 50000
−3.0 3.0 3500 . . . 27000 −4.5 . . .− 3.5 5.0 4500 . . . 50000

−2.5 . . . + 0.1 3.0 3500 . . . 26000 −3.0 . . .− 2.5 5.0 4250 . . . 50000
+0.2 . . . + 0.3 3.0 3500 . . . 25000 −2.0 . . . + 0.3 5.0 3500 . . . 50000

+0.5 3.0 3500 . . . 24000 +0.5 5.0 3500 . . . 45000
+1.0 3.0 3500 . . . 21000 +1.0 5.0 3500 . . . 40000

Note – Metallicity [M/H] defined as log (M/H)? − log (M/H)�
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Table 2. Bandpass List

Band Name IBAND Reference

Strömgren u 1 Crawford & Barnes (1974)
v 2 Ibid.
b 3 Ibid.
y 4 Ibid.

Johnson U 5 Buser (1978)
B 6 Ažusienis & Straižys (1969)
V 7 Ibid.
R 8 Johnson (1965)
I 9 Ibid.
J 10 Ibid.
K 11 Ibid.
L 12 Ibid.
M 13 Ibid.
N 14 Ibid.

Cousins RC 15 Bessell (1983)
IC 16 Ibid.

Bessell UX 17 Bessell (1990)
Bessell BX 18 Ibid.
Bessell B 19 Ibid.
Bessell V 20 Ibid.
Bessell R 21 Ibid.
Bessell I 22 Ibid.
Tycho BT 23 Bessell (2000)

VT 24 Ibid.
Hipparchos Hp 25 Ibid.
KEPLER 26 Koch et al. (2010); Van Cleve (2005)
COROT SIS 27 Cautain et al. (2006)
COROT EXO 28 Ibid.
Geneva U 29 Rufener & Nicolet (1988)

B 30 Ibid.
B1 31 Ibid.
B2 32 Ibid.
V 33 Ibid.
V 1 34 Ibid.
G 35 Ibid.

Vilnius U 36 Straižys & Zdanavičius (1965)
P 37 Ibid.
X 38 Ibid.
Y 39 Ibid.
Z 40 Ibid.
V 41 Ibid.
S 42 Ibid.

Milone iz 43 Milone & Young (2008)
iJ 44 Ibid.
iH 45 Ibid.
iK 46 Ibid.
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Table 2. Bandpass List (continued from previous page)

Band Name IBAND Reference

YMS94 iz 47 Young, Milone, & Stagg (1994)
Milone & Young (2005)

iJ 48 Ibid.
iH 49 Ibid.
iK 50 Ibid.
iL 51 Ibid.
iL′ 52 Ibid.
iM 53 Ibid.
in 54 Ibid.
iN 55 Ibid.

Sloan DSS u′ 56 Fukugita et al. (1996)
g′ 57 Ibid.
r′ 58 Ibid.
i′ 59 Ibid.
z′ 60 Ibid.

HST STIS Lyα 61 Baum et al. (1996)
Fclear 62 Ibid.
Fsrf2 63 Ibid.
Fqtz 64 Ibid.
C iii 65 Ibid.
Mg ii 66 Ibid.
Nclear 67 Ibid.
Nsrf2 68 Ibid.
Nqtz 69 Ibid.
cn182 70 Ibid.
cn270 71 Ibid.
Oclear 72 Ibid.

Oclear-lp 73 Ibid.
[O ii] 74 Ibid.
[O iii] 75 Ibid.

2MASS J 76 Cohen, Wheaton, & Megeath (2003)
2MASS H 77 Ibid.
2MASS Ks 78 Ibid.
SWASP 79 Pollacco et al. (2006)
MOST 80 Walker et al. (2003)
GAIA (2006)a G 81 Jordi et al. (2006)
GAIA (2010) G 82 Jordi et al. (2010)
GAIA (2010) GBP 83 Ibid.
GAIA (2010) GRP 84 Ibid.
GAIA (2010) GRVS 85 Ibid.
Miloneb 230 86 Kallrath et al. (1998)

250 87 Ibid.
270 88 Ibid.
290 89 Ibid.
310 90 Ibid.
330 91 Ibid.

Ca ii tripletc 858 92 Ibid.



40

Table 2. Bandpass List (continued from previous page)

Band Name IBAND Reference

WIREd V+R 93 Bruntt et al. (2006)
Lunar Ultraviolet Telescope LUT 94 Cao et al. (2011)
a Band #81 is the original and now obsolete GAIA broad G photometric band of 2006. As the GAIA

instrumental system has developed since then, there are now four GAIA passbands defined (82 through
85): a very broad G band from 350 to 1000 nm, two broad bands representing the blue (330-680 nm) and
red (640-1000 nm) ends of the G band, respectively, and the Radial Velocity System narrow band (in the
region 847-874 nm near the Ca ii triplet).

b Response curves for bands 86 to 91 are rectangular in shape, have widths of 20 nm and are centered on
the wavelength (in nm) indicated by the band name number. They are useful for certain space-based
observations in the UV and included at the request of Gene Milone.

c This is a trapezoidal band centered on the Ca ii triplet, also requested by Gene Milone. Response increases
linearly from 0 to 1 between 847 and 851 nm, is equal to 1 between 851 and 867 nm, and decreases linearly
from 1 to 0 between 867 and 869 nm.

d The WIRE field tracker response is unknown but estimated to be approximately “V + R” according to
Bruntt et al. (2006). We constructed band No. 93 to consist of the short-wavelength ascending part of
the Johnson V band (between 475 and 530 nm), the long-wavelength descending part of the Johnson R
band (from 700 to 960 nm), and a flat part with a fixed value of 1 between 530 and 700 nm.

15.2 Atmosphere to Blackbody Transitions

If a Teff , log g combination is modestly outside the range of applicability (see Table 1
on page 37), the program smoothly transfers to the Planck intensity curve for the given
band over a predetermined range that is coded into the program. We call the procedure
ramping. Four ramp parameters are required, two for log g that set the ramp interval
below log g = 0.0 (GLOWTOL) and above log g = 5.0 (GHIGHTOL), and two for Teff . At
the lower Teff limit, there is only one temperature ramp interval, TLOWTOL. For each
log g, the ramp interval at the upper Teff limit is a fixed percentage of the maximum
model atmosphere temperature. This fixed percentage is determined from the ramp
interval of the highest model temperature of 50,000 K (THIGHTOL). The program, as
supplied, has GLOWTOL = 4.0, GHIGHTOL = 4.0, TLOWTOL = 1500K, and THIGHTOL
= 50,000K. As an example of what this means, consider the THIGHTOL of 50,000 K
coupled with a highest Kurucz Teff of 50,000 K. The LC and DC programs will then
apply Kurucz atmosphere intensities for local surface elements with Teff up to 50,000 K,
smoothly transfer between the 50,000 K atmosphere and a 100,000 K blackbody between
50,000 K and 100,000 K, and use blackbody intensities above 100,000 K. GLOWTOL and
GHIGHTOL were smaller prior to February, 2004. The current numbers seem to work
well but the user may change them. They should be the same in LC and DC.

16 Special Features

Coarse and fine grids: To save computing time, DC uses both coarse and fine com-
puting grids, and applies the fine grids only where accuracy requires them. The fine
grids are for the residuals and for derivatives with respect to parameters e, ω, F1, F2,
φ0, i, Ω1, Ω2, q, spot latitude, spot longitude, and spot radius. Fine grids are required
for parameters that are in some way geometrical. The derivatives of the non-geometrical
parameters g1, g2, T1, T2, A1, A2, L1, L2, x1, x2, and spot temperature are computed
with the coarse grids. The fine grids are specified by N1, N2 and the coarse grids by
N1L, N2L, for stars 1 and 2, respectively.

Synthetic Noise : Light curves with synthetic Gaussian noise can be produced by
entering a non-zero value for the LC input quantity STDEV, which is labeled “fract.
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sd.” in the output. STDEV is in the unit of light at the reference phase (PHN). The
way that the noise (scatter) scales with light level is controlled by input integer NOISE.
Scatter is proportional to light level for NOISE=2, proportional to the square root of
the light level for NOISE=1, and independent of light level for NOISE=0. The random
number generator needs a seed (FORTRAN name SEED), labeled “seed” in the output.
SEED should be larger than 100000001. and smaller than twice that value. The procedure
should work for other SEED’s, but one should stay within the mentioned range for best
results. Noise generation works the same way for radial velocities, except that there is
no variation of the scatter with level. For velocity scatter, enter STDEV in the velocity
unit (VUNIT). Users who have a favorite random number generator can easily replace
the program generator with their own.

17 Simultaneous Solutions

A capability of DC that should be used in most circumstances is that of making si-
multaneous multi-band light curve solutions as well as simultaneous (one or two curve)
radial velocity and multi-band light curve solutions (Wilson 1979). Beginning with the
2015 version simultaneous velocity, light and eclipse timing solutions are also a capabil-
ity (Wilson & Van Hamme 2014). The advantages are to avoid inconsistencies among
solutions of the separate curves, to reduce the number of free parameters (no need
to have both photometric and spectroscopic mass ratios, nor to have a separate incli-
nation for each light curve), and to utilize information that is discarded in separate
solutions (the knowledge that there is only one true mass ratio, one true eccentricity,
etc.). Weighting is very important in simultaneous solutions and is discussed in Wilson
(1979) and in §18 on page 45. A sample DC data file supplied with the program is
for a simultaneous solution of two radial velocity curves, four light curves, and a col-
lection of eclipse timings. There can be 0, 1, or 2 velocity curves, any number of light
curves (the program is dimensioned for up to 50 light curves, which seems more than
ample for realistic situations), and one set of eclipse timings. Input integers IFVC1 and
IFVC2 tell DC whether velocity curves for stars 1 and 2 are expected, and NLC tells
how many light curves are expected. Input integer IFTIME indicates whether eclipse
timings are entered or not. The DC solution will produce one correction for each ad-
justed curve-independent parameter (most of them) and n corrections for each adjusted
curve-dependent parameter (L1, L2, x1, x2, `3). It takes no more (actually somewhat
less) machine time for a simultaneous solution of n curves than for n individual curve
solutions, so there really is no reason not to take advantage of this feature. If one has
misgivings about the simultaneous solution, separate solutions always can be carried
out in addition. One particularly illogical practice in a few papers has been to publish
averaged parameters from separate solutions and to offer the averages as a substitute
for a simultaneous solution. However, the average of separate solutions will not be a
correct solution of any of the separate curves. Ask “what is the proper way to take such
an average?” The answer is that there is no self-consistent way—the only way to have
the results of a simultaneous solution is to do a simultaneous solution.

17.1 Absolute Flux Computations and Direct Distance Estimation (DDE)

Although most applications of the near future are likely to continue to work with ar-
bitrarily scaled fluxes, LC and DC now can operate in standard physical flux units—
specifically, centimeter-gram-second (cgs) units (Wilson 2004, 2005, 2007, 2008; Wilson
& Van Hamme 2010; Wilson, Van Hamme, & Terrell 2010). Theoretical fluxes are based
on model stellar atmospheres that are naturally in standard physical units, so the only
calibration is on the observational side. Specifics of model flux generation are in §3.3 of
Wilson (2008). Absolute solutions for distance (d) measurement are independent of bi-
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nary morphology4 in regard to accuracy (no need to reject OCs or near-contact binaries
for distance measurement). They also generate standard distance errors routinely and
reduce the human workload. The process is called Direct Distance Estimation (DDE),
as log10 d becomes an ordinary solution parameter.5 The basic idea of DDE can be in-
verted by adoption of an independently known distance so as to strengthen the solution
of a poorly conditioned binary light curve, such as one with shallow partial eclipses or
even no eclipses (an ellipsoidal variable), and then becomes Inverse Distance Estimation,
or IDE (Wilson et al. 2009). Although an arbitrarily scaled EB light curve yields only
a one-temperature (1T ) solution, in principle one can solve for temperatures of both
stars (2T solutions) from combined absolute flux curves and RV curves if the calibrative
information is accurate. Only a subset of standard bands in Table 2 have published flux
calibration estimates, and these are collected in Table 3 starting on page 44. The logical
basis for 2T solutions is explained in Wilson (2007, 2008). Areas such as third light,
overdetermined solutions, and sources of observational and calibrative error are covered
in Wilson (2008).

Control integer IFCGS should be set to 1 for absolute operation or to 0 for traditional
operation in arbitrary flux units. Parameter log10 d (DPCLOG) replaces the luminosity
parameter(s) when IFCGS=1. Attempts to adjust L1 or L2 will not work with IFCGS=1,
nor will attempts to adjust log10 d when IFCGS=0.

17.2 T–d and T–d–A Theorems

Theorems in §4 of Wilson (2008) tell how many light curves should be solved simulta-
neously from light-velocity observations for various combinations of T1, T2, log10 d, and
interstellar extinction (A). The theorems’ basic logic and usefulness also are covered
there and checks via simulations are described qualitatively. The T–d theorem may be
stated as

EB light curves optimally yield distance along with temperatures of both stars if and only
if the light curves are standardized and calibrated, two substantially different photometric
bands are fitted, and the absolute length scale is known or derivable (usually from RV’s).

The idea is to use two light curve bands to solve for T1, T2, and log10 d, but only one
band if T1 or T2 or log10 d is dropped from the list. With only one light curve, a [T1, T2,
log10 d] solution is indeterminate and will not come to definite results. With more than
two light curves, the solution is overdetermined (usually leaving misfits for all or most of
the bands). The T–d–A theorem is a generalization that adds a designated interstellar
extinction, A, as an adjustable parameter. Three bands will be optimal if A is added
(so that the list becomes T1, T2, log10 d, A). Here “designated” means that A pertains
to a designated photometric band such as Johnson V . The practicality of extinction
solutions from light/velocity curves of real binaries is not yet clear, so work on that
problem continues. See Wilson (2007, 2008) for more detailed information on the T–d
theorem, and particularly §7 of Wilson (2008) for ideas on the T–d–A theorem that
were gained partly from simulations. Central to those ideas is adoption of a reference
extinction (in magnitude) in a designated photometric band.

17.3 Absolute Flux Solutions: Strategy and Procedures

Weighting is especially important in simultaneous absolute solutions because RV’s and
absolute flux curves are likely to differ numerically by many orders of magnitude. The

4Results for overcontact (OC) and near-contact examples are not inferior to those for well detached
binaries.
5Convergence is improved with log10 d rather than d as a solution parameter.
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standard deviations that govern curve-to-curve weighting need to be at least roughly
right, even in the first iterations. They can be wrong by a factor 10 or so at the
beginning, but not by factors of 102 or larger. Consider an example of a star with
V ≈ 10 mag and RV’s of order 100 km/s. A V = 0.00 mag star has a bandpass flux of
about 0.36 erg s−1cm−3, so a V ≈ 10 mag star’s flux will be about 0.36 × 10−4 in the
same units. If the RV’s and V fluxes have similar fractional noise, the RV’s (being of
order 3×106 times larger numerically) will have noise ≈ 3×106 times larger. Then, since
weights are inversely proportional to noise squared, the RV weights should be around
1013 times smaller than the light curve weights. Now suppose the RV and light curve
sigmas actually entered are about the same (for lack of thought applied to weighting).
The light curve weights will be 1013 times smaller than they should be and the Least
Squares algorithm will basically ignore the light curves and run to an operating point
from which the program cannot recover. Such a gross discrepancy is not so likely in
traditional non-absolute solutions, where fluxes are usually within a factor 10 of unity.

The present DC version is written to operate with input of flux or stellar magnitude.
For absolute solutions, entered magnitudes should be actual standard magnitudes (not
magnitude differences) with MAGLITE set to 1. Entered fluxes (with MAGLITE set to
0) can be in the unit of the bandpass flux of a comparison star, in which case the
input quantity XUNIT should be set to 10−0.4mcomp . Alternatively, entered fluxes can be
already in cgs units (specifically erg s−1cm−3), in which case XUNIT and CALIB should
be set to unity. Probably most persons will find the magnitude option easier. Note that
distance, d, or actually log10 d, replaces bandpass luminosity, Lband, as a (possible) free
parameter. Obviously it is not possible for both d and Lband to be free parameters
because a definite Lband is determined if d (and the other system parameters) are set.
The programs compute Lband’s as auxiliary parameters. Note that DC’s actual distance
parameter is log10 d rather than d, as log10 d solutions converge better than d solutions.
An adopted (say spectroscopic) temperature is commonly the main source of distance
uncertainty in 1T solutions, so we recommend that published 1T absolute solutions be
done for at least two assumed temperatures, separated by something like 100 K or a
few hundred K, to allow interpolation or extrapolation of results.

18 Input Lines, Including Observations and Weights

Identification of the various input quantities can be done in several ways, for example
via Appendices A or B, by examining the output where the numbers are written with
labels, or by comparing the input data lines with the FORTRAN READ statements.

For LC (see the sample input file in Appendix A on page 60), there is a “more or less
standard” set of input lines with control integers and parameters for each curve, and
n such sets of lines can be concatenated to produce n output curves. Output can be
a light curve, a radial velocity curve, or a spectral region containing mixed absorption
and emission spectral lines (perhaps blended). The “standard set” of input data lines is
only “more or less standard” because there can be extra lines to tell about circumstellar
attenuating clouds and/or about bright or dark star spots and/or about spectral lines.
For light or velocity curves, the number of input lines for a given curve is (11 + c+ s),
where c is the number of circumstellar clouds and s is the number of star spots for
the two stars combined. One of the 11 mandatory lines is the stop line for clouds and
two others are stop lines for star spots, with one stop line to follow the lines of spot
parameters for each star. The cloud stop line should contain a number greater than 100.0
but less than 200.0 in the first field, which corresponds to a cloud x-coordinate. Each of
the two stop lines for spots should contain a number greater than 200.0 in the first field,
which corresponds to a spot latitude on the normal spot parameter lines. According to
the value of MPAGE, LC computes a light curve (MPAGE=1), a radial velocity curve
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Table 3. Absolute Flux Calibrations

Band Name IBAND CALIBa Reference
[erg s−1cm−3]

Strömgren u 1 1.180 Fabregat & Reig (1996)
1.1799 Wilson, Van Hamme, & Terrell (2010)

v 2 0.869 Fabregat & Reig (1996)
0.8420 Wilson, Van Hamme, & Terrell (2010)

b 3 0.584 Fabregat & Reig (1996)
0.58895 Wilson, Van Hamme, & Terrell (2010)

y 4 0.369 Fabregat & Reig (1996)
0.37415 Wilson, Van Hamme, & Terrell (2010)

Johnson U 5 0.435 Johnson (1965, 1966)
0.419 Bessell (1979)
0.4175 Bessell, Castelli, & Plez (1998)
0.4306 Wilson, Van Hamme, & Terrell (2010)

B 6 0.688 Johnson (1965, 1966)
0.660 Bessell (1979)
0.632 Bessell, Castelli, & Plez (1998)
0.6266 Wilson, Van Hamme, & Terrell (2010)

V 7 0.378 Johnson (1965, 1966)
0.361 Bessell (1979)
0.3631 Bessell, Castelli, & Plez (1998)
0.36895 Wilson, Van Hamme, & Terrell (2010)

R 8 0.185 Johnson (1965, 1966)
0.17813 Wilson, Van Hamme, & Terrell (2010)

I 9 0.0899 Johnson (1965, 1966)
0.08643 Wilson, Van Hamme, & Terrell (2010)

J 10 0.0340 Johnson (1965, 1966)
0.03147 Bessell, Castelli, & Plez (1998)

K 11 0.0039 Johnson (1965, 1966)
0.00401 Bessell (1979)
0.003961 Bessell, Castelli, & Plez (1998)

L 12 0.00080 Johnson (1965, 1966)
0.000708 Bessell, Castelli, & Plez (1998)

M 13 0.00022 Johnson (1965, 1966)
N 14 0.0000124 Johnson (1965, 1966)

Cousins RC 15 0.225 Bessell (1979)
0.2177 Bessell, Castelli, & Plez (1998)

IC 16 0.122 Bessell (1979)
0.1126 Bessell, Castelli, & Plez (1998)

Geneva U 29 0.03290 Rufener & Nicolet (1988)
B 30 0.06595 Rufener & Nicolet (1988)
B1 31 0.06748 Rufener & Nicolet (1988)
B2 32 0.06172 Rufener & Nicolet (1988)
V 33 0.03532 Rufener & Nicolet (1988)
V 1 34 0.03692 Rufener & Nicolet (1988)
G 35 0.02945 Rufener & Nicolet (1988)

2MASS J 76 0.03129 Cohen, Wheaton, & Megeath (2003)
2MASS H 77 0.01133 Cohen, Wheaton, & Megeath (2003)
2MASS Ks 78 0.004283 Cohen, Wheaton, & Megeath (2003)

a CALIB fluxes refer to a star of zero magnitude and are in erg s−1cm−3. They are listed
with the number of digits given in the original publications.

(MPAGE=2), a set of spectral regions (MPAGE=3), star dimensions (MPAGE=4), plane
of sky coordinates for images (MPAGE=5), or conjunction times and eclipse timing
residuals (MPAGE=6). Spectral line profile computation requires extra input lines for
the line characteristics. The several sets of input lines for a velocity curve, light curve,
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etc., need not be of the same binary since each curve computation is an independent
operation. A final line stops execution and should contain integer 9 in the field normally
occupied by MPAGE (that final line is not counted in the 11+c+s lines of the individual
curves).

For DC (a sample input file is in Appendix B on page 62), three lines of DEL’s enter
first. The next line pertains to the base parameter set and contains 60 KEEP’s (10
of which are not used at present) for the 50 adjustable parameters, the number of
iterations (NITERS) to be done, the Marquardt λ (called XLAMDA), and the VLR
factor (called VLR, see §12.3, page 29). Note that the ‘KEEP’ line is changed from the
2007 version, in that IFDER has been moved to another line (see below) and also has a
changed interpretation. Formerly IFDER controlled whether the matrix of observational
equations (partial derivatives and residuals) was written for a given parameter subset (or
base set). Now it controls whether the observational equations are written for the base
set—they are not written for the subsets. The old write control integers IFR (for radii,
R/a) and IFM (for the normal equations, identity matrix, and correlations) are now
gone—those matrices are always written for the base set and each subset. Next comes a
line of spot identification integers (KSPA, NSPA, KSPB, NSPB), then six lines of control
integers and curve-independent parameters. Note that the first of these six lines now
contains IFDER, moved from the KEEP lines and entered only once. Next comes a line
of third body parameters, then as many lines of curve-dependent parameters as there
are observed curves, then as many lines of spot parameters as there are spots (and also
two spot “stop” lines), then as many lines of circumstellar cloud parameters as there are
clouds (and a cloud “stop” line), then the observed radial velocities, then the observed
light curves, then the observed eclipse timings, and finally as many lines of KEEP’s for
subset solutions as the user wants. These final KEEP lines are of the same format as the
KEEP line for the base set and also contain NITERS, the Marquardt λ, and VLR. Note
that solutions that are triggered by these KEEP lines can be for varied Marquardt λ and
VLR factor as well as for parameter subsets. For example, one can run two solutions for
exactly the same parameters but with different λ or VLR factor.

The observed radial velocity curves and light curves of the DC input data stream are
entered as triplets (time or phase, velocity or light, weight), with up to 5 triplets (i.e.
data points) per line. If eclipse timings are provided, they are entered after the velocity
and light curves, with data points including eclipse time, type (1 for type I and 2 for
type II) and weight. See §10.6 on page 23 for details on eclipse time type. The number of
data points per line is set by input integer NPPL (number of points per line). A possible
formatting problem, caused by velocities not being of the same order of magnitude
as light measures, is solved by providing for the separate entry of a convenient sized
velocity unit. The (0, 1, or 2) velocity curves, NLC light curves, and eclipse timings are
separated by “data stop lines” that serve two purposes. They identify the last data line
for each velocity or light curve and also tell how many data points are on that last line
(1, 2, 3, 4, or 5). The only number needed on a data stop line is in the first field and
should be −(10000 + k), where k is the number of data points on the preceding line.
Example: if there are 2 data points on the preceding line, the “stop” number should
be −10002. Some computing systems require “something” in the remaining fields of the
line and blanks are suitable, but there must be at least blanks (not an absence of all
characters). No special stop information is to follow the final curve because the program
already knows how many curves to expect, and it knows which is a velocity curve and
which is a light curve because it has already read IFVC1, IFVC2, and NLC. After the
data stop line are the KEEP lines for subsets of the main (i.e. base) set, with one KEEP
line for each subset. A line with integer 2 in column 2 should follow the final line of
subset KEEP’s to signal the end of subset processing and of the entire job.

Weighting of observations is discussed in Wilson (1979, pages 1064-1065), Wilson (1988)
and Kallrath & Milone (2009). Briefly, DC applies three kinds of weights, which are “in-
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trinsic” weights (assigned by the user to the individual observations), “curve-dependent”
weights (based on estimated standard deviations [SIGMA’s] at a reference phase), and
“level-dependent” weights (computed by DC according to the input parameter NOISE,
which tells how observational scatter scales with light level). NOISE should be set to 1
for scatter that scales with the square root of the light level, such as counting statis-
tics, and to 2 for scatter that scales with the light level, such as scintillation noise or
fluctuations in sky transparency. If NOISE is set to 0, no level-dependent weighting is
applied. Level-dependent weighting does not apply to velocity curves. SIGMA’s pertain
to the directly entered velocity and light values. An exception is where the SIGMA’s
were actually measured from individual observations, but normal points (i.e. averages)
are entered. In that case, the number of individual points in each normal point should
be incorporated in the “intrinsic” weight of each point. Some persons have contrived
their curve-dependent weighting (through the SIGMA’s) so as to increase the influence of
one or a subset of the curves according to pre-conceptions—for example, of the relative
importance or radial velocity and light curves. However, the SIGMA’s should properly
be based on measurements, not prejudice.

19 The Scaling of Run Time

The main computational activity of LC consists of summations over surface grid ele-
ments in forming the observable fluxes and velocities. The number of grid elements on
each star is essentially proportional to the square of the grid fineness integer for that
star (N1, N2, defined as the number of latitude rows per hemisphere), so run time very
nearly scales with N2

1 + N2
2 . Computations of all other kinds take negligible time. Of

course, run time in LC also scales with the number of output points, or more precisely,
with that number plus 1 (because one extra point is done at the phase of normalization).
Eccentric orbits take longer than circular orbits because the local physical computations
must be done anew at each phase. Note that a very small eccentricity (say 0.000001)
differs in this regard from one of exactly zero because the program skips the extra com-
putations only if e = 0. The actual time factor depends on whether the old approximate
(MREF=1) or detailed (MREF=2) reflection model is specified. The MREF=2 case takes
longer for both circular and eccentric orbits, but it takes much longer (usually impracti-
cally longer) for eccentric orbits. If MREF=2, then run time also depends on NREF, the
number of multiple reflections. There will also be some dependence on the particular
binary star configuration. For example, runs for stars with small r = R/a go faster than
those with large r. The situation is sufficiently complicated so that actual speed factors
are best estimated via a few experiments at low grid fineness.

For DC, many of the same considerations apply as for LC. However, there are four grid
fineness integers because DC uses both a high and a low grid for each star (viz. §16 on
page 40), so run time scales with (P + 1)

(
N2

1 +N2
2

)
+ PL

(
N2

1 +N2
2

)
L
, where P is the

number of fine grid parameters and PL is the number of low (coarse) grid parameters
under adjustment in the main (base) set of parameters. The first term involves P + 1
rather than just P because not only derivatives but also residuals must be computed, and
the residuals are done with the fine grid. Run time in DC also scales with the number
of observations (not with the number of observations plus 1 because there is no phase
of normalization, as there is with LC). DC iterations with ISYM=1 (i.e. symmetrical
derivatives) will take nearly twice as long as those with ISYM=0 (i.e. asymmetrical
derivatives).



47

20 Common Difficulties

1. Minimum dimensioning: One of the most frequent reasons for failure in program
execution is under-dimensioning of arrays. These failures are disconcerting because very
strange things can happen and usually no logical interpretation of the machine error
messages is apparent. Array dimensions need be changed only in the main programs
(LC and DC), not in the subroutines. This can be done in the “Parameter Wrap-
per” at the beginning of the main programs (described in §21.4 on page 52). Table 4
(Dimensioning vs. Grid Fineness) on the next page lists minimum dimensions of the ar-
rays RV, GRX, GRY, GRZ, RVQ, GRXQ, GRYQ, GRZQ, SLUMP1, SLUMP2, SRV, SGRX,
SGRY, SGRZ, SRVQ, SGRXQ, SGRYQ, SGRZQ, SRVL, SGRXL, SGRYL, SGRZL, SRVQL,
SGRXQL, SGRYQL, SGRZQL, SLMP1, SLMP2, SLMP1L, SLMP2L, FR1, FR2, GLUMP1,
GLUMP2, GRV1, GRV2, XX1, XX2, YY1, YY2, ZZ1, ZZ2, GMAG1, GMAG2, CSBT1,
CSBT2, RF1, RF2, RFTEMP, SXX1, SXX2, SYY1, SYY2, SZZ1, SZZ2, SGMG1, SGMG2,
SGRV1, SGRV2, SGLM1, SGLM2, SCSB1, SCSB2, SRF1, SRF2, SGLM1L, SGLM2L,
SGRV1L, SGRV2L, SXX1L, SXX2L, SYY1L, SYY2L, SZZ1L, SZZ2L, SGMG1L, SGMG2L,
SCSB1L, SCSB2L, SRF1L, SRF2L, ERV, EGRX, EGRY, EGRZ, ELMP1, EGLM1, EGRV1,
EXX1, EYY1, EZZ1, EGMG1, ECSB1, ERF1, ERVQ, EGRXQ, EGRYQ, EGRZQ, ELMP2,
EGLM2, EGRV2, EXX2, EYY2, EZZ2, EGMG2, ECSB2, ERF2, ERVL, EGRXL, EGRYL,
EGRZL, ELMP1L, EGLM1L, EGRV1L, EXX1L, EYY1L, EZZ1L, EGMG1L, ECSB1L, ERF1L,
ERVQL, EGRXQL, EGRYQL, EGRZQL, ELMP2L, EGLM2L, EGRV2L, EXX2L, EYY2L,
EZZ2L, EGMG2L, ECSB2L, ERF2L, SFR1, SFR1L, ERF1, ERF1L, SFR2, SFR2L, EFR2,
and EFR2L. The minimum dimension of each of these arrays depends on the grid fine-
ness. For example, if the grid fineness integer (N1, N2, N1L, or N2L) is 30, the minimum
dimension is 762. Arrays SNTHH, CSTHH, SNTHL and CSTHL are dimensioned to
at least N1+N2. Arrays SNFIH, CSFIH, SNFIL, CSFIL, TLDH, TLDL, STLDH, STLDL,
ETLDH, and ETLDL are dimensioned to the sum of the minimum dimensions for both
stars (in above long list of arrays). For N’s of 30, this would then be 762 + 762 = 1524.
The arrays PHAS, FLUX, MNTYPE and WT are dimensioned to include all the observa-
tions in all curves plus the blanks on the last data lines plus the blank observations on
the data stop lines (see DC sample input file in Appendix B). Arrays OBS and HOLD
are dimensioned to [number of observations × (number of parameters in Least Squares
solution +1)]. A curve-dependent parameter counts n times for n light curves. Thus if
you had 98 observations in star 1’s velocity curve, 102 in star 2’s velocity curve, 470 in
one light curve, and 530 in another, the first factor would be 1200 = 98+102+470+530.
Then, if you adjust i, g2, L2, and x1, the second factor is 7 = 2+2×2+1 (remember, L2

and x1 are curve-dependent and count twice each, since there are two light curves). The
last +1 is for the residuals. OBS and HOLD need then be dimensioned to a minimum
of 1200× 7 = 8400.

2. The parameter increments must be neither too large (gives systematic errors) nor
too small (gives numerical noise). These increments are called the DEL’s (FORTRAN
name). For most parameters, DEL’s of about 1% of the parameter value are appropriate.
However, particular circumstances sometimes affect that guideline, so common sense
and experience are the best guides. Finer grids allow smaller DEL’s. Use of the ISYM=1
option allows larger DEL’s before curvature effects become important.

3. It is best to have the initial parameter guesses for differential corrections based on
experiments with the light–velocity program (LC). Column 5 in the main block of
output from LC, which is `1 + `2 + `3, should approximately match the observed light
values.

4. The distinction between direct light (column 5 of LC output) and normalized light
(column 6) can be a source of confusion. Remember that normalized light is only in-
tended for convenience in initial graphical trials and that it has no counterpart in DC,
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Table 4. Dimensioninga vs. Grid Fineness N

N Dimension N Dimension N Dimension

1 . . . 35 1034 69 3979
2 4 36 1092 70 4094
3 9 37 1157 71 4214
4 16 38 1217 72 4330
5 23 39 1281 73 4447
6 33 40 1345 74 4576
7 45 41 1418 75 4696
8 58 42 1482 76 4823
9 72 43 1555 77 4946
10 88 44 1628 78 5082
11 106 45 1703 79 5210
12 125 46 1777 80 5341
13 147 47 1857 81 5477
14 169 48 1935 82 5613
15 195 49 2013 83 5747
16 220 50 2098 84 5890
17 250 51 2180 85 6029
18 278 52 2269 86 6165
19 310 53 2352 87 6314
20 342 54 2445 88 6457
21 378 55 2533 89 6606
22 413 56 2628 90 6750
23 452 57 2722 91 6906
24 491 58 2818 92 7056
25 530 59 2915 93 7210
26 575 60 3011 94 7364
27 617 61 3116 95 7521
28 667 62 3215 96 7681
29 713 63 3320 97 7840
30 762 64 3423 98 8002
31 813 65 3536 99 8163
32 867 66 3642 100 8331
33 919 67 3755 101 8496
34 978 68 3866 102 8670

a For arrays RV, . . . , EFR2L enumerated on the preceding page.

which deals with direct light only (see also §4.1 on page 4). If this continues to confuse
you, forget that normalized light exists and work always with direct light.

5. Always check Ω1 and Ω2 to be sure they are in the permitted range for given q, F , and
e. Exact lobe filling or otherwise special Ω’s that are computed by the program in modes
−1, 4, 5, and 6 will be correct and need not be checked. In differential corrections, be
sure that both the input and incremented values of Ω1 and Ω2 are within allowed ranges.
Overcontact Ω’s should be between the critical values for inner and outer contact (see
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the table of critical Ω’s in the file critout.tab available from the FTP download site).
For detached stars, Ω is greater than the critical Ω for inner contact.

6. Certain parameters cannot be adjusted in certain program modes. The reason is
either that the parameters are not free, but functionally determined from the mode
logic, or that they have no effect on the computed light or velocity. Attempts to adjust
those parameters are the most common cause of blowups in subroutines SQUARE and
DMINV. L2 cannot be adjusted in any mode greater than 0 unless IPB has been set
to 1. In mode −1, parameters g1, T1, T2, A1, Ω1, Ω2, and x1 cannot be adjusted. In
mode 1, parameters g2, T2, A2, Ω2, L2, and x2 cannot be adjusted. In mode 3, Ω2, and
L2 cannot be adjusted. In mode 4, Ω1 and L2 cannot be adjusted. In mode 5, Ω2 and
L2 cannot be adjusted. In mode 6, Ω1, Ω2, and L2 cannot be adjusted. Limb darkening
coefficients x1 and x2 cannot be adjusted in any mode if LD1 or LD2 is negative (i.e.
if limb darkening coefficients are computed as functions of local temperature and other
quantities).. Luminosities L1,2 should not be adjusted in absolute solutions (i.e. with
IFCGS=1), nor should log10 d be adjusted in non-absolute solutions (i.e. with IFCGS=0).

7. Luminosities (input L1 and L2) are approximately 4π times larger than computed
light values (output `’s). Therefore, to obtain `1 + `2 of about unity outside eclipse,
enter input luminosities that add to about 4π. Note that the traditional treatment of
third light as if it were third luminosity is incorrect (for a discussion of luminosity vs.
light, see §6 on page 14).

8. Critical Ω’s depend on orbital eccentricity, e. Although a table of lobe filling circular
orbit potentials for synchronous and non-synchronous rotation is available along with
this document (file critout.tab), such tables for eccentricity and rotation combined
would be too extensive for practicality. Therefore, to find critical eccentric Ω1 and Ω2,
run LC in mode 6. The program will replace your input Ω’s for both stars with the
critical Ω’s in the output listing.

9. Overcontact binaries, such as W UMa stars, require finer grids than do detached and
semi-detached binaries because the numerics of the neck region are particularly difficult
to treat accurately. N’s about 50% larger than normal are recommended for overcontact
systems.

10. The programs can apply the detailed reflection model of Wilson (1990) for eccentric
as well as circular orbits, but eccentric cases then use an enormous amount of machine
time. If you are doing an eccentric binary and the programs run almost forever, check
to see if you set MREF=2. In most realistic situations, the old approximate reflection
(MREF=1) should be entirely adequate for eccentric binaries.

11. A very common cause of failed runs is simply inadvertent shifting of numbers on the
input lines out of their proper fields, so that leading digits or signs are clipped away,
or the numbers are not read at all, or they are read under the wrong name. Be sure to
keep a copy of the sample data in exactly its original form for later comparison.

12. Sometimes users make changes that cause the programs not to work. Perhaps the
program will work for the immediate application, but will fail in another situation. Be
sure to keep a copy of the entire program in exactly the form supplied, so that you can
see whether it runs correctly in the circumstances under question.

13. Be sure not to mix subroutines from program versions.

14. Spot A and Spot B cannot be the same spot ! So the set KSPA, NSPA, KSPB, NSPB
cannot be something like 2, 3, 2, 3, which could cause blowups even when only one spot
is adjusted.
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15. DC input is to contain two sets of lines for photometric band-dependent quantities,
each having as many lines as there are input light curves (for example, 5 light curves, 5
lines—in the same order). These lines are broken into two sets only to keep page width
conveniently small. The band identifying numbers are only in the first set but ‘belong’
also to the second set, and of course in the same order. DC will certainly crash if either
set has the wrong number of lines.

21 Summary of Program Version Differences

21.1 Differences from Pre-1992 Versions

1. Star spot parameters can now be adjusted.

2. One can now use an optional non-linear limb darkening law (pre-1992 versions had
only the linear cosine law).

3. The reflection effect now can be computed either with the detailed model of Wilson
(1990) or with the approximate reflection model of the old program (which is faster).
Multiple reflection is included in the detailed model.

4. The LC and DC programs are much faster than pre-1992 versions.

5. The specification of phase range in LC was made more convenient than before, with
allowance for phases outside the range 0 to 1.

6. The stars now orbit counter-clockwise in the sky (for i < 90◦), rather than clockwise
as in the old program. This makes a difference in output only for pictures of the
binary (MPAGE=5).

7. Messages about exceeding limiting lobes are now generated if the stars exceed the
lobes at all, instead of only when at least one grid point falls in the hole near the
inner Lagrangian point, as in the old program.

8. Star spots now can optionally move in longitude, keeping pace with the physical
surface of an asynchronously rotating star, rather than being tied to the coordinate
grid.

9. For both stars, LC now provides absolute mass, bolometric luminosity, equivalent
sphere radius, and approximate absolute mean surface gravity.

21.2 Differences Between 1998 and 1992 Versions

1. The output from LC now is determined by setting integer MPAGE to 1, 2, 3, 4, or 5.
Older versions had light and velocity curve output on the same pages, which made
the page format inconveniently wide. The output should now be easier to read. The
input file format now differs for the various values of MPAGE (samples are provided
at the public FTP site).

2. DC solutions can include the Marquardt λ factor.

3. Semi-transparent circumstellar clouds (at fixed locations in the rotating frame) can
be included.

4. Rotational spectral line profiles can be computed (other broadening mechanisms no;
blending yes).
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5. The program now is entirely in double precision.

6. Non-linear limb darkening via a square root law is an added option (1992 version
had only the logarithmic and linear laws).

7. One can now use either time or phase as the independent variable in DC. Previously
only phase could be used. Use of time as the independent variable allows solutions for
the ephemeris parameters t0, P , and dP/dt, as well as the apsidal motion parameter
dω/dt and spot motion and aging parameters. More extensive use of this provision
might well be made, as it complements ephemerides from eclipse timings. Baselines
in time are substantially different for whole curve and eclipse timing ephemerides of
most EB’s, so application of both procedures often enhances perspectives.

8. The stepped independent variable in LC now can be either time or phase. Previously
only phase could be stepped. If time is the stepped variable, phase is computed and
also listed. If phase is the stepped variable, time is computed and also listed.

9. DC now can read the observational input in 1, 2, 3, 4, or 5 data triplets per line,
according the the value of NPPL. The old version read only 5 triplets per line.

10. Input and output formats for some parameters of LC and DC have been expanded
to more digits. Some quantities that are likely to range over many orders of mag-
nitude are now entered and written in D format. See the sample input data sets in
Appendices A (page 60) and B (page 62) for examples.

11. The argument of periastron, ω, now is in radians rather than degrees. The new
parameter dω/dt is in radians per day (since t is Julian Date in days).

12. Spot longitudes, latitudes, and angular radii now are in radians, as are their DEL’s
and corrections. Previously they were in degrees.

13. The DC output format for solution results has been changed and should now be
more convenient.

14. LC now generates coordinates of plane of sky projected images for use with an
external plot program (MPAGE=5).

15. Error estimates written by DC are now standard errors. Previously they were prob-
able errors. Standard errors seem to be more commonly used in the literature than
probable errors.

16. Simulated observational scatter can be applied to the light curves computed by LC.
Similar provisions for radial velocities and line profiles were not included in 1998.

21.3 Differences Between 2003 and 1998 Versions

1. The bandpass-based radiative prescription that is discussed extensively in §15 (on
pages 36–40) replaces the much simpler previous one based on effective wavelength.
The (Kurucz) atmospheres are newer, log g is now an atmosphere parameter (allowing
for handling giants, sub-giants, etc., in addition to main sequence stars), and 19
chemical compositions can be specified.

2. Another significant change concerns MODE=3 operation, where A2, g2, x2, and y2

now are free parameters, not set equal to A1, g1, x1, and y1. Since T2 may differ
considerably from T1 in mode 3, it seems logical to eliminate those constraints.
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3. Input now is via LC and DC files with standard names that are accessed by
OPEN statements (FORTRAN). The 1998 and earlier versions utilized the UNIX
or LINUX command line syntax, e.g. lcjob.exe < algolin.d1 > algolout.d1,
but that syntax does not work in some computing environments. The 2003 version
of LC automatically looks for a file called lcin.active, so the idea is to copy
algolin.d1 (or whatever file) into lcin.active. The DC program looks for a file
called dcin.active. Of course, persons who like the UNIX command line scheme can
just comment out the relevant LC and DC OPEN statements. LC and DC output
goes to files called lcout.active and dcout.active. Those files are usually copied
or renamed to avoid being overwritten in the next LC or DC run.

21.4 Differences Between 2007 and 2003 Versions

1. Light-time and velocity shifts due to 3b’s are now included, with six corresponding
adjustable parameters added to DC.

2. LC and DC now interpolate (locally) in [Teff , log g] for x and y limb darkening
coefficients from the Van Hamme (1993) tables for any of 19 compositions ([M/H]) if
the law-specifying integer (LD1, LD2) is negative (§12.1 on page 27). The programs
adopt the input coefficients if the integer is positive, so fixed limb darkening is still
an option.

3. DC now has 60 parameter channels rather than the previous 35 and has 42 adjustable
parameters rather than the previous 34. Channels 1 to 29 have the same parameter
assignments as before, while the previous channels 30 to 35 are now assigned to 3b
parameters. Channel 41 is assigned to log10 d and channel 42 to designated extinction.
The band-dependent parameters (L1, L2, x1, x2, `3) have been moved from channels
31-35 into channels 56-60. Channels 36 to 40 and 43 to 55 can be assigned to other
parameters, according to needs, via minor changes in the DC main program.

4. DC now can have either light or magnitude input. Magnitudes are converted inter-
nally to light and solutions are always done in light (flux).

5. LC’s radial velocity curves now can have Gaussian scatter with a specified standard
deviation. Formerly only light curves could have scatter.

6. The “Parameter Wrapper” contributed by A. Prša facilitates array re-dimensioning.
Although re-dimensioning has always required changes only in the LC and DC
main programs, the changes had to be done individually for many quantities. The
Parameter Wrapper greatly reduces the number of needed changes and also improves
organization by grouping quantities according to array size.

7. DC now writes phase along with the un-weighted and weighted observational equa-
tions (first column) so as to allow easy graphing of derivatives and residuals vs.
phase.

8. The observational equations of partial derivatives and residuals (both unweighted
and weighted) are now in D format (formerly they were in F format).

9. Some I/O quantities that previously were in F format are now in D format (to allow
for possible very large or small values).

10. LC now has an output column labeled “direct magnitude” that is −2.5 log10 `, where
` = `1 + `2 + `3 from column 5 of LC output. No constant is added to the direct
magnitudes. The purpose is for LC to have the exact analog of DC’s magnitude
input, mainly for making magnitude graphs that compare observed and computed
light curves. LC’s preceding column, labeled “set-level magnitude,” allows a light
curve to be pinned at a specified level at the normalization phase.
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11. DC versions of 2003 and earlier divided the square root of each point weight by 100
so as to make each weight 10,000 times smaller and allow weighted derivatives and
residuals to fit more easily within formatted fields. Those quantities are now written
in D (rather than F) format so the factor of 100 has been removed, thus making all
sums of squares of residuals 10,000 times larger than before. Of course this change
has no effect of parameter corrections or their uncertainties.

21.5 Differences Between 2010 and 2007 Versions

1. LC and DC now (optionally) can operate in absolute physical flux, so as to mea-
sure distances directly and find temperatures of both EB components. See §17.1 on
page 41.

2. Following suggestions from Petr Harmanec and Andrej Prša, many of the physical and
astronomical constants in the LC and DC programs have been updated. Table 5 on
the next page lists the values of various constants as currently coded in the program.

3. DC now can iterate base set and subset solutions within a submission (see §14 on
page 35).

4. DC now can solve for interstellar extinction in a designated photometric band, while
accounting for extinction in all entered bands (see page 31). Whether that facility
gives reliable results in practice for real stars is not yet clear, although it works for
synthetic data.

5. LC now computes a flux-weighted average surface temperature, based on a temper-
ature inferred from spectroscopy or color index made at a specific aspect (i.e. phase
and inclination). That is, LC outputs a converted temperature that can be regarded
as a proper global mean, given an input temperature that pertains to an observer’s
estimate from a particular vantage point (see page 9).

6. DC now can write an input file for LC (see §4.1 on page 4). Naturally that file must
be copied into file lcin.active in order to be recognized by LC.

7. Some quantities and formats of the LC and DC input/output files are changed (see
samples in Appendices A and B on pages 60–63).

21.6 Differences Between 2013 and 2010 Versions

1. The original list of 25 photometric bands introduced in 2003 has now been expanded
to 93 bands (listed in Table 2 on page 38).

2. There is a new starspot algorithm with enhanced precision, with the old simple
model remaining as an option. Spot aging is now in place, governed by times of
onset, maximum size, and disappearance. Spot motion is now decoupled from star
rotation and characterized by drift parameters (see §4.11 on page 11).

3. Time smearing is a light curve option (see §9 on page 17).

4. DC now can compute curve-dependent weights iteratively (i.e. compute new weights
for each parameter iteration). DC does this on a curve by curve basis as specified
by the KSD array (see §4.9 on page 10).

5. DC now writes mean residuals instead of sums of squares of residuals.

6. The observational equations of partial derivatives and residuals (both weighted and
unweighted) are now in E format (formerly they were in D format). The same change
was made in several of LC’s output columns. The reason for this change is that some
plot programs do not recognize D format.
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Table 5. Physical and Astronomical Constants

Name Value Reference

Speed of light (c) 2.99792458× 1010 cm s−1 (1)

Avogadro constant (N0) 6.02214199× 1023 mol−1 (1)

Boltzmann constant (k) 1.3806488× 10−16 erg K−1 (1)

Stefan-Boltzmann constant (σSB) 5.670373× 10−5 erg cm−2 s−1 K−4 (1)

Planck constant (h) 6.62606957× 10−27 erg·s (1)

Thomson cross section (σe) 0.6652458734× 10−24 cm2 (1)
Astronomical Unita 1.49597870700× 1013 cm (2)

Constant of gravitation (G) 6.67428× 10−8 cm3 g−1 s−2 (1)

Heliocentric gravitational constant (GM�) 1.32712442099× 1026 cm3 s−2 (2)

Mass of the Sunb(M�) 1.988435× 1033 g (3)

Radius of the Sunc(R�) 6.9566× 1010 cm (4)

Luminosity (bolometric) of the Sund(L�) 3.846× 1033 erg s−1 (3)

Absolute bolometric magnitude of the Sund +4.75 . . .
Effective temperature of the Sune 5779 K . . .

References – (1) NIST CODATA2010 (Mohr, Taylor, & Newell 2012); (2) the Astronomical
Almanac Online (http://asa.usno.navy.mil/SecK/Constants.html); (3) Harmanec & Prša (2011);
(4) Haberreiter, Schmutz, & Kosovichev (2008)

a Defined, exact value (Resolution B2 of the 2012 IAU General Assembly XXVIII).
b Value proposed by Harmanec & Prša (2011) and obtained from the values of G and GM�.
c Value obtained by Haberreiter, Schmutz, & Kosovichev (2008); adopted by Torres, Andersen,

& Giménez (2010).
d Value proposed by Harmanec & Prša (2011) and consistent with the zero point of the bolometric

luminosity scale (Mbol = 0 corresponding to L = 3.055 × 1028 W) adopted in 1999 by IAU
Commissions 25 (Stellar Photometry and Polarimetry) and 36 (Theory of Stellar Atmospheres).

e Calculated from the adopted values for L�, R� and σSB.

21.7 Differences Between 2015 and 2013 Versions

1. Eclipse timings can be added as DC data input, allowing for unified velocity-light-
eclipse timing solutions in a one-step process (see §10.6 on page 23). Utilization
decisions among the three datatypes can thereby be avoided.

2. Program LC can compute timing residuals (say for plots) with MPAGE=6. See §4.1
and §4.2 of Wilson & Van Hamme (2014) for circular and eccentric orbits, respec-
tively.

3. An algorithm explained in §4.3 of Wilson & Van Hamme (2014) allows automatic
determination of eclipse type (star 1 or star 2 eclipsed).

4. An algorithm explained in §4.4 of Wilson & Van Hamme (2014) allows DC to recover
from an inaccurate starting ephemeris that may place one or more timings on a wrong
orbit cycle.

5. The option for automated curve-dependent weighting for light curves and RV curves
now extends to eclipse timings.

6. DC’s observational equations (output) now optionally begin with four columns that
are useful for making plots. The headers are ‘time,’ ‘phase,’ ‘observed,’ and ‘com-
puted.’ The columns are written if print control integer IFOC=1 and not written if
IFOC=0. Residuals (observed minus computed) were already in the output of earlier
versions (last column) and continue to be.

7. A 94th band (Lunar Ultraviolet Telescope) was added in 2016 as a small update to
the 2015 version of the program.
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22 Summary of Control Integers

22.1 [0,1] Control Integers

Integer 0 1

IPB normal value decouple L from T
IFAT1, IFAT2 blackbody atmospheres
IFSMV1, IFSMV2 spots fixed in longitude spots can move in longitude
IFDER not write derivative matrix write derivative matrix
IFCGS program flux & luminosity units cgs flux & luminosity units
IF3B ignore third body parameters utilize third body parameters
IFLCIN do not write LC input file write LC input file
IFOC do not write extra DC output write extra DC output
IFTIME no input of eclipse timings eclipse timings included in data input
ISYM asymmetrical partial derivatives symmetrical partial derivatives
ICOR1, ICOR2 not apply RV proximity corrections apply RV proximity corrections
KDISK not use disk scratch pad use disk scratch pad
KEEP adjust a given parameter keep parameter fixed
MAGLITE DC input is flux (light) DC input is magnitude
KSPEV no spot aging spots grow and decay
NOMAX spot aging function is trapezoidal spot aging function is triangular

22.2 [0,1,2] and [1,2] Control Integers

Integer 0 1 2

JDPHS n.a. indep. variable is time indep. variable is phase

NOISE no level-dependent weights scatter scales with
√
level scatter scales with level

KO DC does base set only read from scratch pad write on scratch pad
KSD (array) curve weights based on input σ’s curve weights based on com-

puted σ’s
curve weights based on computed
σ’s in restricted phase ranges

MREF n.a. approximate reflection detailed reflection
KSPOT n.a. simple on/off spot algorithm vector fractional area spot algo-

rithm

22.3 [1,2,3] and [1,2,3,4,5,6] Control Integers

Integer 1 2 3 4 5 6

LD1, LD2 linear cosine law log law square root law n.a. n.a. n.a.
MPAGE light curves velocity curves line profiles radii vs. phase images timing residuals

Acknowledgments – Andrej Prša alerted us to several bugs that are now fixed,
and also contributed a block of FORTRAN statements that make re-dimensioning easier
than before, in addition to suggestions for several other improvements, most of which
have been implemented. In particular Andrej, as well as Petr Harmanec, made gen-
eral and specific suggestions about updating of physical and astronomical constants.
Thanks continue to the many persons who helped with suggestions, identification of
bugs, and direct testing of the 2013 and earlier versions, as cited in previous documen-
tation booklets. LC and DC program development was supported by U.S. National
Science Foundation grant 0307561.
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A Sample LC Input File

Below is a sample LC input file with six concatenated input blocks. The first and second
blocks are for are for light curves in the V and B bands, respectively, with phase as
the independent variable for the V curve and time as the independent variable for the
B curve. The third block is for a radial velocity curve with phase as the independent
variable. The fourth block is for computing line profiles. The fifth block is for output of
star figures (relative radii) versus phase. The sixth block is for output of eclipse timing
residuals for listed input timings. Not all possible combinations of input data types are
showwn.

1 1 1 1 1 1 1 0 -3 -2 0 2 1 0 0
2 30979.347628 0.1919411642D+01 0.289188D-10 0.0000 0.01156 1 0.0000D+00 1 138472375.

30979.347628 30980.347628 0.100000 -0.200000 1.000000 0.010000 0.250000 0.7500 1 1.0140
2 0 1 1 30 30 2.608469 0.110053D-03 0.00000 100.00

.21859 0.103034D+02 2.9008 1.5924 -0.0990 89.362 1.000 1.000 0.00 1.0000 1.0000
1.0140 0.8487 1.000 1.000 0.659389D+01 0.636603D+01 0.741712D+00 0.538 0.658 0.174 0.142 2.73240

0.000000D+00 0.3278213D+02 76.00000 0.160038 3.6276558 44655.41483100
7 0.107590D-02 0.465577D-03 -0.029 0.669 0.726 0.285 0.1048D-04 0.0000D+00 8.000 1.0000 0.550000 0.0000 0.36895D+00

300.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
300.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
150.
1 1 1 1 1 1 1 0 -3 -2 0 2 1 0 0
1 30979.347628 0.1919411642D+01 0.289188D-10 0.0000 0.01156 1 0.0000D+00 1 138472375.

30979.347628 30980.347628 0.100000 -0.200000 1.000000 0.010000 0.250000 0.7500 1 1.0140
2 0 1 1 30 30 2.608469 0.110053D-03 0.00000 100.00

.21859 0.103034D+02 2.9008 1.5924 -0.0990 89.362 1.000 1.000 0.00 1.0000 1.0000
1.0140 0.8487 1.000 1.000 0.659389D+01 0.636603D+01 0.741712D+00 0.538 0.658 0.174 0.142 2.73240

0.000000D+00 0.3278213D+02 76.00000 0.160038 3.6276558 44655.41483100
6 0.100962D-02 0.378750D-03 -0.029 0.773 0.841 0.315 0.4973D-05 0.0000D+00 8.000 1.0000 0.440000 0.0000 0.62660D+00

300.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
300.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
150.
2 1 1 1 1 1 1 0 -3 -2 0 2 1 0 0
2 30979.347628 0.1919411642D+01 0.289188D-10 0.0000 0.01156 1 0.0000D+00 0 138472375.

30979.347628 30980.347628 0.100000 -0.200000 1.000000 0.010000 0.250000 0.7500 1 1.0140
2 0 1 1 30 30 2.608469 0.110053D-03 0.00000 100.00

.21859 0.103034D+02 2.9008 1.5924 -0.0990 89.362 1.000 1.000 0.00 1.0000 1.0000
1.0140 0.8487 1.000 1.000 0.659389D+01 0.636603D+01 0.741712D+00 0.538 0.658 0.174 0.142 2.73240

0.000000D+00 0.3278213D+02 76.00000 0.160038 3.6276558 44655.41483100
6 0.103500D-02 0.408948D-03 -0.029 0.773 0.841 0.315 0.0000D+00 0.0000D+00 8.000 1.0000 0.440000 0.0000 0.00000D+00

300.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
300.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
150.
3 1 1 1 1 1 1 0 -3 -2 0 2 1 0 0
2 30979.347628 0.1919411642D+01 0.289188D-10 0.0000 0.01156 1 0.0000D+00 1 138472375.

30979.347628 30980.347628 0.100000 -0.000000 0.300000 0.250000 0.250000 0.7500 1 1.0140
2 0 1 1 30 30 2.608469 0.110053D-03 0.00000 100.00

.21859 0.103034D+02 2.9008 1.5924 -0.0990 89.362 1.000 1.000 0.00 1.0000 1.0000
1.0140 0.8487 1.000 1.000 0.659389D+01 0.636603D+01 0.741712D+00 0.538 0.658 0.174 0.142 2.73240

0.000000D+00 0.3278213D+02 76.00000 0.160038 3.6276558 44655.41483100
6 0.100962D-02 0.378750D-03 -0.029 0.773 0.841 0.315 0.4973D-05 0.0000D+00 8.000 1.0000 0.440000 0.0000 0.62660D+00

0.10000d-03 000.9900 -0005.00 03
00.447148 1.50000d-04 +00.80000 +001
00.446990 1.45000d-04 +00.70000 +002
00.448115 1.40000d-04 +00.50000 -001
-1.
0.10000d-04 001.0000 -0000.00 03
00.447100 1.20000d-05 +00.80000 +000
-1.
300.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
300.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
150.
4 1 1 1 1 1 1 0 -3 -2 0 2 1 0 0
2 30979.347628 0.1919411642D+01 0.289188D-10 0.0000 0.01156 1 0.0000D+00 1 138472375.

30979.347628 30980.347628 0.100000 -0.200000 1.000000 0.010000 0.250000 0.7500 1 1.0140
2 0 1 1 30 30 2.608469 0.110053D-03 0.00000 100.00

.21859 0.103034D+02 2.9008 1.5924 -0.0990 89.362 1.000 1.000 0.00 1.0000 1.0000
1.0140 0.8487 1.000 1.000 0.659389D+01 0.636603D+01 0.741712D+00 0.538 0.658 0.174 0.142 2.73240

0.000000D+00 0.3278213D+02 76.00000 0.160038 3.6276558 44655.41483100
6 0.100962D-02 0.378750D-03 -0.029 0.773 0.841 0.315 0.4973D-05 0.0000D+00 8.000 1.0000 0.440000 0.0000 0.62660D+00

300.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
300.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
150.
6 1 1 1 1 1 1 0 -3 -2 0 2 1 0 0
1 30979.347628 0.1919411642D+01 0.289188D-10 0.0000 0.01156 1 0.0000D+00 0 138472375.

30979.347628 30980.347628 0.100000 -0.200000 1.000000 0.010000 0.250000 0.7500 1 1.0140
2 0 1 1 30 30 2.608469 0.110053D-03 0.00000 100.00

.21859 0.103034D+02 2.9008 1.5924 -0.0990 89.362 1.000 1.000 0.00 1.0000 1.0000
1.0140 0.8487 1.000 1.000 0.659389D+01 0.636603D+01 0.741712D+00 0.538 0.658 0.174 0.142 2.73240

0.000000D+00 0.3278213D+02 76.00000 0.160038 3.6276558 44655.41483100
0 1.000000D+00 0.234250D-01 0.000 0.000 0.000 0.000 0.0000D+00 0.0000D+00 8.000 1.0000 0.000000 0.0000 0.00000D+00

300.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
300.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
150.

13552.17300 2
14702.66100 1
14799.78600 2

...
37175.34300 1
37525.37600 2
41829.90030 1

-10000.
9
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MPAGE,NREF,MREF,IFSMV1,IFSMV2,ICOR1,ICOR2,IF3B,LD1,LD2,KSPEV,KSPOT,NOMAX,IFCGS,KTSTEP
8(I1,1X),2(I2,1X),4(I1,1X),I6
JDPHS,HJD0,PZERO,DPDT,PSHIFT,DELPH,NGA,STDEV,NOISE,SEED
I1,F15.6,D17.10,D14.6,F10.4,F8.5,I3,D11.4,I2,F11.0
HJDST,HJDSP,HJDIN,PHSTRT,PHSTOP,PHIN,PHN,PHOBS,LSP,TOBS
F14.6,F15.6,F13.6,4F12.6,F10.4,I2,F8.4
MODE,IPB,IFAT1,IFAT2,N1,N2,PERR0,DPERDT,THE,VUNIT
4I2,2I4,F13.6,D14.6,F8.5,F8.2
E,A,F1,F2,VGA,XINCL,GR1,GR2,ABUNIN,Fspot1,Fspot2
F6.5,D13.6,2F10.4,F10.4,F9.3,2F7.3,F7.2,2F10.4
TAVH,TAVC,ALB1,ALB2,POTH,POTC,RM,XBOL1,XBOL2,YBOL1,YBOL2,DPCLOG
F7.4,1X,F7.4,2F7.3,3D13.6,4F7.3,F8.5)
A3B,P3B,XINC3B,E3B,PERR3B,TC3B −→ values have no effect when IF3B=0
D12.6,D14.7,F11.5,F9.6,F10.7,F17.8
IBAND,HL,CL,XH,XC,YH,YC,EL3,OPSF,ZERO,FACTOR,WL,AEXTINC,CALIB
I3,2D15.7,4F7.3,D12.4,D11.4,F8.3,F8.4,F10.6,F8.4,d12.5
BINWM1,SC1,SL1,NF1 −→ star 1 line profile parameters, for MPAGE=3 only
D11.5,F9.4,F9.2,I3
WLL1,EWID1,DEPTH1,KKS −→ star 1 line profile parameters, for MPAGE=3 only
F9.6,D12.5,F10.5,I5
BINWM2,SC2,SL2,NF2 −→ star 2 line profile parameters, for MPAGE=3 only
D11.5,F9.4,F9.2,I3
WLL2,EWID2,DEPTH2,KKS −→ star 2 line profile parameters, for MPAGE=3 only
F9.6,D12.5,F10.5,I5
XLAT,XLONG,RADSP,TEMSP,TSTART,TMAX1,TMAX2,TFINAL −→ spot parameters
4F9.5,4F14.5
XCL,YCL,ZCL,RCL,OP1,FCL,EDENS,XMUE,ENCL −→ cloud parameters
3F9.4,F7.4,D11.4,F9.4,D11.3,F9.4,F7.3
HJDT,MNTYPE −→ observed or synthetic eclipse timings, for MPAGE=6 and KTSTEP=0 only
F14.5,I6
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B Sample DC Input File

The sample input file below has most observations removed and is shown for format
only. There are two radial velocity curves, four light curves (in V , B, V , B), and a set
of eclipse timings.

+0.2d-1 +0.2d-1 +1.0d-3 +0.2d-1 +0.2d-1 +1.0d-3 +0.1d-3 +0.2d-1
+5.0d-2 +1.0d-3 +1.0d-2 +1.0d-2 +1.0d-2 +2.0d-3 +2.0d-1 +1.0d-2 +1.0d-3 +2.0d-2 +2.0d-2
+5.0d-2 +5.0d-2 +2.0d-2 +2.0d-2 +0.3d-2 +1.0d-2 +1.0d-2 +1.0d-2 +1.0d-2
1111 1111 1111110 11111 11000 10111 11111 11111 11111 11111 11111 01110 08 1.000d-05 1.000
2 1 2 2

1 1 04 1 2 0 0 3 1 1 0
1 1 1 1 1 1 0 -3 -2 0 2 1 0 1 0 0.0000
1 30979.347460 0.1919411773D+01 0.183488D-10 0.0000 0.01156 1
2 0 1 1 20 20 10 10 2.587092 0.11091D-03 0.00000 100.000

.21854 0.102911D+02 2.9008 1.5924 -0.1003 89.228 1.000 1.000 0.00 1.0000 1.0000
1.0140 0.8567 1.000 1.000 0.659287D+01 0.633099D+01 0.739553d+00 0.538 0.658 0.174 0.142 2.73240

0.000000D+00 0.3278213D+02 76.00000 0.160038 3.6276558 44655.41483100
6 0.103500D-02 0.204825D+01 -0.029 0.773 0.841 0.315 0.000D+00 0.58000D-01 0.10000 0.40000 0.55000 0.95000 0.440000 1
6 0.103500D-02 0.204825D+01 -0.029 0.773 0.841 0.315 0.000D+00 0.48500D-01 0.10000 0.40000 0.55000 0.95000 0.440000 1
7 0.103018D-02 0.204825D+01 -0.029 0.669 0.726 0.285 0.1421D-04 0.000D+00 1 0.68500D-06 0.12000 0.44000 0.55000 0.95000 1
6 0.963158D-03 0.204825D+01 -0.029 0.773 0.841 0.315 0.8481D-05 0.000D+00 1 0.51500D-06 0.12000 0.44000 0.55000 0.95000 1
7 0.101564D-02 0.204825D+01 -0.029 0.669 0.726 0.285 0.1452D-04 0.000D+00 1 0.78400D-06 0.12000 0.38000 0.55000 0.90000 1
6 0.948209D-03 0.204825D+01 -0.029 0.773 0.841 0.315 0.7946D-05 0.000D+00 1 0.85000D-06 0.12000 0.38000 0.55000 0.90000 1

0.82000D-02 1
0.550000 0.0000 0.1000D+01 0.36895D+00
0.440000 0.0000 0.1000D+01 0.62660D+00
0.550000 0.0000 0.1000D+01 0.36895D+00
0.440000 0.0000 0.1000D+01 0.62660D+00

300.00000
300.00000
150.

45273.57800 -0.978000 1.000 47778.62490 -1.401000 1.000 49486.93560 -1.323000 1.000
47778.66940 -1.349000 1.000 47651.99100 -1.387000 1.000 45868.88710 -1.372000 1.000
49488.97420 -1.063000 1.000 47780.71630 -1.015000 1.000 45575.64880 0.620000 1.000
49485.95110 0.801000 1.000 47777.71750 0.747000 1.000 46249.87520 0.595000 1.000

-10003.00000 0.000000 0.000 0.00000 0.000000 0.000 0.00000 0.000000 0.000
45273.57800 1.127000 1.000 47778.62490 1.611000 1.000 49486.93560 1.524000 1.000
47778.66940 1.607000 1.000 47651.99100 1.559000 1.000 45868.88710 1.640000 1.000
49488.97420 1.257000 1.000 47780.71630 1.189000 1.000 45575.64880 -1.191000 1.000
49485.95110 -1.219000 1.000 47777.71750 -1.133000 1.000 46249.87520 -1.147000 1.000

-10003.00000 0.000000 0.000 0.00000 0.000000 0.000 0.00000 0.000000 0.000
47378.67510 9.716000 1.000 47378.68835 9.708000 1.000 47378.69434 9.708000 1.000
47378.69930 9.710000 1.000 47378.70311 9.711000 1.000 47378.70693 9.700000 1.000
...
48070.88290 9.694000 1.000 48070.88546 9.691000 1.000 48070.88809 9.700000 1.000
48070.89065 9.688000 1.000 0.00000 0.000000 0.000 0.00000 0.000000 0.000

-10001.00000 0.000000 0.000 0.00000 0.000000 0.000 0.00000 0.000000 0.000
47378.67552 9.868000 1.000 47378.68877 9.869000 1.000 47378.69474 9.869000 1.000
47378.69971 9.873000 1.000 47378.70352 9.866000 1.000 47378.70735 9.858000 1.000
...
48070.88330 9.855000 1.000 48070.88584 9.858000 1.000 48070.88849 9.848000 1.000
48070.89104 9.856000 1.000 0.00000 0.000000 0.000 0.00000 0.000000 0.000

-10001.00000 0.000000 0.000 0.00000 0.000000 0.000 0.00000 0.000000 0.000
37548.22870 9.698000 1.000 37548.22980 9.698000 1.000 37548.23570 9.715000 1.000
37548.23670 9.713000 1.000 37548.24000 9.716000 1.000 37548.24090 9.718000 1.000
...
38297.37710 9.711000 1.000 38297.38950 9.710000 1.000 38297.39110 9.721000 1.000
38297.39570 9.712000 1.000 38297.39760 9.721000 1.000 0.00000 0.000000 0.000

-10002.00000 0.000000 0.000 0.00000 0.000000 0.000 0.00000 0.000000 0.000
37548.22870 9.865000 1.000 37548.22980 9.869000 1.000 37548.23570 9.890000 1.000
37548.23670 9.879000 1.000 37548.24000 9.874000 1.000 37548.24090 9.878000 1.000
...
38297.37450 9.882000 1.000 38297.37710 9.892000 1.000 38297.38950 9.883000 1.000
38297.39110 9.891000 1.000 38297.39570 9.887000 1.000 38297.39760 9.882000 1.000

-10003.00000 0.000000 0.000 0.00000 0.000000 0.000 0.00000 0.000000 0.000
13552.17300 2 0.50107 14702.66100 1 0.50107 14799.78600 2 0.50107
15758.33900 1 1.00000 15797.86800 2 1.00000 16641.27800 1 1.00000
...
51963.34900 2 9.92250 52678.25600 1 9.92250 52829.88200 1 9.92250
53121.63340 1 248.06250 53123.55210 1 3969.00000 53124.60060 2 3969.00000
51342.36700 1 1.58760 37175.34300 1 5.87130 37525.37600 2 1.96000
41829.90030 1 992.25000 0. 0 0. 0. 0 0.

-10001.
1111 1111 1111110 11111 11001 10111 11111 11111 11111 11111 11111 01110 08 1.000d-05 1.000
2
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(DEL(I),I=1,8)
11(1X,D7.1)
(DEL(I),I=9,14),(DEL(I),I=16,20)
11(1X,D7.1)
(DEL(I),I=21,25),(DEL(I),I=56,59)
11(1X,D7.1)
(KEP(I),I=1,60),NITERS,XLAMDA,VLR
1X,2(4I1,1X),7I1,1X,9(5I1,1X),I2,D10.3,F6.3
KSPA,NSPA,KSPB,NSPB
4I3
IFVC1,IFVC2,NLC,IFTIME,KO,KDISK,ISYM,NPPL,IFDER,IFLCIN,IFOC
I1,1X,I1,1X,9I2
NREF,MREF,IFSMV1,IFSMV2,ICOR1,ICOR2,IF3B,LD1,LD2,KSPEV,KSPOT,NOMAX,IFCGS,MAGLITE,LINKEXT,DESEXTINC
7(I1,1X),2(I2,1X),6(I1,1X),F7.4
JDPHS,HJD0,PZERO,DPDT,PSHIFT,DELPH,NGA
I1,F15.6,D17.10,D14.6,F10.4,F8.5,I3
MODE,IPB,IFAT1,IFAT2,N1,N2,N1L,N2L,PERR0,DPERDT,THE,VUNIT
4I2,4I4,F13.6,D13.5,F8.5,F9.3
E,A,F1,F2,VGA,XINCL,GR1,GR2,ABUNIN,Fspot1,Fspot2
F6.5,D13.6,2F10.4,F10.4,F9.3,2F7.3,F7.2,2F10.4
TAVH,TAVC,ALB1,ALB2,PHSV,PCSV,RM,XBOL1,XBOL2,YBOL1,YBOL2,DPCLOG
F7.4,F8.4,2F7.3,3D13.6,4F7.3,F9.5
A3B,P3B,XINC3B,E3B,PERR3B,TC3B
D12.6,D14.7,F11.5,F9.6,F10.7,F17.8
IBAND,HLA,CLA,X1A,X2A,Y1A,Y2A,OPSFA,SIGMA,SPHAS1,SPHAS2,SPHAS3,SPHAS4,WLA,KSD
I3,2D15.7,4F7.3,D10.3,D12.5,4F8.5,F10.6,I2
IBAND,HLA,CLA,X1A,X2A,Y1A,Y2A,EL3A,OPSFA,NOISE,SIGMA,SPHAS1,SPHAS2,SPHAS3,SPHAS4,KSD
I3,2D15.7,4F7.3,D12.4,D10.3,I2,D12.5,4F8.5,I2
SIGMA,KSD
86X,D11.5,32X,I2
WLA,AEXTINC,XUNIT,CALIB
F9.6,F8.4,D11.4,D12.5
XLAT,XLONG,RADSP,TEMSP,TSTART,TMAX1,TMAX2,TFINAL
4F9.5,4F14.5
XCL,YCL,ZCL,RCL,OP1,FCL,EDENS,XMUE,ENCL
3F9.4,F7.4,D11.4,F9.4,D11.3,F9.4,F7.3
(PHJD(in),FLUX(in),WT(in),in=ifirst,last)
5(F14.5,F11.6,F8.3)
(PHJD(in),MNTYPE(in),WT(in),in=ifirst,last)
5(F14.5,I6,F13.3)
(KEP(I),I=1,60),NITERS,XLAMDA,VLR
1X,2(4I1,1X),7I1,1X,9(5I1,1X),I2,D10.3,F6.3





Subject Index

Absolute dimensions
as light curve requirement, 11–12

Apsidal motion rate, 1, 19, 51
Arcsine, arccosine

problems with, 2
Arrays

minimum dimensions, 47
table of, 48

Asynchronous rotation, 1
and spot motion, 26

Bandpasses
list of, 38

Binaries
Algol-type, 12, 14
detached, 13
double contact, 14
overcontact, 13

and grid fineness, 49
semi-detached, 14
W UMa-type, 13
X-ray, 13

Circumstellar clouds, 1, 15–16
parameters for, 15, 18

Constants
coded in LC and DC, 54

Control integers
description of, 25–31
summary of, 55

Convergence
reasons for poor, 31–32

Derivatives
increments for, 9, 28, 47
symmetrical, 30

Double precision, 1, 51

Eccentric orbit, 1
and run time, 46

Eclipse
timings, 4, 5, 22, 23, 41, 51, 54
types, 23

Eclipse effects, 1

in radial velocity output, 3
turning on or off, 27

Ephemeris
parameters, 1, 21, 51
unified solutions, 23, 54

Extinction
adjustment of, 42
in designated band, 42

Flux
in absolute units, 41, 44

and direct distance estimation
(DDE), 2, 42

and inverse distance estimation
(IDE), 2, 42

and one or two-temperature so-
lutions, 42

and temperature–distance–
extinction theorems, 42

Grid
coarse or fine, 40
fineness

control integers, 46
for overcontact binaries, 49

size, 26, 30

Increments for numerical derivatives, 9,
28, 47

Independent variable
time or phase, 1, 25

Input
for DC, 45

sample, 62
for LC, 43–45

sample, 60
from scratch pad, 30
number of data triplets, 30

Light
vs. luminosity, 5, 14–15, 21
attenuation of, 15
from third star, 3
magnitude zero point, 28
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normalized, 3, 4
phase of normalization, 9, 27
scaling factor, 28

program unit, 3, 4, 21
Limb darkening

bandpass-specific coefficients, 18,
22, 36

bolometric coefficients, 18, 22
linear, 19
logarithmic, 1, 19
selection of law, 27
square root, 1, 18, 19

Lobe filling, 12
and eccentric orbits, 14
and non-synchronous rotation, 14

Luminosity
vs. light, 5, 14–15, 21, 49
as scaling factor, 5
bandpass-specific, 21
computed from temperatures, 26
unit of, 21

Marquardt λ, 1, 29, 33–34
Model

concepts, 1
mathematics, 1
organization, 1
theory, 1

Modes
and non-adjustable parameters, 49
and solution constraints, 12–14, 26

Multiple subsets, 32–33

Orbit
argument of periastron, 19
eccentricity, 19
inclination, 20
period, 21
period time derivative, 21
semi-major axis, 3, 19
third body

eccentricity, 21
inclination, 21
period, 21
semi-major axis, 21

Output
excessive, 3
extra for plotting purposes, 29
print control, 28
produced by LC, 3–4
selection of, 28
star images, 4
to scratch pad, 30

Parameters
apsidal motion rate, 19

argument of periastron, 19
axial rotation rate, 19
bandpass-specific limb darkening,

18, 22
bandpass-specific luminosity, 21
bolometric albedo, 20
bolometric gravity brightening, 20
bolometric limb darkening, 18
center-of-mass radial velocity, 20
channels in DC, 24–25
cloud attenuation law exponent, 18
cloud coordinates, 18
cloud electron density, 18
cloud molecular weight, 18
cloud radius, 18
curve wavelength, 18
curve-dependent, 17
description of, 17–22
distance, 42, 43
eccentricity, 19
eclipse semi-duration, 17
ephemeris zero point, 21
for atmosphere to blackbody ramp-

ing, 40
increments for numerical deriva-

tives, 9, 28, 47
initial guesses, 47
list of, 24–25
mass ratio, 21
mean effective temperature, 20
orbit inclination, 20
orbit period, 21
orbit period time derivative, 21
phase shift, 20
potential, 20
selection of adjusted, 28
semi-major axis, 19
third body

eccentricity, 21
orbit inclination, 21
orbit period, 21
semi-major axis, 21

third light, 22
Potentials

allowed ranges for, 48
critical, 49

Problems
arcsine, arccosine, 2
convergence, 31–34
input format shifted, 2
machine-dependent, 2

Program
DC main, 1
LC main, 1
compiling of, 2
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control & quantity names, 5–8
interactive branching in DC, 35–36
operation modes, 12–14
radiative treatment, 36–40
revisions, 1–2, 49
run time, 46

and eccentric orbits, 46
and grid fineness in DC, 46
and grid fineness in LC, 46
and reflection, 46
and star size, 46
for detailed reflection and eccen-

tric orbits, 49
running of, 2
tinkering with, 2
versions, 1–2, 49

differences between, 50–51
Programming ideas, 1
Proximity effects, 1

in radial velocity output, 3
turning on or off, 27

Radial velocity
dimensionless, 3
unit of, 26

Radiative model, 1, 36–40
abundance, 36
atmosphere temperature limits, 37
atmosphere to blackbody transi-

tion, 40
stellar atmosphere or blackbody

control integers for, 26
Reflection

and run time, 46
detailed, 1
simple or detailed, 26

Solution
and absolute dimensions, 11–12
constraints, 1, 12–14
ephemeris, 23, 54
modes, 12–14, 26

and non-adjustable parameters,
49

number of curves, 41
simultaneous light–velocity, 1, 41

misgivings about, 41
simultaneous light–velocity–eclipse

timings, 23, 41
simultaneous multi-bandpass, 41

Spectral lines
profiles, 1

output for, 3
parameters for, 16–17

reference wavelength, 3

Spots
adjusting multiple, 29
and asynchronous rotation, 26
and star images, 4
growth and decay, 11
high-precision algorithm, 2, 11
motion, 1, 2, 11, 26
parameters, 1

adjusting of, 17, 29
angular radius, 11, 19
latitude, 19
longitude, 19
temperature factor, 19

simple algorithm, 1, 11
Standard deviations

for curve-dependent weights, 10
Standard errors

discussion of, 34–35
when using multiple subsets, 33

Star
fast-rotating, 1
images, 1

and spots, 4
output for, 4

number, 3
radii, 4
separation, 3

Subroutines for LC and DC, 2
Synthetic noise, 40

seed for, 41

Temperature
1T or 2T solutions, 42, 43
and distance/extinction, 42
mean vs. observed, 8

Third body
light-time, 2
radial velocity shift, 2

Third light, 3, 5, 14, 22, 49
Time and Phase Smearing, 17

User feedback, 2

Vector length reduction, 34

Weights
curve-dependent, 9, 10, 31, 42, 45

in absolute solutions, 42
intrinsic, 9, 45
level-dependent, 9, 10, 30, 45





Index of FORTRAN Names

A3B, 21
ABUNIN, 36
AEXTINC, 21
ALB1, ALB2, 20
A, 19
BINWM1, BINWM2, 16
CALIB, 27
DELPH, 17, 27
DEL, 9, 28, 45, 47

for spot parameters, 51
DEPTH1, DEPTH2, 16–17
DESEXTINC, 31
DPCLOG, 21, 42
DPDT, 21
DPERDT, 19
E3B, 21
EDENS, 18
EL3A, 22
ENCL, 18
EWID1, EWID2, 16
E, 19
F1, F2, 19
FACTOR, 3, 9, 27, 28
Fspot1, Fspot2, 11, 26
GLOWTOL, GHIGHTOL, 40
GR1, GR2, 20
HJD0, 21
HJDST, HJDSP, HJDIN, 27
HLA, CLA, 21
IBAND, 27, 36
ICOR1, ICOR2, 27
IF3B, 27
IFAT1, IFAT2, 26
IFCGS, 2, 12, 27, 42, 49
IFDER, 28
IFLCIN, 11, 28
IFOC, 29, 54
IFSMV1, IFSMV2, 26
IFTIME, 29
IFVC1, IFVC2, 29, 41, 45
IPB, 13, 26
ISYM, 30, 46, 47

for large DEL’s, 30
JDPHS, 21, 25

KDISK, 30
KEP, KEEP, 28, 35, 45
KKS, 16
KO, 30, 35
KSD, 31, 53
KSPA, NSPA, KSPB, NSPB, 29, 45, 49
KSPEV, 27
KSPOT, 11, 27
KTSTEP, 4, 28
LD1, LD2, 18, 19, 22, 27, 49, 52
LINKEXT, 21, 31
LSP, 9
MAGLITE, 2, 30
MODE, 26
MPAGE, 3–4, 28, 43, 50, 51
MREF, 26, 46, 49
MZERO, 3, 9
N1, N2, 26, 30, 40, 47
N1L, N2L, 30, 40, 47
NF1, NF2, 16
NGA, 17, 27
NITERS, 29, 33, 45
NLC, 10, 29, 41, 45
NOISE, 9, 30, 41, 46
NOMAX, 27
NPPL, 30, 45, 51
NREF, 26, 46
P3B, 21
PERR0, 19
PERR3B, 21
PHIN, 26, 28
PHN, 3, 27, 41
PHSTRT, PHSTOP, 25, 27
PHSV, PCSV, 20
PSHIFT, 3, 20
PZERO, 21
RADSP, 19
RCL, 18
RM, 21
SC1, SC2, 16
SEED, 41
SIGMA, 9–10, 31, 46
SL1, SL2, 16
SPHAS1, . . . , SPHAS4, 10, 31
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STDEV, 40
TAVH, TAVC, 20
TC3B, 21
TEMSP, 19
THE, 13, 17
TLOWTOL, THIGHTOL, 40
TOBS, 9
Tavesp, 9
VGA, 20
VLR, 29, 34, 45
VUNIT, 3, 20, 26
WLA, 18
WLL1, WLL2, 16
X1A, X2A, 22
XBOL1, XBOL2, 18
XCL, YCL, ZCL, 18
XINC3B, 21
XINCL, 20
XLAMDA, 29, 45
XLAT, 19
XLONG, 19
XMUE, 18
XUNIT, 31
Y1A, Y2A, 18
YBOL1, YBOL2, 18
ZERO, 27, 28


