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Abstract. In this paper, we extend the high order finite-difference method with sub-
cell resolution (SR) in [34] for two-species stiff one-reaction models to multispecies and
multireaction inviscid chemical reactive flows, which are significantly more difficult
because of the multiple scales generated by different reactions. For reaction problems,
when the reaction time scale is very small, the reaction zone scale is also small and
the governing equations become very stiff. Wrong propagation speed of discontinu-
ity may occur due to the underresolved numerical solution in both space and time.
The present SR method for reactive Euler system is a fractional step method. In the
convection step, any high order shock-capturing method can be used. In the reaction
step, an ODE solver is applied but with certain computed flow variables in the shock
region modified by the Harten subcell resolution idea. Several numerical examples
of multispecies and multireaction reactive flows are performed in both one and two
dimensions. Studies demonstrate that the SR method can capture the correct propaga-
tion speed of discontinuities in very coarse meshes.
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1 Introduction

When simulating high speed reactive flows, a wide range of reaction rates may be present,
and the chemical time-scales are often orders of magnitude smaller than the typical re-
laxation time of fluid dynamics, leading to the stiffness of the problem.

The mathematical model for inviscid chemical reactive flows can be described by the
reactive Euler equations coupled with source terms. Consider the reactive Euler equa-
tions in two dimensions in the form

Ut+F(U)x+G(U)y=S(U), (1.1)

where U, F(U), G(U) and S(U) are vectors. If the time scale of the ordinary differential
equation (ODE) Ut = S(U) for the source term is orders of magnitude smaller than the
time scale of the homogeneous conservation law Ut+F(U)x+G(U)y=0 then the problem
is said to be stiff. In high speed chemical reacting flows, the source term represents the
chemical reactions which may be much faster than the gas flow. The stiff source term is
one of the sources lead to problems of numerical stiffness. Insufficient spatial resolution
may cause an incorrect propagation speed of discontinuities and nonphysical states for
standard dissipative numerical methods.

This numerical phenomenon was first observed by Colella et al. [12] in 1986 who con-
sidered both the reactive Euler equations and a simplified system obtained by coupling
the inviscid Burgers equation with a single convection/reaction equation. LeVeque and
Yee [22] showed that a similar spurious propagation phenomenon can be observed even
with scalar equations, by properly defining a model problem with a stiff source term.

Numerically resolving all the chemical small scales will result in tremendous compu-
tational cost. Therefore, many works have contributed to the analysis and development
of underresolved numerical methods which are able to capture the correct shock/dis-
continuities location and speed without resolving the small chemical scales. Examples
include the level set and front tracking methods [6, 19, 23, 26, 30], random choice method
[10–12,24], random projection method [1–3] and many other works [4,5,7–9,13,14,16,17,
25, 27, 31, 32]. See Wang et al. [33] for a comprehensive overview of the last two decades
of this development. Wang et al. [33] also proposed a new high order finite difference
method with subcell resolution for advection equations with stiff source terms for a sin-
gle reaction to overcome the difficulty.

In this work, we extend the subcell resolution method to multispecies and multireac-
tion problems, which are significantly more difficult because of the multiple scales gen-
erated by different reactions. The proposed SR method for the reactive Euler system is a
fractional step method. In the convection step, any high order shock-capturing method
can be used. However shock-capturing schemes will produce transition points due to
the numerical dissipation. Here, transition points mean the smeared numerical solution
in the shock region. In the reaction step, an ODE solver is applied but with the values
of certain computed flow variables at the transition points in the shock region modified
by a reconstructed polynomial using the idea of Harten’s subcell resolution method. It
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is noted here that the proposed method is applicable, in general, to multispecies reacting
flows with stiff source term and discontinuities. In the case of detonation problems, here
we only address the issue in developing methods to obtain the correct propagation speed
of discontinuities using a coarse grid without resolving the detonation peak correctly as
the width of the detonation front consists of 1-2 grid points only.

2 Review of the method for 1D scalar problems

We first review the finite difference method with subcell resolution (SR), introduced in
[34] for the scalar model problem in [22].

Consider

ut+ f (u)x =S(u), (2.1)

S(u)=−µu(u−α)(u−1), (2.2)

with the initial condition

u(x,0)=

{
1, x≤ x0,
0, x> x0,

(2.3)

where α is a parameter, 0<α<1, and x0 is the position of the initial discontinuity.

The SR method uses a fractional step approach. The numerical solution at time level
tn+1 is approximated by

un+1=R(∆t)A(∆t)un. (2.4)

The convection operator A is defined to approximate the solution of the homogeneous
part of the problem on the time interval, i.e.,

ut+ f (u)x =0, tn ≤ t≤ tn+1. (2.5)

The reaction operator R is defined to approximate the solution on a time step of the
reaction problem:

du

dt
=S(u), tn ≤ t≤ tn+1. (2.6)

In the Strang-splitting in [29], the numerical solution at time step tn+1 is computed by

un+1=A

(
∆t

2

)

R(∆t)A

(
∆t

2

)

un, (2.7)

where the convection operator is over a time step ∆t and the reaction operator is over
∆t/2. This strategy improves the time accuracy to second order. The two half-step reac-
tion operations over adjacent time steps can be combined to save cost.

Any high resolution shock capturing operator can be used in the convection step. The
purpose in this step is to minimize the transition points in the shock region, but not to
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remove them completely (which is not realistic). In this paper, we use the fifth-order finite
difference WENO schemes [20] with a third-order TVD Runge-Kutta time discretization.

In the convection step, we apply an ODE solver with Harten’s subcell resolution tech-
nique. The procedure can be summarized in the following steps:

(1) Use a “shock indicator” to identify cells in which discontinuities are believed to
be situated. We consider the following minmod-based shock indicator in [15, 28]. Let

si =minmod{ui+1−ui,ui−ui−1}, (2.8)

define the cell Ii as troubled if |si|≥ |si−1| and |si|≥ |si+1|, with at least one being a strict
inequality. Notice that this troubled cell-identifying method will only find the “worst”
cell inside a shock transition. That is, if there are several consecutive transition cells, only
the worst one will be identified as a troubled cell.

(2) In a troubled cell identified above, we continue to identify its neighboring cells.
For example, we can define Ii+1 as troubled if |si+1|≥|si−1| and |si+1|≥|si+2| and similarly
define Ii−1 as troubled if |si−1|≥ |si−2| and |si−1|≥ |si+1|. If the cell Ii−s and the cell Ii+r

(s,r> 0) are the first good cells from the left and the right (i.e., Ii−s+1 and Ii+r−1 are still
troubled cells), we compute the fifth order ENO interpolation polynomial pi−s(x) and
pi+r(x) for the cells Ii−s and Ii+r, respectively. Because of the high order, high resolution
WENO scheme (sometimes with anti-diffusive corrector) used in the convection step, r
and s will not be larger than 2 in general. The modified cell point value ui is computed
by

ũi=

{
pi−s(xi), θ≥ xi,
pi+r(xi), θ< xi,

(2.9)

where the location θ is determined by conservation

∫ θ

xi−1/2

pi−s(x)dx+
∫ xi+1/2

θ
pi+r(x)dx=ui ∆x. (2.10)

When ∆x is sufficiently small, it can be shown that there is a unique θ satisfying
Eq. (2.10) (see [15]). Numerically the unique θ exists in all of our numerical tests. In
practice, knowing whether θ is in [xi−1/2,xi) or [xi,xi+1/2] is sufficient for obtaining ũi. To
avoid actually solving θ, we can perform the following simple check: If F(xi−1/2)F(θ)<0,

then θ< xi, where F(x)=
∫ θ

xi−1/2
pi−s(x)dx+

∫ xi+1/2

θ
pi+r(x)dx−ui ∆x.

If there is no solution for θ or there are more than one solution, we choose ũi = ui+r.
Actually there is no difference to take ũi from left or right for the scalar case because the
source term will be zero when ui =0 or 1. However, in the system case we would like to
have the shock travel ahead of the reaction zone, so we take the value of u ahead of the
shock.

(3) Use ũi instead of ui in the ODE solver if the cell Ii is a troubled cell.
For simplicity, consider the Euler forward method

un+1
i =un

i +∆tS(un
i ), (2.11)
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Eq. (2.11) is modified to
un+1

i =un
i +∆tS(ũi), (2.12)

if the cell Ii is a troubled cell.
When extending to a multi-stage Runge-Kutta method, SR is applied for each stage.

For example, for second-order Runge-Kutta, at the trouble cell Ii, ui and u
(1)
i are modified

to ũi and ũ
(1)
i by SR in the source term:

u
(1)
i =un

i +∆tS(ũi), (2.13)

un+1
i =

1

2
un

i +
1

2
u
(1)
i +

1

2
∆tS(ũ

(1)
i ). (2.14)

Here we would like to give a remark. Explicit time-stepping methods are used in this
paper, because the troubled values un

i need to be modified explicitly. Implicit methods,
which can hopefully enlarge the time step and improve efficiency, constitute undergoing
work. The subcell resolution technique developed in [33] is only designed for the spatial
discretization and is frozen during the time step evolution. As the stiffness increases, the
CFL number in the reaction step solving the ODE needs to decease in order to obtain
a stable solution. See Yee et al. [34] for some studies. In our numerical examples, Nr

sub-steps are used in one reaction step, i.e. Eq. (2.7) is modified by

Un+1=A

(
∆t

2

)

R

(
∆t

Nr

)

···R

(
∆t

Nr

)

︸ ︷︷ ︸

Nr

A

(
∆t

2

)

Un. (2.15)

3 The method for 1D reactive Euler equations with multispecies

In this section, we extend our approach to the 1D reactive Euler equations with multi-
species and multireactions.

Consider the reactive Euler equations that model the time-dependent flow of inviscid,
compressible, multispecies reacting flows with ns species

ρt+(ρu)x =0, (3.1)

(ρu)t+(ρu2+p)x =0, (3.2)

et+(u(e+p))x =0, (3.3)

(ρz1)t+(ρuz1)x =w1, (3.4)

···

(ρzns−1)t+(ρuzns−1)x =wns−1, (3.5)

where ρ is the total density, u is the velocity and e is the total energy. zm is the mass
fraction for the mth species and ∑

ns
m=1 zm =1. The pressure p is given by

p=(γ−1)

(

e−
1

2
ρu2−ρz1q1−ρz2q2−···−ρzns qns

)

, (3.6)
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and the temperature is defined as T= p/ρ.
The source term S(U), appearing as wm in the last equations involving ρzm, describes

the chemical reactions occurring in the gas flows which result in changes in the amount
of mass of each chemical species. We assume there are R reactions of the form

ν′1,rX1+ν′2,rX2+···+ν′ns,rXns →ν′′1,rX1+ν′′2,rX2+···+ν′′ns ,rXns , r=1,··· ,R, (3.7)

where ν′1,r and ν′′1,r are respectively the stoichiometric coefficients of the reactants and
products of species i in the rth reaction. For non-equilibrium chemistry, the rate of pro-
duction of species i due to chemical reaction may be written as

wi=Mi

R

∑
r=1

(ν′′i,r−ν′i,r)

[

kr(T)
ns

∏
s=1

(
ρzs

Ms

)ν′s,r

]

, i=1,··· ,ns. (3.8)

For each reaction r, the reaction rate kr(T) is assumed to be a known function of the
temperature. We consider the Heaviside kinetics form

kr(T)=BrTαr H(T−Tr), (3.9)

where H(x)=1 for x>0 and H(x)=0 for x≤0. Tr is the ignition temperature for the rth
reaction.

3.1 Convection operator

In the system case, we use the fifth-order WENO with local Lax-Friedrichs flux splitting
(WENO-LLF) and the local characteristic decomposition with RK3 for time discretization
as the convection operator in the reactive Euler problems. We refer to [20] for more details
of this algorithm.

3.2 Reaction operator

The reaction step for the system case is slightly different from the scalar case because
there are more component variables involved in the source term. The key point here is
to identify transition points correctly and to extrapolate the temperature T and the mass
fraction product ∏

ns
s=1zs

ν′s,r (r=1,··· ,R) in the source term.

(1) We use one mass fraction z to identify transition cells. We take the one with zero
value on the left-hand side state. If there is more than one or none, we choose the one
with the biggest jump.

We identify the cell Ii as troubled if |si|≥ |si−1| and |si|≥ |si+1| (with at least one strict
inequality) where

si =minmod{(zs)i+1−(zs)i,(zs)i−(zs)i−1}, (3.10)

for a prechosen zs. Then we continue to identify whether its neighboring cells Ii−1 and
Ii+1 are troubled cells. For simplicity, in Steps (2) and (3) below, we assume the neighbor-
ing cells Ii−1 and Ii+1 are not troubled.
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(2) After a troubled cell Ii is identified, first find the shock location θ by solving the
conservation Eq. (2.10) with the variable u taken as the total energy E

∫ θ

xi−1/2

pi−1(x;E)dx+
∫ xi+1/2

θ
pi+1(x;E)dx=Ei ∆x, (3.11)

where the ENO interpolation polynomials pi(x;E) are computed based on values of E.
The energy E is chosen because it is a conserved variable. We assume the shock locations
are the same for all variables.

Then we extrapolate the temperature T and the mass fraction product in the reaction
Πr =∏

ns
s=1zs

ν′s,r (r = 1,··· ,R) separately. The new mass fraction product Π̃r (r = 1,··· ,R)
and temperature T̃ are obtained from the ENO interpolation polynomials.

{ ˜(Πr)i= pi−1(xi;Πr),r=1,··· ,R, T̃i= pi−1(xi;T), if θ≥ xi,
˜(Πr)i= pi+1(xi;Πr),r=1,··· ,R, T̃i= pi+1(xi;T), if θ< xi.

(3.12)

(3) For simplicity, we use the explicit Euler method as the ODE solver in the reaction
step

(ρzs)
n+1
i =(ρzs)

n
i +∆tws(T̃i,ρ̃i, ˜(z1)i,··· ,

˜(zns)i), s=1,··· ,ns−1. (3.13)

4 Extension to 2D reactive Euler equations with multispecies

Next, we extend the proposed method to the two-dimensional reactive Euler equations.
The considered two-dimensional problem is the extension of the one-dimensional prob-
lem. Consider the reactive Euler equations that model the time-dependent flow of invis-
cid, compressible, multispecies reacting flows with ns species

Ut+F(U)x+G(U)y=S(U). (4.1)

Here U, F(U) and S(U) are column vectors with m=ns+3 components

U=(ρ,ρu,ρv,e,ρz1 ,··· ,ρzns−1)
T, (4.2)

F(U)=(ρu,ρu2+p,ρuv,(e+p)u,ρz1u,··· ,ρzns−1u)T, (4.3)

G(U)=(ρv,ρuv,ρv2+p,(e+p)v,ρz1v,··· ,ρzns−1v)T , (4.4)

S(U)=(0,0,0,0,w1,··· ,wns−1)
T, (4.5)

where ρ is the total density, u is the x-component velocity, v is the y-component velocity
and e is the total energy. The pressure p is

p=(γ−1)

(

e−
1

2
ρ(u2+v2)−ρz1q1−ρz2q2−···−ρzns qns

)

and the temperature is T= p/ρ. The source term is the same as that for the 1D reactive
Euler system (3.7) and (3.8).
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In the convection step, we use fifth-order WENO-LLF with RK3 time discretization.
In the reaction step, we apply the subcell resolution procedure dimension by dimen-

sion.

(1) Identify the transition points by the shock indicator in both x- and y-directions.
Define the cell Iij as troubled in the x-direction if |sx

ij|≥ |sx
i−1,j| and |sx

ij|≥ |sx
i+1,j| with

at least one strict inequality where

sx
ij =minmod{ui+1,j−uij,uij−ui−1,j}. (4.6)

Similarly we can define the cell Iij as troubled in the y-direction if |s
y
ij|≥|s

y
i,j−1| and |s

y
ij|≥

|s
y
i,j+1| with at least one strict inequality where

s
y
ij =minmod{ui,j+1−uij,uij−ui,j−1}. (4.7)

If Iij is only troubled in one direction, we apply the subcell resolution along this di-
rection. If Iij is troubled in both directions, we choose the direction which has a larger

jump. Namely, if |sx
ij|≥|s

y
ij |, subcell resolution is applied along the x-direction, otherwise

it is done along the y-direction.
In the following steps (2)-(3), without loss of generality, we assume the subcell reso-

lution is applied in the x-direction.

(2) Modify the mass fraction product in the reaction ∏
ns
s=1zs

ν′s,j (r=1,··· ,R), Tij and ρij

in the troubled cell Iij by the ENO interpolation polynomials according to the location θ.
The location θ is determined by the conservation of energy E

∫ θ

xi−1/2

pi−1,j(x;E)dx+
∫ xi+1/2

θ
pi+1,j(x;E)dx=Eij∆x. (4.8)

The treatment of the situation where θ satisfying (4.8) does not exist is the same as in the
1D case.

(3) For simplicity, explicit Euler is used as the ODE solver in the numerical tests.

(ρzs)
n+1
ij =(ρzs)

n
ij+∆tws(T̃ij,ρ̃ij, ˜(z1)ij,··· ,

˜(zns)ij), s=1,··· ,ns−1. (4.9)

5 Numerical examples

In this section, we test the proposed method on both one-dimensional and two-
dimensional detonation waves. As mentioned earlier, the proposed method is appli-
cable, in general, to multispecies reacting flows with stiff source term and discontinu-
ities. For the chosen detonation test cases, only the issue of correct propagation speed
of discontinuities using a coarse grid without resolving the detonation peak correctly is
addressed as the width of the detonation front consisting of 1-2 grid points only. The
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proposed method uses a fifth-order WENO-LLF with RK3 as the convection operator,
and an explicit Euler based on the subcell resolution as the reaction operator, denoted
by WENO5/SR. For most of the examples, we compare the numerical results with the
splitting WENO method. The splitting WENO5 denotes the Strang splitting fifth-order
WENO method using the local Lax-Friedrichs Flux with RK3 as the convection opera-
tor, and an explicit Euler as the reaction operator. For all the one-dimensional examples,
the reference solutions are computed by regular fifth-order WENO-LLF (without Strang
splitting) with RK3 with 10,000 grids and CFL=0.5. In all the one-dimensional examples,
we have used the positivity-preserving limiter [18] to enhance numerical stability. Notice
that this limiter does not affect the high order accuracy of the scheme away from vac-
uum, as shown in [18]. No cut off safeguard (e.g. cut off the densities which are outside
the permissible range) is used in any example.

Example 5.1. A 1D detonation wave with 3 species and 1 reaction.
In the first example, we consider a reacting model with three species and one reaction.

This example was studied in [3]. Consider the reaction model

2H2+O2→2H2O.

The parameters are T1 = 2.0, B1 = 500, α1 = 1, q1 = 1000, q2 = 0, q3= 0, M1 = 2, M2 = 32,
M3 = 18. Initially there is mixture of hydrogen and oxygen on the right-hand side. On
the left-hand side, the hydrogen and oxygen generate water. The initial data are

(ρ,u,p,z1,z2,z3)(x,0)=

{
(ρl ,ul,pl ,(z1)l,(z2)l,(z3)l), x≤2.5,
(ρr ,ur,pr,(z1)r,(z2)r,(z3)r), x>2.5,

(5.1)

where ρl =2, ul =10, pl =40, (z1)l =0.325, (z2)l =0, (z3)l =0.625 and ρr =1, ur =0, pr =1,
(z1)r =0.4, (z2)r =0.6, (z3)r =0. The computational domain is [0,50].

The exact solution consists of a detonation wave, followed by a contact discontinuity
and a shock, all moving to the right. We compare the results obtained by the proposed
WENO5/SR method and the splitting WENO5 using the same mesh N = 50 (∆x = 1),
CFL=0.1 and Nr =100.

Figs. 1-3 show the pressure, density, temperature and mass fractions comparison re-
sults between the proposed WENO5/SR (red dashed dot line) and the splitting WENO5
(green dashed line), against the reference “exact” solution. Clearly, the proposed
WENO5/SR method is able to capture the correct propagation speed of the detonation
wave with this coarse mesh, while the splitting WENO5 produces spurious numerical
results.

Example 5.2. A 1D detonation wave with 4 species and 1 reaction.
In this example, we test our method on a reacting model with four species and one

reaction. A prototype reaction for this model is

CH4+2O2→CO2+2H2O.
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Figure 1: Numerical solutions of Example 5.1 at t= 3 with N= 50, CFL= 0.1, Nr = 100. Solid line: reference
solution. Red dashed dot line with symbols: WENO5/SR. Green dashed line: splitting WENO5. Left: pressure.
Right: density.
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Figure 2: Numerical solutions of Example 5.1 at t= 3 with N = 50, CFL= 0.1, Nr = 100. Solid line: refer-
ence solution. Red dashed dot line with symbols: WENO5/SR. Green dashed line: splitting WENO5. Left:
temperature. Right: mass fraction of z1.
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Figure 3: Numerical solutions of Example 5.1 at t= 3 with N= 50, CFL= 0.1, Nr = 100. Solid line: reference
solution. Red dashed dot line with symbols: WENO5/SR. Green dashed line: splitting WENO5. Left: mass
fraction of z2. Right: mass fraction of z3.
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This example was also studied in [3].
The parameters are T1 = 2.0, B1 = 106, α1 = 0, q1 = 500, q2 = 0, q3= 0, q4 = 0, M1 = 16,

M2=32, M3=44, M4=18. The initial data are given by

(ρ,u,p,z1,z2,z3,z4)(x,0)=

{
(ρl ,ul,pl,(z1)l,(z2)l,(z3)l,(z4)l), x≤2.5,
(ρr,ur,pr,(z1)r,(z2)r,(z3)r,(z4)r), x>2.5,

(5.2)

where ρl=2, ul=10, pl=40, (z1)l=0, (z2)l=0.2, (z3)l=0.475, (z4)l=0.325 and ρr=1, ur=0,
pr =1, (z1)r =0.1, (z2)r =0.6, (z3)r =0.2, (z4)r =0.1. The computational domain is [0,50].
The exact solution consists of a detonation wave, followed by a contact discontinuity and
a shock, all moving to the right.

Figs. 4-6 show the pressure, density, temperature and mass fractions comparison re-
sults between the proposed WENO5/SR method (red dashed dot line) and the splitting
WENO5 (green dashed line), against the reference “exact” solution, using the same mesh
N=50(∆x=1), CFL=0.1 and Nr =100. Again, the proposed WENO5/SR method is able
to capture the correct propagation speed of the detonation wave with this coarse mesh,
while the splitting WENO5 produces spurious numerical results.

Example 5.3. A 1D detonation wave with 5 species and 2 reactions.

In the last one-dimensional example, we consider the reactive Euler system with mul-
tireactions. Consider

H2+O2→2OH, 2OH+H2→2H2O,

with N2 appearing as a catalyst. In this example, there are five species and two reactions.
The parameters are T1 = 2.0, T2 = 10, B1 = B2 = 106, α1 = α2 = 0, q1 = 0, q2 = 0, q3=−20,
q4=−100, q5=0, M1=2, M2=32, M3=17, M4=18, M5=28. We use similar parameters as
those in [3] except that we increase the reacting rate B1 and B2 ten times larger for more
stiffness.

The initial data are

(ρ,u,p,z1,z2,z3,z4,z5)(x,0)=

{
(ρl ,ul,pl,(z1)l,(z2)l,(z3)l ,(z4)l ,(z5)l), x≤2.5,
(ρr,ur,pr ,(z1)r,(z2)r,(z3)r,(z4)r,(z5)r), x>2.5,

(5.3)

where ρl = 2, ul = 10, pl = 40, (z1)l = 0, (z2)l = 0, (z3)l = 0.17, (z4)l = 0.63, (z5)l = 0.2, and
ρr =1, ur =0, pr =1, (z1)r =0.08, (z2)r =0.72, (z3)r =0, (z4)r =0, (z5)r =0.2. The compu-
tational domain is [0,50]. The exact solution consists of a detonation wave, followed by a
rarefaction wave and a shock, all moving to the right. We compare the results obtained
by the proposed WENO5/SR method and the splitting WENO5, against the reference
“exact” solution, using the same mesh N=50(∆x=1), CFL=0.05 and Nr =400. Figs. 7-9
show the pressure, density, temperature and mass fractions comparison results between
the proposed WENO5/SR method (red dashed dot line) and the splitting WENO5 (green
dashed line). From all the results, the proposed WENO5/SR method is able to capture the
correct shock location in coarse mesh, but the regular WENO method produces spurious
wave from the location x=40. We remark that unlike the one reaction examples, the pro-
posed WENO5/SR scheme needs a smaller CFL number (about one half for the present
example) for stability compared to the splitting WENO5 in this multireaction example.
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Figure 4: Numerical solutions of Example 5.2 at t= 3 with N= 50, CFL= 0.1, Nr = 100. Solid line: reference
solution. Red dashed dot line with symbols: WENO5/SR. Green dashed line: splitting WENO5. Left: pressure.
Right: density.
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Figure 5: Numerical solutions of Example 5.2 at t= 3 with N = 50, CFL= 0.1, Nr = 100. Solid line: refer-
ence solution. Red dashed dot line with symbols: WENO5/SR. Green dashed line: splitting WENO5. Left:
temperature. Right: mass fraction of z1.
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Figure 6: Numerical solutions of Example 5.2 at t= 3 with N= 50, CFL= 0.1, Nr = 100. Solid line: reference
solution. Red dashed dot line with symbols: WENO5/SR. Green dashed line: splitting WENO5. Left: mass
fraction of z2. Right: mass fraction of z3.
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Figure 7: Numerical solutions of Example 5.3 at t=3 with N=50, CFL=0.05, Nr =400. Solid line: reference
solution. Red dashed dot line with symbols: WENO5/SR. Green dashed line: splitting WENO5. Left: pressure.
Right: density.
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Figure 8: Numerical solutions of Example 5.3 at t= 3 with N = 50, CFL= 0.05, Nr = 400. Solid line: refer-
ence solution. Red dashed dot line with symbols: WENO5/SR. Green dashed line: splitting WENO5. Left:
temperature. Right: mass fraction of z1.
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Figure 9: Numerical solutions of Example 5.3 at t=3 with N=50, CFL=0.05, Nr =400. Solid line: reference
solution. Red dashed dot line with symbols: WENO5/SR. Green dashed line: splitting WENO5. Left: mass
fraction of z2. Right: mass fraction of z3.
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Example 5.4. A 2D detonation wave with 4 species and 1 reaction.

Now we test our method on two-dimensional problems. The first two-dimensional
example is one with radial symmetry analogous to Example 5.2. The same example was
studied in [3] and a similar one with two species was studied in [16]. The parameters
T1, B1, α1, q1, q2, q3, q4 are the same as those in Example 5.2 except q1 = 200. The initial
values consist of totally burnt gas inside of a circle with radius 10 and totally unburnt gas
everywhere outside this circle. The set up is as follows

(ρ,u,v,p,z1,z2,z3,z4)(x,y,0)=

{
(ρl ,ul,vl ,pl,(z1)l,(z2)l,(z3)l,(z4)l), r≤10,
(ρr,ur,vr,pr,(z1)r,(z2)r,(z3)r,(z4)r), r>10,

(5.4)

where r=
√

x2+y2, ρl=2, ul=10x/r, vl =10y/r, pl =40, (z1)l=0, (z2)l=0.2, (z3)l=0.475,
(z4)l =0.325 and ρr =1, ur =0, vr =0, pr =1, (z1)r =0.1, (z2)r =0.6, (z3)r =0.2, (z4)r =0.1.
The computational domain is [0,50]×[0,50].
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Figure 10: Numerical solutions of Example 5.4 at t=2 with Nx×Ny=25×25 at 1D cross section y=x, CFL=0.1,
Nr = 100. Solid line: reference solution. Red dashed dot line with symbols: WENO5/SR. Green dashed line:
splitting WENO5. Left: pressure. Right: density.
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Figure 11: Numerical solutions of Example 5.4 at t=2 with Nx×Ny=25×25 at 1D cross section y=x, CFL=0.1,
Nr = 100. Solid line: reference solution. Red dashed dot line with symbols: WENO5/SR. Green dashed line:
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Figure 12: Numerical solutions of Example 5.4 by WENO5/SR with Nx×Ny = 25×25, CFL= 0.1, Nr = 100.
Velocity fields. Left: at t=1. Right: at t=2.
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Figure 13: Numerical solutions of Example 5.4 by WENO5/SR with Nx×Ny = 25×25, CFL= 0.1, Nr = 100.
Velocity fields. Left: at t=4. Right: at t=6.

This is a radially symmetric problem and the detonation front is circular. The bound-
ary conditions are solid-wall boundary conditions on the left and lower boundaries and
outflow boundary conditions on the right and upper boundaries. Figs. 10-11 show the
pressure, density and mass fractions z1 and z2 at t=2 at 1D cross section y=x. We compare
the results between the proposed WENO5/SR method and the splitting WENO5 using
the same mesh size Nx×Ny=25×25 (∆x=∆y=2), CFL=0.1 and Nr =100. The reference
solution is computed by standard WENO5 scheme with a mesh of 1000×1000 grid points.
The proposed scheme clearly has captured the detonations well in the coarse mesh, how-
ever the regular WENO scheme produces spurious waves in all figures. Figs. 12 and 13
show the velocity contour by the proposed WENO5/SR scheme at four different times
t=1,2,4 and 6. We can see the circular detonation front moving nicely. There is no spuri-
ous nonphysical wave generated.

Example 5.5. A 2D detonation wave with 5 species and 2 reactions.

The second 2D example is the 2D case analogous to Example 5.3 with 5 species and 2
reactions. The parameters T1, T2, B1, B2, α1, α2, q1, q2, q3, q4, q5 are the same as those in
Example 5.3. The initial condition is given by

(ρ,u,v,p,z1,z2,z3,z4,z5)(x,y,0)=

{
(ρl ,ul,vl ,pl ,(z1)l ,(z2)l ,(z3)l ,(z4)l ,(z5)l), x≤ ξ(y),
(ρr ,ur,vr,pr,(z1)r,(z2)r,(z3)r,(z4)r,(z5)r), x> ξ(y),

(5.5)
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Figure 14: Numerical solutions by WENO5/SR of Example 5.5 at t=2 with 100×51 at 1D cross section y=12.5,
CFL= 0.1, Nr = 100. Solid line: reference solution. Red dashed dot line with symbols: WENO5/SR. Green
dashed line: splitting WENO5. Left: pressure. Right: density.

10 20 30 40

5

10

15

20

25

30

WENO5/SR
WENO5

x

T

10 20 30 400

0.02

0.04

0.06

0.08

WENO5/SR
WENO5

x

z1

Figure 15: Numerical solutions by WENO5/SR of Example 5.5 at t=2 with 100×51 at 1D cross section y=12.5,
CFL= 0.1, Nr = 100. Solid line: reference solution. Red dashed dot line with symbols: WENO5/SR. Green
dashed line: splitting WENO5. Left: temperature. Right: mass fraction of z1.

where

ξ(y)=

{
12.5−|y−12.5|, |y−12.5|≤7.5,
5, |y−12.5|>7.5,

(5.6)

and ρl=2, ul=10, vl =0, pl=40, (z1)l=0, (z2)l=0, (z3)l=0.17, (z4)l=0.63, (z5)l=0.2 and
ρr=1, ur=0, vr=0, pr=1, (z1)r=0.08, (z2)r=0.72, (z3)r=0, (z4)r=0, (z5)r=0.2. The com-
putational domain is [0,150]×[0,25]. The inflow boundary conditions are used on the left
boundary and the outflow boundary conditions are used on the right boundary. The top
and bottom boundaries are solid walls. The same example was studied in [3]. A similar
problem with 2-species was computed in our previous work [33]. One important feature
of this solution is the appearance of triple points, which travel along the detonation front
in the transverse direction and reflect from the upper and lower walls, forming a cellular
pattern. Behind the detonation front, there is a strong shock.

We first show the comparison of WENO5/SR and splitting WENO5 with the same
mesh size ∆x=∆y=0.5, CFL=0.1 and Nr =100 at the 1D cross section y=12.5 at t=2 in
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Figure 16: Computed density for Example 5.5: WENO5/SR with 300×51 on domain [0,150]×[0,25], CFL=0.05
and Nr =100 at nine different evolutionary times from t=0 to t=8.

Figs. 14 and 15. Since at t=2 the flow has not touched x=50, the results are computed on
the cutoff computational domain [0,50]×[0,25] with Nx×Ny = 100×51. It is easy to see
from the pressure, temperature and mass fraction results that the regular WENO scheme
already produces spurious waves (around x=35 to x=40) at t=2.

Next, the density contours are computed by WENO5/SR with the mesh Nx×Ny =
300×51 (same mesh size ∆x = ∆y = 0.5) on the whole domain [0,150]×[0,25]. Fig. 16
show the results at nine evolutionary times from t=0 to t=8. It is clear that there are no
spurious waves in the wave front by our proposed scheme.
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6 Concluding remarks

In this paper, we extend our previous work [33] of SR from two species single-reaction to
multi-species multi-reaction, which is significantly more difficult because of the multiple
scales generated by different reactions. The proposed scheme is a fractional scheme with
the flexibility of choosing any spatial high-order shock-capturing scheme in the convec-
tion step. In the reaction step, any explicit ODE solver can be used with the transition
points reconstructed by Harten’s ENO subcell resolution idea. The method has high
order accuracy in space for smooth flows. It is able to capture the correct location of dis-
continuity in very coarse mesh. We remark that our method can use fewer points than
the previous methods in [3] to obtain similar results for the similar examples. The reason
may be due to the high order accuracy of the spatial scheme in the convection step.

Although the underresolved temporal mesh problem is not solved, as the stiffness
increases, small time step is only needed for the reaction step with more sub-steps. On-
going work is to investigate implicit time discretization in the ODE step to address this
small time step issue.

For more complex fully coupled multi-species and multi-reaction flows, further in-
vestigations are needed. For example, in a 13-species and multi-reaction hypersonic sim-
ulation on a hypersonic spacecraft earth-entry-like condition simulation, the relative dis-
tance between the shear/contact and shock is different from one grid spacing to another
as well as their discontinuity locations for each numerical method indicated in Kotov
et al. [21]. This spurious behavior of shock-capturing methods has not appeared in the
literature.
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