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Abstract In this paper, we develop a multiscale local discontinuous Galerkin (LDG)
method to simulate the one-dimensional stationary Schrödinger-Poisson problem. The sta-
tionary Schrödinger equation is discretized by the WKB local discontinuous Galerkin
(WKB-LDG) method, and the Poisson potential equation is discretized by the minimal dissi-
pation LDG (MD-LDG) method. The WKB-LDG method we propose provides a significant
reduction of both the computational cost and memory in solving the Schrödinger equation.
Compared with traditional continuous finite element Galerkin methodology, the WKB-LDG
method has the advantages of the DG methods including their flexibility in h-p adaptivity
and allowance of complete discontinuity at element interfaces. Although not addressed in
this paper, a major advantage of the WKB-LDG method is its feasibility for two-dimensional
devices.

Keywords Local discontinuous Galerkin method · WKB-LDG method · Schrödinger
equation · Resonant tunneling diode

1 Introduction

In recent studies of nanoscale semiconductor structures, quantum effects arise and have to
be taken into account in the modeling by means of the Schrödinger equation. There are com-
putational difficulties in solving the Schrödinger equations. On the one hand, the oscillatory
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behavior of the solutions requires a refined spacial grid. On the other hand, a large number
of Schrödinger equations need to be solved in order to simulate an electronic device. For
example, in the resonant tunneling diode (RTD) [4, 5, 16], only the electrons having an en-
ergy extremely close to the resonant energy are transmitted from the source to the drain. To
collect the resonances, there are thousands of Schrödinger equations to solve.

In [4], Ben Abdallah and Pinaud proposed a WKB approach using traditional continu-
ous finite element method for a one dimensional model. They obtained an explicit formula
for the phase factor of wave functions from WKB asymptotics [6] and then used this phase
factor to interpolate the nodal values of the wave function. Therefore, a much coarser grid
is allowed compared with the method based on polynomials. A convergence analysis for
this method is presented in [14]. In [3], this method is generalized to a special two dimen-
sional device in which the two dimensional Schrödinger equation is approximated by a one
dimensional non-diagonal Schrödinger system [17] for which a WKB type approach can be
derived (see [15]). One limitation of the method in these works is, however, that it is dif-
ficult to be generalized to general two-dimensional devices for which the two dimensional
Schrödinger equation cannot be easily converted to one dimensional systems and must be
solved in two dimensional elements, as it is very difficult to have continuity at the element
interface with such multiscale basis functions in two dimensions.

Compared with traditional continuous finite element Galerkin methodology, the advan-
tage of the discontinuous Galerkin (DG) and the local DG (LDG) methods includes their
flexibility in h-p adaptivity and their allowance of complete discontinuity at element in-
terfaces. Stable and convergent LDG methods have been designed for elliptic equations in
[1, 9]. A multiscale DG method based on non-polynomial approximation spaces has been
developed in [18, 19]. We also refer the reader to [10] for a review of the DG methods. It is
computationally advantageous to combine the WKB approach with the LDG method, which
is the main purpose of this paper: we present a WKB-LDG method to solve the Schrödinger
equation, which is in essence an LDG method based on exponential basis functions in the
spirit of [18]. The method maintains the advantages of the general DG/LDG methods and
saves in computational cost as well as memory when compared with the regular polynomial-
based LDG methods. To conveniently compare our results to those obtained with the tradi-
tional continuous finite element WKB method, we take mostly the same examples as in [4].
The results in this paper are only one-dimensional, however it is feasible to extend the WKB-
LDG method to two-dimensional devices, because there is no continuity requirement for the
solution across element interfaces. The extension to two-dimensional devices does involve
the non-trivial task of constructing suitable multiscale basis functions, which involves an ac-
curate estimate of the local oscillation direction and is left for future work. We remark that,
in recent years, there have been many contributions in developing DG methods for solving
PDEs in semi-conductor device simulations, such as those in [7, 8, 12, 13]. Compared with
these earlier works, our work is the first time of using the DG method to solve the RTD
model with Schrödinger equation and also the first time to apply exponential approximation
spaces in the DG method for solving the Schrödinger equation.

1.1 The Schrödinger-Poisson Problem

The RTD model (see [4]) extends on the interval [a, b] with a < a1 < a2 < a3 < b3 < b2 <

b1 < b along the growth direction x. Its conduction band profile consists of two barriers of
height v1 located at [a2, a3] and [b3, b2]. A bias energy �v is applied between the source
(x < a1) and the collector (x > b1) regions. The regions [a, a1] and [b1, b] are highly doped
with doping density n1

d , and [a1, a2] and [b2, b1] are doped with n2
d . The transport is assumed
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to be ballistic and one-dimensional. The wave function of the electrons injected at x = a

with momentum p ≥ 0 satisfies a stationary effective-mass Schrödinger equation with open
boundary conditions [2]:{

− �
2

2m
ϕ′′

p − qV ϕp = Ea
pϕp, (p ≥ 0),

�ϕ′
p(a) + ipϕp(a) = 2ip; �ϕ′

p(b) = ipbϕp(b),
(1.1)

where � is the reduced Plank constant, m is the effective mass (assumed to be constant in
the device), q is the elementary positive charge of the electron, V is the total electrostatic
potential in the device and

pb =
√

p2 + 2qm(Vb − Va), Ea
p = p2

2m
− qVa

with Va and Vb being the given constant electrostatic potential at the source contact a and at
the drain contact b respectively.

Similarly, the wave function of electrons injected at x = b with momentum p ≤ 0 satis-
fies the equation: {

− �
2

2m
ϕ′′

p − qV ϕp = Eb
pϕp, (p ≤ 0),

�ϕ′
p(b) + ipϕp(b) = 2ip; −�ϕ′

p(a) = ipaϕp(a),
(1.2)

where

pa =
√

p2 + 2qm(Va − Vb), Eb
p = p2

2m
− qVb.

The transmission coefficients are defined by

T (p) =
√

(p2 + 2qm(Vb − Va))+

|p| |ϕp(b)|2 for p ≥ 0, (1.3)

T (p) =
√

(p2 + 2qm(Vb − Va))+

|p| |ϕp(a)|2 for p < 0, (1.4)

where (a)+ = max(a,0).

The electrons are assumed to be in a mixed state so that the electronic density is given by

n(x) =
∫ ∞

−∞
g(p)|ϕp(x)|2dp, (1.5)

where g(p) := ga(p) for p ≥ 0 and g(p) := gb(p) for p < 0. ga and gb are the statistics of
the electrons injected at x = a and x = b respectively. In our case, g(p) is a Fermi-Dirac
integral given by

g(p) = mkbT

2π2�3
log

(
1 + exp

((
− p2

2m
+ EF

)
/kbT

))
, (1.6)

where kb is the Boltzmann constant and EF is the Fermi energy defined implicitly by the
neutrality condition for the doping density in the source and drain regions (see [5]):

n1
d =

∫ ∞

−∞
g(p)dp. (1.7)
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The current density is given by

J = q

m

∫ ∞

−∞
g(p)pT (p)dp. (1.8)

The electrostatic potential V = Ve +Vs . Ve is the external potential including double bar-
riers and applied bias and Vs is the self-consistent potential modeling the electron-electron
interaction {

V ′′
s (x) = q

ε
(n(x) − nD(x)),

Vs(a) = Vs(b) = 0,
(1.9)

where ε is the dielectric constant and nD is the doping density.
Since the equations (1.1), (1.2), (1.5) and (1.9) are coupled together, the Gummel

method [11] is used to accelerate the iterating speed (see [16]). We solve

d2V new
s

dx2
= q

ε

[
n(V old

s ) exp
(
(V new

s − V old
s )/Vref

) − nD

]
(1.10)

instead of (1.9), where the potential reference Vref is adjusted to decrease the number of
iterations. The linear version of the Gummel method is given by

d2V new
s

dx2
= q

ε

[
n(V old

s )

(
1 + (V new

s − V old
s )

Vref

)
− nD

]
. (1.11)

When no bias is applied, the Gummel method converges with zero as an initial guess for the
self-consistent potential. When the bias is not zero, the potential obtained from the no-bias
case is used to initialize the algorithm.

1.2 The WKB Approach

In [4], the authors have presented a WKB scheme using the continuous finite element
method. The motivation of their basis construction comes from the WKB asymptotics [6],
i.e. for E + qV (x) > 0 (where E is the given energy in the Schrödinger equation, i.e. Ea

p

in (1.1) or Eb
p in (1.2)) and when � → 0,

ϕ(x) ∼ A
4
√

2m(E + qV (x))
eiS(x) + B

4
√

2m(E + qV (x))
e−iS(x), (1.12)

where A and B are constants, S(x) is the dimensionless action,

S(x) =
√

2m

�

∫ x

x0

√
E + qV (s)ds (1.13)

and x0 is an integration constant. Therefore, their WKB-interpolated function in the contin-
uous finite element case for the cell Ij is given by

ϕ̃(x) = Aj

4
√

2m(E + qV (x))
eiS(x) + Bj

4
√

2m(E + qV (x))
e−iS(x), x ∈ Ij . (1.14)

The constants Aj and Bj are determined by the nodal values at the cell boundaries.
We will introduce a similar idea but based on the LDG methodology, which is called the

WKB-LDG method in next section.
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2 Numerical Methods

In this section, we are going to first introduce the regular LDG solver for the Schrödinger
equations and the minimal dissipation LDG (MD-LDG) solver [9] for the Poisson potential
equation (1.9). Then we define the WKB-LDG method for (1.1) and (1.2). For more details
of the LDG methods for elliptic equations, including stability analysis and error estimates,
we refer to [1].

2.1 Traditional LDG Methods for the Schrödinger Equations

For simplicity, we first write the stationary Schrödinger equation (1.1) as follows{−ϕ′′
p − a(x)ϕp = 0, (p ≥ 0),

�ϕ′
p(a) + ipϕp(a) = 2ip; �ϕ′

p(b) = ipbϕp(b),
(2.1)

where

a(x) = 2m

�2
(qV + Ea

p).

Since the equation is linear for given V , we can first solve for ϕ̃p on a boundary condition
ϕ̃p(a) = 1 and ϕ̃′

p(b) = ipb

�
ϕ̃p(b) and then normalize ϕ̃p by 2ip/[�ϕ̃′

p(a) + ipϕ̃p(a)] to
recover ϕp (see [16]).

Therefore, we apply the LDG method on the PDE{−u′′ − a(x)u = 0,

u(a) = 1; u′(b) = cbu(b),
(2.2)

where cb = ipb/� is a constant for fixed p. Notice that we have used u to denote ϕ̃p .
In order to define the LDG method, we rewrite the PDE (2.2) into a system of first order

equations

q − ux = 0, −qx − a(x)u = 0. (2.3)

Let Ij = (xj− 1
2
, xj+ 1

2
), j = 1, . . . ,N, be a partition of the computational domain, xj =

1
2 (xj− 1

2
+ xj+ 1

2
), �xj = xj+ 1

2
− xj− 1

2
and h = maxj �xj . The polynomial-based DG space

is

V k
h = {vh : (vh)|Ij ∈ P k(Ij ), j = 1, . . . ,N} (2.4)

where P k(Ij ) denotes the set of all polynomials of degree at most k in the interval Ij .
Note that in V k

h , the functions are allowed to have jumps at the interfaces xj+ 1
2
. This is

one of the main differences between the DG method and most other finite element methods.
Moreover, both the mesh sizes �xj and the degree of polynomials k can be changed from
element to element freely, thus allowing the h-p adaptivity.

For a function vh ∈ V k
h , since it is discontinuous at the interface xj+ 1

2
, we use (vh)

−
j+ 1

2

and (vh)
+
j+ 1

2
to refer to the left and right limits of vh at xj+ 1

2
, respectively.

The general formulation of the LDG method for the elliptic problem (2.2) is to find
uh, qh ∈ V k

h such that∫
Ij

qhwhdx +
∫

Ij

uh(wh)xdx − ûhj+ 1
2
(wh)

−
j+ 1

2
+ ûhj− 1

2
(wh)

+
j− 1

2
= 0, (2.5)
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Ij

qh(vh)xdx − q̂hj+ 1
2
(vh)

−
j+ 1

2
+ q̂hj− 1

2
(vh)

+
j− 1

2
−

∫
Ij

a(x)uhvhdx = 0 (2.6)

for j = 1,2, . . . ,N and all test functions vh,wh ∈ V k
h .

The numerical fluxes ûh and q̂h are chosen to be the alternate fluxes: ûh = u−
h and

q̂h = q+
h . At the two boundary points, ûh 1

2
= u(a) and q̂hN+ 1

2
= cb(uh)

−
N+ 1

2
. In this one-

dimensional case, this LDG scheme is guaranteed to give an optimal convergence rate of
hk+1 in L2 norm for both u and q .

Similarly, we can solve the Schrödinger equation with p < 0. We solve the following
PDE for u first, then normalize it by 2ip/[�u′

p(b) + ipup(b)]:
{−u′′ − a(x)u = 0,

u(b) = 1; u′(a) = cau(a),
(2.7)

where ca = −ipa/�. Since the boundary conditions are opposite to the p > 0 case, the
numerical fluxes should also be opposite, i.e. we take ûh = u+

h and q̂h = q−
h . At the two

boundary points, ûhN+ 1
2

= u(b) and q̂h 1
2

= ca(uh)
+
1
2
.

2.2 The MD-LDG Method for the Poisson Potential Equation

We use the MD-LDG method to solve the Poisson potential equation (1.10) or (1.11). The
scheme for the MD-LDG method is similar to (2.3). The major difference is the way to
choose the fluxes to fit the Dirichlet boundary conditions and to get minimal dissipation.
One way for the fluxes is ûh = u−

h and q̂h = q+
h at the internal cell interfaces, ûh 1

2
= u(a),

ûhN+ 1
2

= u(b) and q̂hN+ 1
2

= q−
N+ 1

2
− α(u−

N+ 1
2

− u(b)) at the boundaries. Another way is

to use ûh = u+
h and q̂h = q−

h at the internal cell interfaces, ûh 1
2

= u(a), ûhN+ 1
2

= u(b) and

q̂h 1
2

= q+
1
2

− α(u(a) − u+
1
2
) at the boundaries, where α = O(1/h). In [9], the authors proved

optimal convergence for both u and q in one dimension, and optimal convergence for u but
suboptimal convergence for q in two dimensions.

2.3 The WKB-LDG Scheme

The WKB-LDG scheme is a WKB scheme based on the LDG method. More precisely, if
we consider a “constant form” of the WKB asymptotics, the finite element space for our
WKB-LDG method is

E2(α) = {vh : (vh)|Ij ∈ span{1, eiαj (x−xj ), e−iαj (x−xj )}, j = 1, . . . ,N}, (2.8)

where

αj =
√

2m

�

√
E + qV (xj ), j = 1, . . . ,N. (2.9)

The approximation space E2(α) is actually an exponential space. In [18], the authors have
proved the L2 stability and error estimates of the DG method based on non-polynomial ap-
proximation spaces including exponential spaces for time-dependent PDEs. Similar proof
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can also be obtained for stationary problems. In particular, E2(α) has a third order approxi-
mation convergence rate. The proof is simple: we write

⎛
⎜⎝

1

eiαj (x−xj )

e−iαj (x−xj )

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

1 0 0

1 iαj − α2
j

2

1 −iαj − α2
j

2

⎞
⎟⎟⎟⎠

⎛
⎜⎝

1

(x − xj )

(x − xj )
2

⎞
⎟⎠

+

⎛
⎜⎜⎜⎝

0

− iα3
j

3!
iα3

j

3!

⎞
⎟⎟⎟⎠ (x − xj )

3 + O((�xj )
4).

for x ∈ Ij , and denote

A =

⎛
⎜⎜⎜⎝

1 0 0

1 iαj − α2
j

2

1 −iαj − α2
j

2

⎞
⎟⎟⎟⎠ , b =

⎛
⎜⎜⎜⎝

0

− iα3
j

3!
iα3

j

3!

⎞
⎟⎟⎟⎠ . (2.10)

It is easy to verify that A is invertible and A and b are independent of �xj . By Propo-
sition 3.1 in [18], E2(α) is a third order approximation space. Therefore, even when the
solution of the PDE is not close to the asymptotic functions in this approximation space, we
should still obtain comparable accuracy as the regular polynomial-based DG method using
the same number of degrees of freedom.

As a simple example, we assume V is constant and solve the simple PDE

{−u′′ − 4u = 0, x ∈ [0,2π],
u(0) = 0; u′(2π) = 2.

(2.11)

The exact solution for this problem is u = sin(2x). The numerical results obtained by
the WKB-LDG method using the space E2(α) with different values of α, and the regular
polynomial-based DG method, are shown in Table 1. If we choose α = 2 which corresponds
to the correct asymptotic value, we can obtain basically the round-off error (in quadruple
precision). If, however, we choose a different value for α, either smaller (α = 1), or bigger
(α = 3), we will not have any advantage over the regular, polynomial-based LDG method,
as the exact solution is not closer to E2(α) than to P 2(Ij ). However, even in these cases we

Table 1 L2 errors and orders of
accuracy for the WKB-LDG
method using the space E2(α)

with different values of α, and
the regular polynomial-based DG
method

N L2 error L2 error Order L2 error Order L2 error Order

α = 2 α = 1 α = 3 LDG P 2

10 4.42E–29 1.31E–2 – 2.38E–2 – 1.73E–2 –

20 6.30E–27 1.61E–3 3.03 2.71E–3 3.14 2.15E–3 3.01

40 1.45E–25 2.01E–4 3.00 3.36E–4 3.01 2.68E–4 3.00

80 1.56E–23 2.51E–5 3.00 4.19E–5 3.00 3.35E–5 3.00

160 1.33E–21 3.14E–6 3.00 5.24E–6 3.00 4.19E–6 3.00
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still obtain the expected third order convergence and the error levels for the same mesh are
comparable with that of the regular, polynomial-based LDG method.

If we would like to have higher order convergence, we can consider the higher order
exponential space

E4(α) = {vh : (vh)|Ij ∈ span{1, eiαj (x−xj ), e−iαj (x−xj ), eiαj (x−xj )(x − xj ),

e−iαj (x−xj )(x − xj )},
j = 1, . . . ,N}, (2.12)

and so on.

Remark 1 To make sure the basis functions are well defined, it is necessary to require that αj

is not an integer multiple of π , otherwise the basis functions will be linearly dependent. This
is the so-called non-resonance condition (see [4]). Typically, the point xj satisfying αj = 0
(i.e. |E + qV (xj )| = 0) is called a turning point. In this case, we define a threshold δ > 0.
When |E + qV (xj )| ≥ δ, the space E2(α) will be used; when |E + qV (xj )| < δ, we simply

use E2(α0), where α0 =
√

2m
�

√
δ.

3 Numerical Results

In this section, we demonstrate our WKB-LDG method by some numerical simulations of
the RTD model. First, we concentrate on the WKB-LDG scheme for the linear Schrödinger
equations. By ‘linear’, we mean that we solve the Schrödinger equation (1.1) only without
coupling it to the equations for density and self-consistent potential. The energy and total
potential are given in advance. Here the total potential is precomputed by a reference solu-
tion which is obtained using the regular, polynomial-based LDG P 2 method with 1350 cells.
Next, our WKB-LDG scheme is tested on fully non-linear problems. It will couple the inte-
gration (1.5) for the density and the Poisson potential equation (1.11) for the self-consistent
potential.

In all the numerical simulations, we use the same parameters as those used in [4], see Ta-
ble 2. As mentioned before, the reference solution is obtained with the regular, polynomial-
based LDG P 2 method with 1350 cells.

3.1 The Schrödinger Equation

In this section, we concentrate on the efficiency and accuracy of the WKB-LDG scheme
for the linear Schrödinger equation. First, we test our WKB-LDG scheme on a simple case
where the exact solutions are available. Next, we will add a non-zero potential bias and
consider the self-consistent potential in the simulation, which will introduce turning points.

Table 2 RTD parameters

a a1 a2 a3 b3 b2 b1 b meff V1

0 nm 50 nm 60 nm 65 nm 70 nm 75 nm 85 nm 135 nm 0.067me −0.3 V



J Sci Comput

Table 3 Results in the linear
case with exact solution N L2 error N L2 error

E = 0.0895 eV E = 0.046072 eV

WKB-LDG 13 4.63E–14 13 1.57E–16

23 2.63E–12 23 6.78E–16

LDG P 1 135 2.66E–4 135 2.00E–5

1350 1.76E–6 1350 1.84E–7

LDG P 2 135 6.00E–6 135 4.90E–7

1350 6.13E–9 1350 4.94E–10

3.1.1 A Simple Case

If there is no bias applied to the RTD model and we do not consider the self-consistent
potential, the total potential V is piecewise constant and the Schrödinger equation has an
analytical solution. Therefore it is easy to use this simple case to test the accuracy of the
schemes. We use the same examples as those in [4]. One example has the energy very close
to the double-barrier first resonant energy Ea

p = 0.0895 eV and the other has the energy far
from this value Ea

p = 0.046072 eV. The total potential V = Ve ,

Ve(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x < a2

V1, a2 < x < a3

0, a3 < x < b3

V1, b3 < x < b2

0, b2 < x

. (3.1)

We solve the linear Schrödinger equation (1.1) under these two energies. The errors are
listed in Table 3. We list the results of the WKB-LDG scheme with 13 cells and with 23
cells. The mesh with 13 cells contains 2 cells each in [a, a1], [a1, a2], [a2, a3], [b3, b2],
[b2, b1], [b1, b], and one cell in [a3, b3]. The mesh with 23 cells contains 6 cells each in
[a, a1], [b1, b], 2 cells each in [a1, a2], [b2, b1],[a2, a3] and [b3, b2], and 3 cells in [a3, b3].
We can see that the WKB-LDG method presents only a round-off error in the linear case. As
a comparison, the polynomial-based LDG P 1 method has a second order convergence and
the LDG P 2 method has a third order convergence. Notice that LDG P 2 with 1350 cells has
a comparable accuracy as the WKB-LDG method. That is the reason we choose the LDG
P 2 with 1350 cells to produce the reference solution in all the simulations in this paper.

We can also see the perfect match between the WKB-LDG solution and the exact solution
from the figures. Figure 1 shows the wave function modulus at the resonant energy Ea

p =
0.0895 eV and Fig. 2 shows the case of an non-resonant energy Ea

p = 0.046072 eV. Both of
the figures use a WKB mesh of 13 cells.

3.1.2 A Case with Turning Points

We add a bias of 0.08 V at the edges of the device and a precomputed self-consistent po-
tential into the Schrödinger equation (1.1). This time we do not have an analytical solution
any more, hence we use a reference solution obtained with the polynomial-based LDG P 2

method of 1350 cells. In the case of turning points, we use a threshold of δ = 0.001 eV.
We consider 4 different energies, a very low energy E = 0.0039 eV, a low energy E =

0.059 eV, a higher energy E = 0.17 eV and a very high energy E = 1.11 eV. The errors are
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Fig. 1 Comparison among the
exact solution, the WKB-LDG
solution and the LDG P 1

solution: resonant case with
E = 0.0895 eV. 13 cells are used
in the WKB-LDG method. 135
cells are used in the LDG P 1

method

Fig. 2 Comparison among the
exact solution, the WKB-LDG
solution and the LDG P 1

solution: non-resonant case with
E = 0.046072 eV. 13 cells are
used in the WKB-LDG method.
135 cells are used in the LDG P 1

method

listed in Table 4. We only test the WKB-LDG scheme with 23 cells this time. The errors of
the WKB-LDG method with 23 cells and the LDG P 2 method with 135 cells have similar
magnitude of errors. That is, the WKB-LDG method uses only 17% of the cells used by the
LDG P 2 method and much less computational time to reach the same resolution.

We also show the figures of the wave function modulus at the energy E = 0.0039 eV,
E = 0.059 eV, E = 0.17 eV and E = 1.11 eV in Figs. 3, 4, 5 and 6 respectively. All of them
are using a mesh size of 23 cells. We plot the WKB-LDG solution completely as a function,
not just a sample point in each cell, and we can see that the WKB-LDG solution reproduces
the reference solution very well.

3.2 The Fully Non-linear Problem

In this section, the WKB-LDG scheme is illustrated on the fully non-linear RTD model.
The electronic density is computed using (1.5) with an integration between −kmax and kmax,
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Table 4 Results in the linear
case with turning points N L2 error N L2 error

E = 0.0039 eV E = 0.059 eV

WKB-LDG 23 1.42E–4 23 2.69E–4

LDG P 2 135 2.07E–5 135 1.80E–5

E = 0.17 eV E = 1.11 eV

WKB-LDG 23 5.96E–5 23 4.56E–5

LDG P 2 135 6.92E–6 135 5.23E–5

Fig. 3 Comparison between the
reference solution and the
WKB-LDG solution:
E = 0.0039 eV. 23 cells are used
in the WKB-LDG method. In
each cell, the WKB-LDG
solution is plotted as a function
using 9 points

Fig. 4 Comparison between the
reference solution and the
WKB-LDG solution:
E = 0.059 eV. 23 cells are used
in the WKB-LDG method. In
each cell, the WKB-LDG
solution is plotted as a function
using 9 points

where k = √
2mE/� is used instead of the energy E (see [4]). We use the trapezoidal rule

(which is spectrally accurate for compactly supported analytical functions) to evaluate the
integral and take a mesh size �k for the integral. The self-consistent potential is computed
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Fig. 5 Comparison between the
reference solution and the
WKB-LDG solution:
E = 0.17 eV. 23 cells are used in
the WKB-LDG method. In each
cell, the WKB-LDG solution is
plotted as a function using 27
points

Fig. 6 Comparison between the
reference solution and the
WKB-LDG solution:
E = 1.11 eV. 23 cells are used in
the WKB-LDG method. In each
cell, the WKB-LDG solution is
plotted as a function using 27
points

Table 5 Parameters used for the density and the self-consistent potential computation

T n1
d

n2
d

kmax �k Vref εr

300 K 1018 cm−3 1015 cm−3 0.0626 Å−1 10−3 Å−1 0.03 V 11.44

using the Gummel iteration described in Sect. 1.1. The parameters we use are listed in Ta-
ble 5.

We still use the polynomial-based LDG P 2 method with 1350 cells to produce a reference
solution and use the same 23 cells for the WKB-LDG method. In [4], it is remarked that a
WKB mesh with these few cells might be too coarse for computing the density and the
self-consistent potential, and an interpolation could be used to obtain a finer mesh for the
purpose of density or self-consistent potential computation. Our numerical results using the
WKB-LDG method turn out to be very good if we use the same 23 cells throughout the



J Sci Comput

Table 6 Results in the fully
non-linear problem: CPU time
(seconds/iteration)

N L2 error CPU time L2 error CPU time

bias = 0 eV bias = 0.08 eV

WKB-LDG 23 3.57E–4 2.43 9.72E–4 2.53

LDG P 2 135 1.15E–4 10.29 1.15E–4 10.38

Fig. 7 Comparison between the
reference solution and the
WKB-LDG solution: density for
the fully non-linear case. 23 cells
are used in the WKB-LDG
method

Fig. 8 Comparison between the
reference solution and the
WKB-LDG solution:
self-consistent potential for the
fully non-linear case. 23 cells are
used in the WKB-LDG method

simulation. Therefore, we have kept the same mesh for the wave function computation as
well as for the computation of the density and the self-consistent potential.

Table 6 lists the errors of the density in both the zero bias case and the 0.08 eV bias case.
We can see that the WKB-LDG method gives a pretty good result here. Also it saves around
70% computational time compared to similar results obtained by the regular polynomial-
based LDG method.

We present the figures of the density and the self-consistent potential under 0.08 eV bias
in Figs. 7 and 8. The WKB-LDG results and the reference solutions overlap very well.
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Fig. 9 Comparison between the
reference solution and the
WKB-LDG solution: the I -V
characteristics of a resonant
tunneling diode. 23 cells are used
in the WKB-LDG method

Fig. 10 Comparison between
the reference solution used in this
paper and that used in Fig. 20 of
[4]: the I -V characteristics of a
resonant tunneling diode. Solid
line with triangle: the reference
solution used in this paper;
dashed line: the reference
solution in Fig. 20 of [4]; thicker
solid line: the continuous finite
element WKB result with 34
points in Fig. 20 of [4]

An important curve, the I -V curve, is the function of current in (1.8) versus the applied
voltage bias. The obtained curve is shown in Fig. 9. The results obtained by the WKB-LDG
method with 23 cells are almost indistinguishable from the reference results. For the purpose
of verification, we also compare our reference solution with the reference solution reported
in Fig. 20 of [4], see Fig. 10. We observe that the two reference solutions overlap well. By
comparing Fig. 9 with Fig. 20 of [4], we conclude that our WKB-LDG method with 23 cells
produces a solution which is much closer to the reference solution than the continuous finite
element WKB result with 34 points.
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4 Concluding Remarks

In this paper, we have developed a multiscale WKB local discontinuous Galerkin (WKB-
LDG) solver for the semiconductor resonant tunneling diode (RTD) model. The main in-
gredient of this scheme is the WKB-LDG method for solving the Schrödinger equations.
Numerical experiments indicate that the WKB-LDG solver has excellent accuracy on very
coarse meshes. Compared with the continuous finite element based WKB method in [4], the
WKB-LDG method allows the full usage of the potential of this methodology in easy h-p
adaptivity and feasibility for the extension to two-dimensional case. In future work, we will
generalize our WKB-LDG method to two-dimensional devices, starting from those with a
strong fixed directional dependence such as the double gate MOSFETs in [3], and then mov-
ing on to further explore this method to fully two-dimensional problems with changing and
eventually no privileged direction.

References

1. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin meth-
ods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

2. Ben Abdallah, N., Degond, P., Markowich, P.A.: On a one-dimensional Schrödinger Poisson scattering
model. Z. Angew. Math. Phys. 48, 135–155 (1997)

3. Ben Abdallah, N., Mouis, M., Negulescu, C.: An accelerated algorithm for 2D simulations of the quan-
tum ballistic transport in nanoscale MOSFETs. J. Comput. Phys. 225, 74–99 (2007)

4. Ben Abdallah, N., Pinaud, O.: Multiscale simulation of transport in an open quantum system: Resonances
and WKB interpolation. J. Comput. Phys. 213, 288–310 (2006)

5. Ben Abdallah, N., Pinaud, O., Gardner, C.L., Ringhofer, C.: A comparison of resonant tunneling based
on Schrödinger’s equation and quantum hydrodynamics. VLSI Des. 15, 695–700 (2002)

6. Bohm, D.: Quantum Theory. Dover, New York (1989)
7. Chen, Z., Cockburn, B., Gardner, C., Jerome, J.W.: Quantum hydrodynamic simulation of hysteresis in

the resonant tunneling diode. J. Comput. Phys. 117, 274–280 (1995)
8. Chen, Z., Cockburn, B., Jerome, J.W., Shu, C.-W.: Mixed-RKDG finite element methods for the 2d

hydrodynamic model for semiconductor device simulation. VLSI Des. 3, 145–158 (1995)
9. Cockburn, B., Dong, B.: An analysis of the minimal dissipation local discontinuous Galerkin method for

convection-diffusion problems. J. Sci. Comput. 32, 233–262 (2007)
10. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated prob-

lems. J. Sci. Comput. 16, 173–261 (2001)
11. Gummel, H.K.: A self-consistent iterative scheme for one-dimensional steady state transistor calcula-

tions. IEEE Trans. Electron Dev. 11, 455–465 (1964)
12. Liu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for moment models in device simulations:

Formulation and one-dimensional results. J. Comput. Electron. 3, 263–267 (2004)
13. Liu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for moment models in device simulations:

Performance assessment and two-dimensional results. Appl. Numer. Math. 57, 629–645 (2007)
14. Negulescu, C.: Numerical analysis of a multiscale finite element scheme for the resolution of the station-

ary Schrödinger equation. Numer. Math. 108, 625–652 (2008)
15. Negulescu, C., Ben Abdallah, N., Polizzi, E., Mouis, M.: Simulation schemes in 2D nanoscale MOS-

FETs: A WKB based method. J. Comput. Electron. 3, 397–400 (2004)
16. Pinaud, O.: Transient simulations of a resonant tunneling diode. J. Appl. Phys. 92, 1987–1994 (2002)
17. Polizzi, E., Ben Abdallah, N.: Subband decomposition approach for the simulation of quantum electron

transport in nanostructures. J. Comput. Phys. 202, 150–180 (2005)
18. Yuan, L., Shu, C.-W.: Discontinuous Galerkin method based on non-polynomial approximation spaces.

J. Comput. Phys. 218, 295–323 (2006)
19. Yuan, L., Shu, C.-W.: Discontinuous Galerkin method for a class of elliptic multi-scale problems. Int. J.

Numer. Methods Fluids 56, 1017–1032 (2008)


	The WKB Local Discontinuous Galerkin Method for the Simulation of Schrödinger Equation in a Resonant Tunneling Diode
	Abstract
	Introduction
	The Schrödinger-Poisson Problem
	The WKB Approach

	Numerical Methods
	Traditional LDG Methods for the Schrödinger Equations
	The MD-LDG Method for the Poisson Potential Equation
	The WKB-LDG Scheme

	Numerical Results
	The Schrödinger Equation
	A Simple Case
	A Case with Turning Points

	The Fully Non-linear Problem

	Concluding Remarks
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


