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THE MULTISCALE DISCONTINUOUS GALERKIN METHOD

FOR SOLVING A CLASS OF SECOND ORDER ELLIPTIC

PROBLEMS WITH ROUGH COEFFICIENTS

WEI WANG, JOHNNY GUZMÁN, AND CHI-WANG SHU

Abstract. We develop a multiscale discontinuous Galerkin (DG) method for solving a class
of second order elliptic problems with rough coefficients. The main ingredient of this method
is to use a non-polynomial multiscale approximation space in the DG method to capture the
multiscale solutions using coarse meshes without resolving the fine scale structure of the solution.
Theoretical proofs and numerical examples are presented in both one and two dimensions. For
one-dimensional problems, optimal error estimates and numerical examples are shown for arbitrary
order approximations. For two-dimensional problems, numerical results are presented by the high
order multiscale DG method, but the error estimate is proven only for the second order method.

Key words. multiscale discontinuous Galerkin method, rough coefficients

1. Introduction

In this paper, we consider solving a class of second order elliptic boundary value
problems with highly oscillatory coefficients. Such equations arise in, e.g. composite
materials and porous media. The solution oscillates rapidly and requires a very
refined mesh to resolve. It is numerically difficult for traditional numerical methods
to solve such problems due to the tremendous amount of computer memory and
CPU time. Recently developed multiscale finite element methods [3, 13, 2, 15, 16,
11, 6, 23] provide an idea of constructing multiscale bases which are adapted to
the local properties of the differential operators, allowing adequate resolution on a
coarser mesh.

In particular, we are interested in the second order elliptic boundary value prob-
lems

(1) −∇ · (A(x)∇u) = f(x) in Ω

with the boundary condition

u = 0 on ∂Ω,

where Ω is a rectangular domain, f is a function in L2(Ω) and A(x) is the coefficient
matrix containing small scales.

In applications, Eq. (1) is the pressure equation in modeling two phase flow in
porous media (see [17, 15, 6]), with u and A(x) interpreted as the pressure and
the relative permeability tensor. Especially when the stochastic permeabilities are
upscaled, A(x) is a diagonal tensor. Eq. (1) is also the equation of steady state heat
(electrical) conduction through a composite material, with A(x) and u interpreted
as the thermal (electric) conductivity and temperature (electric potential) (see [15]).

In the one-dimensional case, A(x) = a(x) and the equation becomes

(2) −(a(x)ux)x = f(x).
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In the two-dimensional case, we consider A with the following special form

A(x) =

(
a(x) 0
0 b(y)

)
,

and the two-dimensional equation is

(3) −(a(x)ux)x − (b(y)uy)y = f(x, y).

The typical situation in multiscale modeling, has a(x) = aε(x, ε) and b(y) = bε(y, ε)
being oscillatory functions involving a small scale ε. We do not need the assumption
of any periodicity of aε and bε and we do not assume any scale separation. The
coefficients as well as the solution u can then have a continuum scale spectrum from
O(ε) to O(1). We only assume a(x) and b(y) belong to L∞(Ω) and satisfy

(4) 0 < α ≤ a(x), b(y) ≤ β < ∞
for any (x, y) ∈ Ω, where α and β are constants independent of ε. If the coefficient
a(x) is rough, then the solution u to (2) will also be rough; to be more specific, we
will in general have

||a||H1(Ω) → ∞, ||u||H2(Ω) → ∞, as ε → 0.

Thus, u is not uniformly bounded with respect to ε in H2(Ω) or in H1+δ(Ω) for
any δ > 0.

Notice that we are considering the special class (3) of two-dimensional problems
for the convenience of explicitly constructed multiscale bases, thereby making the
multiscale algorithm efficient. This special class of multiscale problems does have
important applications in, e.g. two-dimensional semi-conductor quantum devices
(for application of such device models in one-dimension, see [20]), in which there
is a specific direction of oscillation in the coefficients at each location in space and
time. We remark that the proposed numerical method can also be applied to cases
with more general two-dimensional coefficients, at the price of having to numerically
constructing the multiscale bases.

As early as in the 60s, Tikhonov and Samarskii [18] (see also [14]) already de-
signed a simple 3-point finite difference scheme utilizing harmonic averages and the
special solution structure of (2). In particular, the scheme in [14] can give exact
solutions to the one-dimensional problem (2) at the grid points. In [3, 2], Babuška
et al. proposed an approach to this kind of problems based on continuous (or non-
conforming) finite element methods. In [3] theoretical proofs were provided for the
one-dimensional case and arbitrary order approximation. The two-dimensional case
was considered in [2], where only second-order accurate elements were considered
(piecewise linear elements if A is constant). One of the difficulties in using higher
order elements in multi-dimensions for the continuous Galerkin method is to make
the multi-scale spaces conforming. Compared to continuous finite element meth-
ods, discontinuous Galerkin (DG) methods do not enforce continuity at the element
interfaces, thus providing an easy way to construct multiscale basis in higher di-
mensions with high-order elements. Of course, there is a price to pay for the DG
multiscale method for this flexibility: we must carefully analyze the errors associ-
ated with these discontinuities across element interfaces, to obtain high order error
estimate. This is done for the arbitrary high order scheme in one dimension and
for the second order scheme in two dimension in this paper. Numerical evidence
indicates that our multiscale DG scheme can achieve higher than second order ac-
curacy in two dimensions, as shown in this paper, although a proof is not available
at this time.
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In [23], Yuan and Shu applied the approach of Babuška et al. to the Babuška-
Zlámal DG method [4]. They developed a multiscale Babuška-Zlámal DG method
based on a non-polynomial basis for Eq. (2) (see [22]). Both theoretical proofs and
numerical tests were presented for the one-dimensional case. Followed by Yuan
and Shu’s work, in [19], Wang improved the one-dimensional proof of the multi-
scale Babuška-Zlámal DG method by only assuming that the solution is uniformly
bounded with respect to ε in H1(Ω). In contrast, more regularity was assumed in
[23] while proving estimates for the multiscale Babuška-Zlámal DG method.

We would like to remark that, as pointed out above, there is a three-point finite
difference method developed by Tikhonov and Samarskii [18] and by Godev et
al. [14], which can solve the solution of the one-dimensional problem (2) exactly
at the grid points. However it seems difficult to extend this method to multi-
dimensions. There are also other similar finite difference or finite volume methods
such as those in [12], which are based on harmonic averages and in general have
resonance errors and thus would fail in multiscale problems with no separation of
scales. The methods discussed in this paper aim at obtaining uniform high order
accuracy, with respect to the small scale ε, when there is no separation of scales
(the problem could have a continuum of scales from O(ε) to O(1)) and the mesh
size h is much larger than ε.

In this paper we develop a multiscale symmetric interior penalty DG (IP-DG ([10,
21, 1])) method in one and two dimensions. In particular, we prove optimal error
estimates in the one-dimensional case for arbitrary order approximations. We only
assume that the solution is uniformly bounded with respect to ε in H1(Ω). In the
two-dimensional case we prove optimal error estimates for the lowest-order (second-
order accurate) multiscale IP-DG method. However, we provide numerical results
for higher order elements as well. Finally, we argue that the recently introduced
hybridizable DG methods [8, 7] using piecewise polynomial approximations are
convergent for multiscale problems considered here. However, the approximations
are at most first-order accurate. This demonstrates the necessity of using multiscale
non-polynomial bases when high order accuracy is desired.

2. Multiscale DG methods in one dimension

First we consider the one-dimensional multiscale problem (2) on the domain [0, 1]
with boundary condition u(0) = u(1) = 0. Let Ij = (xj− 1

2

, xj+ 1

2

), j = 1, . . . , N ,

be a partition of [0, 1]. For simplicity, we assume that the family of partitions are
quasi-uniform.

The primal formulation of the IP-DG method [10, 21, 1] is to find uh ∈ Vh such
that

(5) Bh(uh, vh) =

∫

Ω

fvhdx, ∀vh ∈ Vh,

where

(6)
Bh(u, v) =

∑N
j=1

∫
Ij
a uxvxdx

−∑N
j=0

(
[u]j−1/2{a vx}j−1/2 + {a ux}j−1/2[v]j−1/2 +

η
h [u]j−1/2[v]j−1/2

)
,

in which η is a sufficiently large positive constant for maintaining stability and rates
of convergence, and the average {u} and jump [u] are defined as follows:

(7) [u]j−1/2 = u(x+
j−1/2)− u(x−

j−1/2), {u}j−1/2 =
1

2
(u(x+

j−1/2) + u(x−
j−1/2)),

where u(x+
j−1/2) and u(x−

j−1/2) are the right and left limits of u at the cell boundary

j − 1/2, j = 1, . . . , N . At the domain boundaries, we have u(x−
1/2) = 0 and
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u(x+
N+1/2) = 0. Here Vh is the finite element space containing functions which

are discontinuous across cell interfaces. For the traditional DG methods, these
functions are piecewise polynomials. For the multiscale IP-DG method, the basis
functions are constructed to better approximate the solution. The multiscale basis
will involve the small scales and may not be polynomials any more. The multiscale
IP-DG method is constructed by using such kind of multiscale basis. We will
first define the multiscale space Vh and then prove optimal error estimates for the
multiscale IP-DG method.

2.1. Multiscale space. In our multiscale IP-DG method, the spaces are con-
structed below to approximate the solution to (2) (see [23, 3]):

(8) Sk = {φ ∈ H1(0, 1) : −(aφx)x|Ij ∈ P k−2(Ij) for each j}.
Here we define P−1(Ij) = {0}. Hence, the multiscale IP-DG method will solve (5)
with Vh = Sk.

The multiscale approximation space (8) for our model problem (2) is explicitly
given by
(9)

Sk =

{
v : v|Ij ∈ span

{
1,

∫ x

xj

1

a(ξ)
dξ,

∫ x

xj

ξ − xj

a(ξ)
dξ, ...,

∫ x

xj

(ξ − xj)
k−1

a(ξ)
dξ

}}
.

Next, we collect some properties of the spaces Sk (see Lemma 4.1 in [3]).

Lemma 1. Given a function u ∈ H1([0, 1]), there is a unique interpolation uI ∈ Sk

satisfying

(10)
uI(xj+ 1

2

) = u(xj+ 1

2

), j = 0, 1, . . . , n,∫
Ij
(u− uI)(x− xj− 1

2

)ldx = 0, l = 0, . . . , k − 2, , j = 1, . . . , N.

The following approximation results hold (see Lemma 4.3 in [3]):

Lemma 2. Let u solve (2) and let uI be its interpolant defined in (10), then for
every j = 1, . . . , N we have

(11) ‖u− uI‖L2(Ij) ≤ C(α, β)hℓ+1‖f‖Hℓ−1(Ij),

(12) ‖u− uI‖H1(Ij) ≤ C(α, β)hℓ‖f‖Hℓ−1(Ij),

where C(α, β) is independent of u and h but depends on α, β. Here 1 ≤ ℓ ≤ k.

Remark 1. There are other ways to prove the above estimates in which one does
not need to impose the continuity on the cell boundary and are able to get the same
optimal approximation results as in Lemma 2, see [23].

2.2. Error estimates. In this section we prove optimal error estimates for the
multiscale IP-DG method. For simplicity, we will consider quasi-uniform meshes
throughout this paper. We first need to define the energy norm

9v92 :=
N∑

j=1

‖
√
avx‖2L2(Ij)

+ h
N∑

j=0

{avx}2j+1/2 +
1

h
[v]2j+1/2.

We will need the following approximation result using the energy norm.

Lemma 3. Let u solve (2) and let uI be its interpolant defined in (10), then we
have

9u− uI9 ≤ C hℓ‖f‖Hℓ−1([0,1]).

for any 1 ≤ ℓ ≤ k.
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Proof. Since u− uI vanishes at all the nodes we have

9u− uI9
2 =

N∑

j=1

‖
√
a(u − uI)x‖2L2(Ij)

+ h

N∑

j=0

({a(u− uI)x}2j+1/2.

Since a is bounded
N∑

j=1

‖
√
a(u− uI)x‖2L2(Ij)

≤C ‖(u− uI)x‖2L2([0,1])

≤‖u− uI‖2H1([0,1])

≤C h2 ℓ‖f‖2Hℓ−1([0,1]).

In the last inequality we have used (12).
To handle the other term, we use the fact that

|(aux)(x
+
j−1/2)− (a(uI)x)(x

+
j−1/2)|

≤|Pk−1(aux)(x
+
j−1/2)− a(uI)x(x

+
j−1/2)|+ |Pk−1(aux)(x

+
j−1/2)− aux(x

+
j−1/2)|,

where Pk−1 : L2(Ij) → P k−1(Ij) is the L2 projection onto P k−1(Ij).
If we use the trace inequality and the approximation properties of Pk−1 we have

|Pk−1(aux)(x
+
j−1/2)− aux(x

+
j−1/2)|

≤ C

h1/2
‖Pk−1(aux)− aux‖L2(Ij) + Ch1/2‖(Pk−1(aux)− aux)x‖L2(Ij)

≤C hℓ−1/2‖Dℓ(aux)‖L2(Ij)

=C hℓ−1/2‖Dℓ−1f‖L2(Ij)

≤C hℓ−1/2‖f‖Hℓ−1(Ij),

where we have used the fact that u solves the equation (2). Therefore, we have

h1/2|(Pk−1(aux)(x
+
j−1/2)− aux(x

+
j−1/2)| ≤ C hℓ‖f‖Hℓ−1(Ij),

for any 1 ≤ ℓ ≤ k. Since uI ∈ Sk, we easily see that a(uI)x|Ij ∈ P k−1(Ij), so by
using an inverse estimate we have

|Pk−1(aux)(x
+
j−1/2)− a(uI)x(x

+
j−1/2)|

≤C
1

h1/2
‖Pk−1(aux)− a(uI)x‖L2(Ij)

≤C
1

h1/2
‖(aux)− a(uI)x‖L2(Ij) + C

1

h1/2
‖Pk−1(aux)− aux‖L2(Ij)

≤C β
1

h1/2
‖ux − (uI)x‖L2(Ij) + C

1

h1/2
‖Pk−1(aux)− aux‖L2(Ij)

≤C hℓ−1/2‖f‖Hℓ−1(Ij).

In the last inequality we have used (11). Therefore,

h1/2 |(aux)(x
+
j−1/2)− (a(uI)x)(x

+
j−1/2)| ≤ C hℓ‖f‖Hℓ−1(Ij).

In a similar way we can show that

h1/2 |(aux)(x
−
j−1/2)− (a(uI)x)(x

−
j−1/2)| ≤ C hℓ‖f‖Hℓ−1(Ij−1).

Using this result and adding the contribution of every node we get

h

N∑

j=0

{a(u− uI)x}2j+1/2 ≤ C h2 ℓ‖f‖2Hℓ−1([0,1]).



MULTISCALE DG FOR ELLIPTIC PROBLEMS WITH ROUGH COEFFICIENTS 33

Hence,

9u− uI9
2 ≤ C h2 ℓ‖f‖2Hℓ−1([0,1]).

The result now follows after we take the square root on both sides. �

Now we can state our main result of this section.

Theorem 2.1. Let uh ∈ Vh = Sk be the multiscale IP-DG solution of (5), then we
have

9u− uh9 ≤C hk‖f‖Hk−1([0,1])(13a)

‖u− uh‖L2([0,1]) ≤C hk+1‖f‖Hk−1([0,1]).(13b)

Proof. We first prove (13a). To do this we collect some results about the bilinear
form Bh(·, ·) defined in (6). The first result follows easily by applying the Cauchy-
Schwartz inequality and using the fact that a is bounded.

Lemma 4. (Boundedness) There exists a constant Cb such that

Bh(w, v) ≤ Cb 9 w 9 9v 9 ∀w, v ∈ Vh = Sk.

The second result concerns the coercivity of the bilinear form.

Lemma 5. (Stability) There exists some constant Cs such that

(14) Bh(v, v) ≥ Cs 9 v 92 ∀v ∈ Vh = Sk.

The proof of this lemma, when Vh is the space of piecewise polynomials, is
contained in [1] (in the multi-dimensional case as well). The case when Vh = Sk is
similar, with the main difference being that we have to apply an inverse estimate
to functions of the form avx. However, by the definition of Sk we have avx|Ij ∈
P k−1(Ij) hence we can apply inverse estimates; see the proof of the two-dimensional
case in the next section for a similar idea.

Finally, using integration by parts we can easily prove the following Galerkin
orthogonality result.

Lemma 6. (Orthogonality) We have the following orthogonality equality

Bh(u− uh, v) = 0 ∀v ∈ Vh = Sk.

Using Lemmas 5, 6 and 4 we obtain

Cs 9 uI − uh92 ≤ Bh(uI − u, uI − uh) ≤ Cb 9 u− uI 9 9uI − uh 9 .

Hence,

9uI − uh9 ≤ Cb

Cs
9 u− uI 9 .

Therefore, the triangle inequality gives

9u− uh9 ≤
(
1 +

Cb

Cs

)
9 u− uI 9 .

The inequality (13a) now follows from Lemma 3.
In order to prove (13b), we define the dual problem

(15) −(aϕx)x = u− uh, [0, 1],

with the boundary conditions

(16) ϕ(0) = ϕ(1) = 0.
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Therefore,

‖u− uh‖2L2([0,1]) =−
∫ 1

0

(u− uh) (aϕx)x dx

=Bh(u− uh, ϕ).

In the last equation we used the consistency and symmetry of the IP-DG bilinear
form Bh(·, ·).

Using Lemma 6 we get

‖u− uh‖2L2([0,1]) = Bh(u − uh, ϕ− ϕI),

where ϕI is the interpolant of ϕ defined in (10). By Lemma 4 we get

‖u− uh‖2L2([0,1]) ≤ Cb 9 u− uh 9 9ϕ− ϕI 9 .

By using Lemma 3 (with ℓ = 1) we have 9ϕ−ϕI9 ≤ Ch‖u−uh‖L2([0,1]). We arrive
at

‖u− uh‖L2([0,1]) ≤ C h 9 u− uh 9 .

The inequality (13b) now follows from (13a). �

3. Multiscale DG methods in two dimensions

We now consider the two-dimensional elliptic multiscale problem (3) on a square
domain [−1, 1]2. Let Th be a collection of quasi-uniform rectangular partitions of
Ω and Eh be the collection of edges of the Th. Define the following inner products

(v, w)Th
=

∑

K∈Th

∫

K

v(x, y) · w(x, y)dx dy,

〈v, w〉Eh
=

∑

e∈Eh

∫

e

v(s) · w(s) ds.

The IP method finds uh ∈ Vh such that

(17) Bh(uh, vh) = (f, vh)Th
∀v ∈ Vh,

where the bilinear form is defined by

Bh(u, v) := (A∇u,∇v)Th
− 〈{{A∇u}}, [[v]]〉Eh

− 〈{{A∇v}}, [[u]]〉Eh
+

η

h
〈[[u]], [[v]]〉Eh

and η is a sufficiently large positive constant. For a scalar valued function u, we
define the average {{u}} and the jump [[u]] as follows. Let e be an interior edge
shared by elements K1 and K2. Define the unit normal vectors n1 and n2 on e
pointing exterior to K1 and K2, respectively. With ui := u|∂Ki

, we set

(18) {{u}} =
1

2
(u1 + u2), [[u]] = u1n1 + u2n2 on e ∈ Eo

h,

where Eo
h is the set of interior edges e. For a vector-valued function q we define q1

and q2 analogously and set

(19) {{q}} =
1

2
(q1 + q2), [[q]] = q1 · n1 + q2 · n2 on e ∈ Eo

h.

For e ∈ E∂
h , the set of boundary edges, we set

(20) [[u]] = un, {{q}} = q on e ∈ E∂
h ,

where n is the outward unit normal. We do not require either of the quantities
{{u}} or [[q]] on boundary edges, and we leave them undefined.
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In this section, the high order multiscale IP-DG method for the two dimensional
case will be constructed, however the optimal error estimate will be shown only for
the second order method.

3.1. Multiscale spaces. The one-dimensional approach can be easily expanded
to the two-dimensional case, i.e. we construct the two-dimensional multiscale ap-
proximation space as follows (see [23]):

(21) Sk
2 = {φ ∈ H1(Ω) : −(a(x)φx)x − (b(y)φy)y|K ∈ P k−2(K), for all K ∈ Th},

where (xK , yK) is the barycenter of the element K. In particular,

S1
2 =

{
v : v|K ∈ span

{
1,

∫ x

xK

1

a(ξ)
dξ,

∫ y

yK

1

b(η)
dη,

}}
,

S2
2 =

{
v : v|K ∈ span

{
1,

∫ x

xK

1

a(ξ)
dξ,

∫ y

yK

1

b(η)
dη,

∫ x

xK

ξ − xK

a(ξ)
dξ,

∫ x

xK

1

a(ξ)
dξ

∫ y

yK

1

b(η)
dη,

∫ y

yK

η − yK
b(η)

dη

}}
.

For higher k it is more difficult to find an explicit formula for the multiscale basis
(21).

3.2. Error estimates. Here we give an error analysis of the lowest-order (k = 1)
IP-DG method. In order to do so, we define the following energy norm

9v92 := (A∇v,∇v)Th
+

1

h
〈[[v]], [[v]]〉Eh

+ h〈{{A∇v}}, {{A∇v}}〉Eh
.

We now state our main result.

Theorem 3.1. Let u be the solution of (3) and let uh ∈ Vh = S1
2 be the IP-DG

approximation, then

9u− uh9 ≤C h‖f‖L2(Ω),(22a)

‖u− uh‖L2(Ω) ≤C h2‖f‖L2(Ω).(22b)

Before we prove this theorem we will state and prove some important lemmas.

Lemma 7. The following stability result holds

9v92 ≤ CBh(v, v) ∀v ∈ Vh = S1
2 .

Proof. Let v ∈ Vh, then by the definition of Bh(·, ·) we get

(23) Bh(v, v) = (A∇v,∇v)Th
− 2〈{{A∇v}}, [[v]]〉Eh

+
η

h
〈[[v]], [[v]]〉Eh

.

By the arithmetic-geometric mean inequality we get that

(24) 2〈{{A∇v}}, [[v]]〉Eh
≤ 1

δh
〈[[v]], [[v]]〉Eh

+ hδ〈{{A∇v}}, {{A∇v}}〉Eh
,

for any δ > 0. Next, we bound hδ〈{{A∇v}}, {{A∇v}}〉Eh
. One can easily show that

(25) 〈{{A∇v}}, {{A∇v}}〉Eh
≤ 2

∑

K∈Th

∫

∂K

(A∇v) · (A∇v).

By the definition of Vh, A∇v ∈ P 1(K) on each triangle K ∈ Th. Hence, by a
standard inverse inequality for the space P 1(K)

∫

∂K

(A∇v) · (A∇v) ≤ Cinv h
−1

∫

K

(A∇v) · (A∇v) ≤ Cinvβ h−1

∫

K

(A∇v) · ∇v.
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Hence,

(26) hδ〈{{A∇v}}, {{A∇v}}〉Eh
≤ 2δCinvβ(A∇v,∇v)Th

.

If we plug this result into (24) we get

(27) 2〈{{A∇v}}, [[v]]〉Eh
≤ 1

δh
〈[[v]], [[v]]〉Eh

+ 2δCinvβ(A∇v,∇v)Th
.

Using (23) we obtain

Bh(v, v) ≥(A∇v,∇v)Th
+

η

h
〈[[v]], [[v]]〉Eh

− 1

δh
〈[[v]], [[v]]〉Eh

− 2δCinvβ(A∇v,∇v)Th

=(1 − 2δCinvβ)(A∇v,∇v)Th
+ (

η

h
− 1

δh
)〈[[v]], [[v]]〉Eh

.

If we choose δ so that (1 − 2δCinvβ) ≤ 1
2 and if we assume that η is sufficiently

large so that η ≥ 1
2δ , then we get

(A∇v,∇v)Th
+

1

h
〈[[v]], [[v]]〉Eh

≤ C B(v, v).

Finally, the proof is complete if we use (26). �

The next lemma concerns approximation properties of the space S1
2 .

Lemma 8. Let u solve (3). Then, there exists v ∈ Vh = S1
2 so that

9u− v9 ≤ Ch‖f‖L2(Ω).

Proof. We start with a natural transformation. Define

x̂ :=

∫ x

−1

1

a(s)
ds

ŷ :=

∫ y

−1

1

b(s)
ds.

We see that the transformation (x, y) → (x̂, ŷ) maps Ω = [−1, 1]× [−1, 1] to Ω̂ =

[−1,
∫ 1

−1
1

a(s)ds] × [−1,
∫ 1

−1
1

b(s) ]. Also it maps the rectangle K ∈ Th to a rectangle

K̂.
Accordingly, for any function u defined on Ω we define a function û on Ω̂ by

û(x̂, ŷ) := u(x, y).

Define v̂ to be the piece-wise linear function defined on Ω̂ such that v̂|K̂ ∈ P 1(K̂)
satisfies

hK̂‖∇(û− v̂)‖L2(K̂) + ‖û− v̂‖L2(K̂) ≤ Ch2
K̂
|D2û|L2(K̂),

where hK̂ = diam(K̂).
Now define v ∈ L2(Ω), such that on each K ∈ Th

v(x, y) := v̂(x̂, ŷ).

We easily see that v ∈ Vh.
It is clear that

‖u− v‖L2(K) ≤
1

α
‖û− v̂‖L2(K̂) ≤ Ch2

K̂
|D2û|L2(K̂).

Taking the sum over K ∈ Th we get

(28) ‖u− v‖L2(Ω) ≤ Ch2|D2û|L2(Ω̂),

where we have used that hK̂ ≤ ChK .
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We also obtain
∫

K

A∇(u − v) · ∇(u − v)dx dy ≤ 1

α

∫

K

A∇(u− v) · A∇(u − v)dx dy

=
1

α

∫

K̂

∇(û− v̂) · ∇(û− v̂)â(x̂)b̂(ŷ)dx̂ dŷ

≤β2

α

∫

K̂

∇(û− v̂) · ∇(û− v̂)dx̂ dŷ

≤Ch2
K̂
|D2û|2

L2(K̂)
.

Hence, if we sum over K we get that

(29) (A∇(u − v),∇(u − v))Th
≤ Ch2|D2û|2

L2(Ω̂)
.

Finally, we set that
∫

K

∇(A∇(u)) : ∇(A∇(u))dx dy

=

∫

K̂

(
1

â
∂2
x̂û+ (

1

â
+

1

b̂
)∂x̂∂ŷû+

1

b̂
∂2
ŷ û)â b̂ dx̂ dŷ

≤β2

α
|D2û|2

L2(K̂)
.

Hence,

(30)
∑

K∈Th

‖∇(A∇u)‖2L2(K) ≤ C |D2û|2
L2(Ω̂)

.

From the definition of 9 · 9 we see that

9u− v92 =(A∇(u − v),∇(u − v))Th
+

1

h
〈[[(u − v)]], [[(u − v)]]〉Eh

+ h〈{{A∇(u− v)}}, {{A∇(u− v)}}〉Eh
.

We bound each term individually. The first term was bounded in (29). For the
second term we use a trace inequality to get

1

h
〈[[(u − v)]], [[(u − v)]]〉Eh

≤ C

h2
‖u− v‖2L2(Ω) + C‖∇(u − v)‖2L2(Ω)

≤ C

h2
‖u− v‖2L2(Ω) + C

1

α
(A∇(u − v),∇(u − v))Th

≤Ch2|D2û|2
L2(Ω̂)

.

In the last inequality we used (28) and (29).
If we use a trace inequality we get that

h〈{{A∇(u− v)}}, {{A∇(u− v)}}〉Eh

≤C
∑

K∈Ωh

‖A∇(u− v)‖2L2(K) + C h2
∑

K∈Th

‖∇(A∇u)‖2L2(K)

≤C

α
(A∇(u − v),∇(u − v))Th

+ Ch2
∑

K∈Th

‖∇(A∇u)‖L2(K)

≤C h2|D2û|2
L2(Ω̂)

,

where we have used (29) and (30). We ave also used the fact that ∇(A∇v)|K = 0
for v ∈ Vh and K ∈ Th.
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Hence,

9u− v92 ≤ Ch2|D2û|2
L2(Ω̂)

.

In order to complete the proof we argue that

(31) |D2û|L2(Ω̂) ≤ C‖f‖L2(Ω).

We easily see that

−1

â
∂2
x̂û− 1

b̂
∂2
ŷ û =f̂ Ω̂,

û =0, ∂Ω̂.

By Berstein’s Theorem [5] we get that

|D2û|L2(Ω̂) ≤ C‖f̂‖L2(Ω̂).

Finally, using the fact that ‖f̂‖L2(Ω̂) ≤ C‖f‖L2(Ω) gives (31) and this completes the

proof. �

We can now prove Theorem 3.1.

Proof. We first prove (22a). To this end, by Lemma 7 we have

9v − uh92 ≤ C Bh(v − uh, v − uh),

for any v ∈ Vh.
By the Galerkin orthogonality of the IP-DG method we have

9v − uh92 ≤ C Bh(v − u, v − uh).

Clearly, Bh(·, ·) is a bounded bilinear form. That is,

Bh(v − u, v − uh) ≤ C 9 v − u 9 9v − uh 9 .

Therefore,
9v − uh9 ≤ C 9 v − u 9 .

The triangle inequality gives

9u− uh9 ≤ C 9 v − u 9 .

Since this holds for any v ∈ Vh, Lemma 8 gives (22a).
In order to prove (22b), we will use a duality argument. We define the problem

−(a(x)φx(x, y))x − (b(y)φy(x, y))y =(u − uh)(x, y), (x, y) ∈ Ω = [−1, 1]2,(32a)

φ(x, y) =0, (x, y) ∈ ∂Ω.(32b)

By the adjoint consistency of the IP-DG method we have

‖u− uh‖2L2(Ω) = Bh(u− uh, φ) = Bh(u− uh, φ− v),

for any v ∈ Vh. Here we have used the Galerkin orthogonality. Hence,

‖u− uh‖2L2(Ω) ≤ C 9 u− uh 9 9φ− v9 ≤ C h 9 u− uh 9 ‖u− uh‖L2(Ω),

where we have used Lemma 8. The inequality (22b) now follows after we apply
(22a). �

4. Numerical results

In this section, both one- and two-dimensional examples are presented to demon-
strate that the proposed multiscale IP-DG method can capture the small scales in
a very coarse mesh whereas the traditional IP-DG method (i.e. that uses piecewise
polynomial spaces) cannot do that. We will use the notation q = ∇u and qh = ∇uh

in the error tables.
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Figure 1. Exact solution of the one-dimensional example 1. Left:
u; middle: zoomed part of u; right: ux.

4.1. One-dimensional examples. The first one-dimensional example is the same
as that in [23]. However the results are computed by the proposed multiscale IP-
DG method. The second example is used to show a(x) = aε(x, ε) does not have
separation of scales. In both cases, the multi-scale IP-DGmethod shows the optimal
order of convergence for the solution with a very small ε = 0.01 and ε = 0.001
starting from coarse meshes. The stabilization parameter in the IP-DG method is
taken as η = 10.

4.1.1. One-dimensional example 1. Consider the one-dimensional multiscale
problem Eq. (2) with

(33) a(x) = aε(x, ε) =
1

2 + x+ sin
(
2πx
ε

) , f = x, x ∈ [0, 1].

The exact solution of Eq. (33) with ε = 0.01 is plotted in Fig. 1. The solution itself
is oscillatory in the level of ε. However the derivative of the solution is oscillating
rapidly (see Fig. 1 right).

We first run this multiscale problem by the traditional IP-DG method with
polynomial basis. Table 1 shows the L2 errors and orders of accuracy for ε = 0.01
and ε = 0.001. We can see that, for ε = 0.01, the traditional IP-DG method starts
to converge from the mesh size N = 320. However, for ε = 0.001, we cannot see any
order of convergence even when the mesh is refined to N = 640. This is because the
traditional IP-DG method can only have the expected order of convergence when
the mesh is refined enough relative to ε, which is consistent with the error estimates
for such DG method based on regular piecewise polynomials. We remark that high
order traditional IP-DG methods will have the same phenomenon, which we do not
show here.

Next we test our multiscale IP-DG method for this multiscale problem with both
ε = 0.01 and ε = 0.001. The numerical results are shown in Table 2. We can clearly
see the expected order of accuracy which is (k+ 1)th order for u and kth order for
q for the multiscale IP-DG method, starting from very coarse meshes.

4.1.2. One-dimensional example 2. In the second example, the coefficient aε is
not periodic in x or x

ε and there is no clear scale separation. Consider the multiscale
problem with

(34) aε(x, ε) =
1

2 + x+ sin
(
sin x
ε cosx

) , f = − cosx, x ∈ [0, 1].
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Table 1. L2 errors and orders of accuracy by the traditional IP-
DG method with polynomial basis P 1: one-dimensional example
1.

ε = 0.01 ε = 0.001

u− uh q − qh u− uh q − qh
N error order error order error order error order
10 1.02E-02 – 1.20E-01 – 1.05E-02 – 6.06E-02 –
20 9.82E-03 0.05 1.12E-01 0.10 9.97E-03 0.08 1.56E-01 -1.36
40 9.60E-03 0.03 1.10E-01 0.02 9.89E-03 0.01 1.12E-01 0.48
80 8.85E-03 0.12 1.09E-01 0.01 9.89E-03 0.00 1.12E-01 0.00
160 6.33E-03 0.48 9.67E-02 0.17 8.95E-03 0.14 1.11E-01 0.01
320 2.50E-03 1.34 5.73E-02 0.75 8.99E-03 -0.01 1.11E-01 0.00
640 7.45E-04 1.75 2.98E-02 0.94 8.56E-03 0.07 1.08E-01 0.04

Table 2. L2 errors and orders of accuracy by the multiscale IP-
DG method: one-dimensional example 1.

ε = 0.01 ε = 0.001

S1 u− uh q − qh u− uh q − qh
N error order error order error order error order
10 1.03E-03 – 4.73E-02 – 1.03E-03 – 4.74E-02 –
20 2.61E-04 1.98 2.36E-02 1.00 2.62E-04 1.97 2.37E-02 1.00
40 6.71E-05 1.96 1.18E-02 1.00 6.62E-05 1.98 1.19E-02 1.00
80 1.68E-05 2.00 5.86E-03 1.01 1.67E-05 1.99 5.93E-03 1.01
160 3.89E-06 2.11 2.80E-03 1.06 4.17E-06 2.00 2.96E-03 1.00

S2 u− uh q − qh u− uh q − qh
N error order error order error order error order
10 1.16E-05 – 1.01E-03 – 1.15E-05 – 1.01E-03 –
20 1.48E-06 2.97 2.48E-04 2.03 1.46E-06 2.98 2.52E-04 2.00
40 1.89E-07 2.97 6.14E-05 2.01 1.83E-07 2.99 6.28E-05 2.00
80 2.29E-08 3.04 1.51E-05 2.03 2.30E-08 2.99 1.57E-05 2.00
160 2.84E-09 3.01 3.74E-06 2.01 2.94E-09 2.97 3.94E-06 1.99

We perform numerical tests by the multiscale IP-DG method on Eq. (34) with
ε = 0.01 and ε = 0.001. Table 3 shows the L2 errors and orders of accuracy. We
can again clearly see the expected order of accuracy which is (k + 1)th order for u
and kth order for q, starting from very coarse meshes.

4.2. Two-dimensional example. We now consider three two-dimensional ellip-
tic multiscale examples on the domain [−1, 1]2. The first example is made up from
the one-dimensional example thus has the exact solution. The second and third
examples are real two-dimensional examples which do not have explicit formulas
for their exact solutions. Thus we compute reference solutions by a spectral Cheby-
shev collocation method with a mesh 512× 512 in order to check the convergence
rates of the DG methods.

We remark that in the second and third examples, due to the difficulties of
computing a very refined reference solution, we are unable to test a very small ε
(we tested ε = 0.01 and ε = 0.005). The smaller the ε is, the bigger the advantage
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Table 3. L2 errors and orders of accuracy by the multiscale IP-
DG method: one-dimensional example 2.

ε = 0.01 ε = 0.001

S1 u− uh q − qh u− uh q − qh
N error order error order error order error order
10 1.50E-03 – 6.36E-02 – 1.44E-03 – 6.18E-02 –
20 3.51E-04 2.09 2.92E-02 1.12 3.67E-04 1.97 3.09E-02 1.00
40 8.95E-05 1.97 1.50E-02 0.96 9.26E-05 1.99 1.54E-02 1.00
80 2.33E-05 1.94 7.68E-03 0.97 2.33E-05 1.99 7.61E-03 1.02
160 5.93E-06 1.97 3.87E-03 0.99 5.55E-06 2.07 3.59E-03 1.08

S2 u− uh q − qh u− uh q − qh
N error order error order error order error order
10 8.39E-06 – 5.74E-04 – 7.87E-06 – 5.60E-04 –
20 1.10E-06 2.94 1.38E-04 2.05 9.75E-07 3.01 1.40E-04 2.00
40 1.41E-07 2.97 3.50E-05 1.98 1.27E-07 2.94 3.49E-05 2.00
80 1.77E-08 3.00 8.80E-06 1.99 1.59E-08 2.99 8.51E-06 2.04
160 2.21E-09 3.00 2.20E-06 2.00 1.96E-09 3.02 2.14E-06 1.99

of the multiscale IP-DG method we should see. This is because the error of the
multiscale IP-DG method does not depend on ε, but the traditional IP-DG method
can only have convergence when the mesh size is small enough to resolve the ε scale.

4.3. Two-dimensional example 1. The first two-dimensional example is the
Eq. (3) with

(35) a(x) = aε(x, ε) =
1

4 + x+ sin
(
x
ε

) , b(y) = bε(y, ε) =
1

4 + y + sin
(
y
ε

) .

In order to construct a two-dimensional example with an exact solution, we
make up the solution from the one-dimensional example. The solution has the
form u(x, y) = ue(x)ue(y), where ue(x) is the exact solution of the one-dimensional
problem −(a(x)ux)x = f1 with a(x) in (35) (note that b(x) = a(x)) and f1 = x.
The right-hand-side f(x, y) in Eq. (3) is then

(36) f(x, y) = xue(y) + yue(x).

Note that the right-hand-side f(x, y) contains the O(ε) scale, however its H1-norm
is uniformly bounded, so our theory would apply, at least up to second order accu-
racy.

Table 4 lists the L2 errors and orders of convergence of the multiscale IP-DG
method for ε = 0.01 and ε = 0.001. We can see the optimal convergences for both
u and q with the S1

2 and S2
2 spaces, starting from very coarse meshes (recall that

our proof of optimal convergence is only for S1
2).

4.4. Two-dimensional example 2. In the second example, we consider a smooth
function of f(x, y) with the same coefficients a(x) and b(y) in Eq. (35), i.e.,

(37)
a(x) = aε(x, ε) = 1

4+x+sin( x
ε )
,

b(y) = bε(y, ε) = 1

4+y+sin( y
ε )
, f = x+ y.

For this example, an explicit formula for the exact solution is unavailable, and
we are using the numerically obtained reference solution. We only list the L2 errors
and orders of u of the multiscale IP-DG method (see Table 5). We can see an almost
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Table 4. L2 errors and orders of accuracy by the multiscale IP-
DG method: two-dimensional example 1.

ε = 0.01 ε = 0.001

S1
2 u− uh q − qh u− uh q − qh
N error order error order error order error order
10 1.41E-02 – 2.79E-02 – 1.39E-02 – 2.80E-02 –
20 4.79E-03 1.56 1.30E-02 1.11 4.87E-03 1.52 1.30E-02 1.11
40 1.36E-03 1.82 6.08E-03 1.10 1.40E-03 1.80 6.07E-03 1.10
80 3.57E-04 1.93 2.95E-03 1.04 3.69E-04 1.92 2.94E-03 1.05

S2
2 u− uh q − qh u− uh q − qh
N error order error order error order error order
10 3.91E-04 – 3.79E-03 – 3.90E-04 – 3.79E-03 –
20 4.63E-05 3.08 9.45E-04 2.00 4.59E-05 3.09 9.40E-04 2.01
40 5.53E-06 3.07 2.35E-04 2.00 5.60E-06 3.04 2.34E-04 2.01
80 7.03E-07 2.98 5.88E-05 2.00 6.96E-07 3.01 5.82E-05 2.01

second order convergence for the multiscale IP-DG method with the S1
2 space and

an almost third order convergence with S2
2 , starting from very coarse meshes. This

shows the optimal convergence rates of the multiscale IP-DG method. Compared
to the multiscale IP-DG results, the L2 errors and orders by the traditional IP-DG
method with polynomial spaces P 1 and P 2 are listed in Table 6. For the relative
large ε = 0.01, we can see the convergence of the traditional IP-DG method from
the mesh size N = 80. When ε goes smaller to 0.005, we cannot see a correct order
of convergence especially in the P 2 case for the meshes we have tested.

Table 5. L2 errors and orders of accuracy by the multiscale IP-
DG method: two-dimensional example 2.

ε = 0.01 ε = 0.005

S1
2

N error order error order
10 4.16E-02 – 4.04E-02 –
20 1.28E-02 1.71 1.31E-02 1.63
40 3.56E-03 1.85 3.59E-03 1.87
80 9.42E-04 1.92 9.50E-04 1.92

S2
2

10 1.25E-03 – 1.25E-03 –
20 1.82E-04 2.78 1.85E-04 2.75
40 2.54E-05 2.84 2.59E-05 2.84
80 3.57E-06 2.83 3.56E-06 2.86

4.5. Two-dimensional example 3. In the third example, the coefficients aε and
bε do not have separation of scales:

(38)
a(x) = aε(x, ε) = 1

4+x+sin( sin x
ε

cosx)
,

b(y) = bε(y, ε) = 1
4+y+sin( sin y

ε
cos y)

, f = x+ y.
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Table 6. L2 errors and orders of accuracy by traditional IP-DG
method with polynomial basis P 1: two-dimensional example 2.

ε = 0.01 ε = 0.005

P 1

10 4.98E-02 – 4.97E-02 –
20 2.22E-02 1.16 2.33E-02 1.10
40 1.37E-02 0.69 1.39E-02 0.75
80 5.33E-03 1.36 1.11E-02 0.32

P 2

10 1.06E-02 – 1.16E-02 –
20 1.09E-02 -0.04 1.06E-02 0.13
40 5.14E-03 1.08 1.08E-02 -0.02
80 7.49E-04 2.78 5.06E-03 1.09

Again, an explicit formula for the exact solution is unavailable, and we are using
the numerically obtained reference solution.

We perform numerical tests by the multiscale IP-DG method on Eq. (3) with
(38) for ε = 0.01 and ε = 0.005. Table 7 shows the L2 errors and orders of accuracy.
We can again clearly see the expected order of accuracy which is (k + 1)th order
for u, starting from very coarse meshes.

Table 7. L2 errors and orders of accuracy by the multiscale IP-
DG method: two-dimensional example 3.

ε = 0.01 ε = 0.005

S1
2

N error order error order
10 4.00E-02 – 6.45E-02 –
20 1.26E-02 1.67 1.80E-02 1.84
40 3.54E-03 1.83 4.83E-03 1.90
80 9.34E-04 1.92 1.22E-03 1.98

S2
2

10 1.23E-03 – 1.34E-03 –
20 1.81E-04 2.76 1.84E-04 2.87
40 2.64E-05 2.78 2.57E-05 2.84
80 3.69E-06 2.84 3.55E-06 2.85

5. DG methods with polynomial basis for multiscale problems

In this section, we are going to show that some DG methods with piecewise
constant approximations can approximate the multiscale problem (2) and (3) with
first-order accuracy. However, if higher-order accuracy is required then one needs
to use multiscale basis in the previous sections. We include this section because
this is one of the few numerical methods, based on piecewise polynomials, which
can yield convergence (albeit with a low first-order accuracy) when the mesh size
is too coarse to resolve the ε-scale.

Falk and Osborn [13] argued that some mixed methods can approximate rough
solutions of the problem (3) using piecewise polynomial approximations. Here we
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argue that the single face-hybridizable (SF-H) method [7] can also approximate
rough solutions to (3) using piecewise polynomial approximations. Hybridizable-
DG (HDG) methods were recently introduced in [8]. The SF-H [7] method is a
special class of HDG methods where on each triangle one only penalizes on exactly
one edge. The minimal dissipation local DG (MD-LDG) method [7] is a limiting
case of the HDG methods where the penalization parameter is allowed to be infinite
(see [8] for more details). We will first give the error estimates for the HDGmethods.
Then we will show the numerical results by the limiting case MD-LDG method.

5.1. Error estimates for the hybridizable DG methods. In order to define
the SF-H method for (3), we need to rewrite (3) in its mixed form. We let

A−1
q +∇u =0(39)

∇ · q = f(40)

where A is given by

A(x) =

(
a(x) 0
0 b(y)

)
.

We let {Th} be a collection of shape-regular triangular partitions of Ω. Let Eh
be the collection of edges of Th. We define the function spaces corresponding the
lowest-order SF-H method

Σh = {v ∈ [L2(Ω)]2 : v|K ∈ [P 0(K)]2 ∀ K ∈ Th},(41a)

Wh = {w ∈ L2(Ω) : w|K ∈ P 0(K) ∀ K ∈ Th},(41b)

Mh = {µ ∈ L2(Eh) : µ|e ∈ P 0(e) ∀ e ∈ Eh, and µ = 0 on ∂Ω}.(41c)

The approximation (qh, uh, λh) ∈ Σh×Wh×Mh is determined by requiring that

(A−1
qh,v)Th

− (uh,∇ · v)Th
+ 〈λh,v · n〉∂Th

= 0,(42a)

−(qh,∇ω)Th
+ 〈q̂h · n, ω〉∂Th

= (f, ω)∂Th
,(42b)

〈q̂h · n, µ〉∂Th
=0,(42c)

for all (v, ω, µ) ∈ Σh ×Wh ×Mh, where

q̂h := qh + τ(uh − λh)n on ∂K for all K ∈ Th.(42d)

Here n is the outward pointing unit normal to an element K ∈ Th. Moreover, we
used the following notation

〈v · n, µ〉∂Th
:=

∑

K∈Th

∫

∂K

v(γ) · nµ(γ) dγ.

The penalty parameters τ is a double-valued constant function on each interior
edge of the triangulation Th. The SF-H method chooses τ |K so that it is zero on all
but one edge of ∂K. More precisely, it chooses an arbitrary edge eτK of ∂K. Then
it sets τ = τK > 0 on eτK but it sets τ = 0 on ∂K\eτK. With such a choice one has
the property that qh and λh are independent of τ ; see [7]. However, uh will depend
on τ . We note that λh is the so-called Lagrange multiplier that approximates u on
the edges of the triangulation Th. In fact, one can locally eliminate qh, uh to get a
final system for λh, then one can recover qh, uh element-by-element; see [7, 8].

We now state the main result of this section.
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Theorem 5.1. Let u solve (3) and let (qh, uh, λh) ∈ Σh ×Wh ×Mh solve (42), then

(43) ‖∇u+A−1
qh‖L2(Ω) ≤ C h‖f‖L2(Ω).

Moreover, if τK ≥ c
hK

for some constant c > 0 and all K ∈ Th, then

(44) ‖u− uh‖L2(Ω) ≤ C h‖f‖L2(Ω).

Proof. By Theorem 2.5 in [7] we have

‖A−1/2(q − qh)‖L2(Ω) = C h‖q‖H1(Ω).

Hence,

‖∇u+A−1
qh‖L2(Ω) ≤‖A−1(−q + qh)‖L2(Ω)

≤ 1

α
‖A−1/2(−q + qh)‖L2(Ω)

≤C h‖q‖H1(Ω).

Using Bernstein’s regularity result [5], Falk and Osborn [13] proved that A∇u ∈
H1(Ω) uniformly although u may not belong to H2(Ω) uniformly. In fact, they
proved

‖A∇u‖H1(Ω) ≤ C ‖f‖L2(Ω).

Since q = −A∇u we have proven (43).
In order to prove (44) we use Corollary 2.7 in [7] that gives

‖u− uh‖L2(Ω) ≤ C h(‖q‖H1(Ω) + ‖u‖H1(Ω)).

Here we have used our hypothesis τK ≥ c
hK

for some constant c > 0 and all K ∈ Th.
We already argued that ‖q‖H1(Ω) ≤ ‖f‖L2(Ω). Clearly, by an energy argument

we have ‖u‖H1(Ω) ≤ ‖f‖L2(Ω). This proves (44). �

A few comments are in order. First, it is no surprise that the SF-H method is
convergent for (3) since the SF-H method is very similar to the standard mixed
methods. Also, more general HDG methods (e.g. allowing τ = 1 everywhere) are
convergent for (3); however, one needs to trace the effects of the penalty parameters
τ on the error q−qh; see [9]. Finally, we point out that higher-order SF-H methods
would not give better results since q ∈ H1(Ω) but not uniformly in H2(Ω).

5.2. Numerical tests by MD-LDG. If we formally set τ− = 0 and τ+ = ∞ on
all the interior edges of the triangulation Th, then the HDG method will result in
the MD-LDG method (see [8]).

Table 8 shows the numerical results by the piecewise constant MD-LDG method
for the one-dimensional multiscale problem example 1 (33). We can see a clear first
order convergence for both u and the derivative of u.

We remark that higher order MD-LDG schemes can give the optimal conver-
gence for the derivative of u but not for u, because the function a ux does not
involve the small scale and thus the polynomial basis can well approximate q in the
implementation for Eq. (39). In other words, if MD-LDG is implemented in the
following way

q +∇u =0(45)

∇ · Aq =f,(46)

we will not be able to see convergence before the small scale is resolved. We do not
include these numerical results here.
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The numerical results for the two-dimensional multiscale problem example 2 (37)
are listed in Table 9 for ε = 0.01 and ε = 0.005. We can see that the piecewise con-
stant MD-LDG method also shows a first order convergence in the two-dimensional
case.

Table 8. L2 errors and orders of accuracy by the MD-LDG with
polynomial basis P 0: one-dimensional example 1.

ε = 0.01 ε = 0.001

u− uh q − qh u− uh q − qh

N error order error order error order error order
10 2.21E-02 – 2.69E-02 – 2.23E-02 – 2.69E-02 –
20 1.16E-02 0.93 1.24E-02 1.12 1.18E-02 0.92 1.24E-02 1.12
40 6.01E-03 0.95 5.90E-03 1.07 5.99E-03 0.98 5.88E-03 1.08
80 3.03E-03 0.99 2.86E-03 1.04 3.02E-03 0.99 2.86E-03 1.04
160 1.53E-03 0.98 1.41E-03 1.02 1.51E-03 1.00 1.41E-03 1.03

Table 9. L2 errors and orders of accuracy by the MD-LDG
method with polynomial basis P 0: two-dimensional example 2.

ε = 0.01 ε = 0.005

N error order error order
10 4.14E-01 – 4.16E-01 –
20 2.16E-01 0.94 2.18E-01 0.93
40 1.09E-01 0.99 1.10E-01 0.99
80 5.50E-02 0.99 5.45E-02 1.01
160 2.74E-02 1.01 2.73E-02 1.00

6. Concluding remarks

In this paper, we developed a multiscale IP-DG method for solving a class of
second order elliptic equations with rough coefficients in one and two dimensions.
Assuming that the solution lies only uniformly in H1 with respect to the small ε
scale, we prove optimal error estimates for arbitrary order approximations for the
one dimensional case and optimal error estimates for the second order approxima-
tion for the two-dimensional case for coarse meshes which do not resolve the small
ε scale. Numerical tests are performed in both one and two dimensions, demon-
strating high order accuracy by the multiscale IP-DG method on coarse meshes. In
addition, the proof of first order convergence of the HDG method with polynomial
basis is given and related numerical test is shown for the MD-LDG method. In
future work, we plan to generalize the analysis and develop multiscale DG methods
for various elliptic problems.
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[3] I. Babuška and J. Osborn, Generalized finite element methods: their performance and their

relation to mixed methods, SIAM J. Numer. Anal., 20, 1983, 510–536.



MULTISCALE DG FOR ELLIPTIC PROBLEMS WITH ROUGH COEFFICIENTS 47
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