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THE DISCONTINUOUS GALERKIN METHOD FOR THE
MULTISCALE MODELING OF DYNAMICS OF CRYSTALLINE

SOLIDS∗
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Abstract. We present a multiscale model for numerical simulation of dynamics of crystalline
solids. The method couples nonlinear elastodynamics as the continuum description and molecular
dynamics as another component at the atomic scale. The governing equations on the macroscale are
solved by the discontinuous Galerkin method, which is built up with an appropriate local curl-free
space to produce a coherent displacement field. The constitutive data are based on the underlying
atomistic model: it is either calibrated prior to the computation or obtained from molecular dynamics
as the computation proceeds. The decision to use either the former or the latter is made locally for
each cell based on suitable criteria.
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1. Introduction. The conventional computational methods for solid mechanics
have been primarily based on continuum models, where one uses a small number of
variables, such as the strain and stress, to efficiently describe the mechanical prop-
erties. The quality of these continuum models depends heavily on the constitutive
assumptions, which are usually obtained from experimental observations. On the
other hand, atomistic models, such as molecular statistics and molecular dynamics
(MD), which account for detailed crystal structure and atomic configurations, have
been proven to be a useful methodology. However, to model a macroscale process,
such atomistic systems are too large to fit into a realistic computation. Therefore, it
is computationally advantageous to develop a hybrid model that includes both com-
ponents. Multiscale methods that aim to bridge different scales have been an active
area of interest. Recently developed methods in this class include, for instance, the
quasi-continuum methods [45, 32], the macroatomistic ab initio dynamics method [2],
the bridging scale method [48], the bridging domain methods [49], the heterogeneous
multiscale method (HMM) [23, 36, 24], and the pseudospectral method [46]. The
advantage of such concurrent methods is that the models can be refined as the com-
putation proceeds.

This paper is concerned with the dynamics of elastic solids. We will use the
framework of HMM [23, 36]. The main idea of HMM is to formulate both the atomistic
and the continuum models in terms of universal conservation laws, and the coupling is
accomplished by ensemble averaging. The implementation of such a method consists
of three components:
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1. a macrosolver for the continuum model,
2. a microsolver to equilibrate the atomistic system locally to the appropriate

ensemble,
3. an averaging procedure to obtain data that are needed in the continuum

model.
The main advantage of this formalism is that one is able to use the macroscale equa-
tions to capture the elastic waves, and the microscale models are employed as a sup-
plemental component to provide accurate constitutive data, thereby bypassing any
empirical model for the equation of state.

The constitutive relation obtained from the atomistic models is typically nonlinear
and temperature dependent. As a result, shock waves may develop, which give rise to
large strain and velocity gradients, posing a great challenge for numerical simulations.
In addition suitable constraints have to be imposed to form a coherent displacement
field. The problem is further complicated by the presence of defects, causing large
local deformation and discontinuity in strain and displacement. To overcome these
difficulties, we will make use of the discontinuous Galerkin (DG) method, a finite
element method based on piecewise polynomials as basis functions that are completely
discontinuous across element boundaries. The DG method will be formulated for the
elastodynamics problems under the multiscale setting.

Stable and convergent DG methods have been designed for linear and nonlinear
partial differential equations (PDEs) including hyperbolic conservation laws [14, 16],
convection-diffusion equations [15], elliptic equations [3], and dispersion wave equa-
tions [50]. Comparing with traditional Galerkin methodology (e.g., [28]), the ad-
vantage of the DG methods includes their flexibility in h-p adaptivity and parallel
efficiency. We refer the reader to, e.g., [17] for a review of the DG methods. For
our purpose, the DG methods provide their advantage in the ability of resolving
sharp wave fronts, and they can accommodate a locally curl-free function space for
the deformation gradient to provide a coherent displacement field, following the local
structure preserving DG methodology in [12, 35]. We remark that, in the recent years,
there have been many contributions in developing DG methods for solving PDEs in
solid mechanics. In most cases, attention has been restricted to linear elasticity prob-
lems. For example, Rivière et al. [42] formulated and analyzed a DG method for
linear elasticity based on a generalization of the nonsymmetric interior penalty DG
method for the diffusion equation. Käser and Dumbser (see [30, 22]) proposed a DG
method in space that uses the arbitrary high-order derivatives (ADER) approach for
the time integration to solve the linear elastic wave equation in heterogeneous media
on unstructured meshes for both two and three dimensions. Huang and Costanzo
(see [27, 19]) proposed a space-time DG formulation for linear elasticity where stress
discontinuities were considered through jumps in the material properties; see also [31].
Abedi, Petracovici, and Haber [1] proposed a space-time DG method for linearized
elastodynamics that delivered exact balance of linear and angular momentum over
every space-time element.

The main purpose of this paper is to present a multiscale methodology for tran-
sient elastodynamics problems based on the DG methods as a macrosolver. We will
discuss how the DG methods can be used to capture a large scale elastic field and
how the MD can be used at the atomic scale and coupled with the macroscale DG
solver to provide accurate constitutive data. We do recognize, however, that con-
stitutive behavior of realistic materials usually results from complicated interactions
of local defects, such as dislocations, cracks, grain boundaries etc. In this case, the
stress-strain relation cannot simply be deduced from the Cauchy–Born rule or ther-
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modynamics of a single crystal. Nonetheless, the current method is applicable to
small systems, e.g., a micromechanical system, where only a small number of defects
are present. There the DG method, coupled with equilibrium MD, becomes useful
in regions away from the defects, which in the quasi-continuum method [45, 32] has
been referred to as the local region. On one hand, it offers an accurate solver for the
stress waves, providing loading condition on the material defects. On the other hand,
mesh refinement can easily be done as one approaches the atomistic region. Our next
step is to combine the current method with nonequilibrium MD to describe defect
formation and propagation.

2. Macroscopic and microscopic models. Our computation involves models
at both macroscopic and microscopic scales: elastodynamics on the macroscopic scale,
describing the evolution of the elastic field, and MD at the atomic scale, providing
the constitutive data based on detailed atomic interactions. In this section, we brief-
ly present the equations underlying these models.

On the continuum scale, the governing equations for the elastodynamics are a
set of PDEs. To begin with, we fix a reference coordinate, denoted by x, and after
deformation, the point will be displaced to a new position, x + u(x, t), with u being
the displacement. Let ε = ∇u be the corresponding deformation gradient. Then the
continuum equations take the form

(2.1)

⎧⎪⎨⎪⎩
∂
∂tε−∇v = 0,

ρ0
∂
∂tv −∇ · P = 0,

ρ0
∂
∂te + ∇ · j = 0.

Here v and e are the velocity and specific energy per particle, respectively, ρ0 is the
initial density, P is the first Piola–Kirchhoff stress tensor, and j is the energy flux.
The first equation in (2.1) describes the time evolution of the deformation; the second
and third equations are the conservation of momentum and energy, respectively. In
continuum mechanics, for instance [33], these equations are supplemented by the
empirical constitutive relations for stress and energy fluxes. The purpose of the present
paper is to develop multiscale strategies that bypass these empirical constitutive laws
when their accuracy is in doubt.

At the atomic scale, the motion of the atoms constituting the solids is given by
MD,

(2.2)

{
q̇i = pi/mi,

ṗi = −∇qiV,

where mi denotes the mass of the ith atom, qi and pi are the generalized coordinate
and momentum for the ith atom, and V (q1,q2, . . . ,qN ) is the interatomic potential
that models the interaction among the atoms. In this paper, we will consider only
pair potential. Namely,

V =
1

2

∑
i �=j

φ(rij), rij = |rij |, rij = qi − qj .

Many-body potential models, such as the embedded atom model [21] and Tersoff–
Brenner model [47], can be dealt with similarly. The system (2.2) is a Hamiltonian
system with the Hamiltonian

(2.3) H(q,p) =
∑
i

p2
i

2mi
+ V (q), q = (q1,q2, . . . ,qN ), p = (p1,p2, . . . ,pN ).
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The basic assumption in our current method is the scale separation. Namely, the
relaxation time for the microscopic processes is much shorter than the typical time
scale of the continuum. In this case, it suffices to consider the local equilibrium distri-
bution of the atomistic system. In the case of zero temperature, this is equivalent to
the Cauchy–Born hypothesis, which suggests that the atomic displacement follows the
macroscopic deformation. As a result, the strain energy density and elastic stress can
be computed from the atomistic models. At finite temperature, one has to take into
account the thermal fluctuation and compute elastic properties based on statistical
ensembles. In this paper, we consider two statistical equilibrium: the microcanonical
distribution,

(2.4) ρ1(q,p) =
1

Z
δ(E −H),

where the volume and the energy of the system are prescribed, and the canonical
distribution,

(2.5) ρ2(q,p) =
1

Z
e−βH , β = (kBT )−1,

where the volume and the temperature are given. The constant Z, which is the parti-
tion function, normalizes the probability density. Although these statistical ensembles
are in principle equivalent in the infinite volume limit, one might have more practical
convenience than the other. Once the equilibrium distribution is available, physical
observables can be computed via statistical averaging. More specifically, let w be any
observable with a microscopic expression w(q,p). Then

(2.6) 〈w〉 =

∫
w(q,p)ρ(q,p)dqdp.

In a MD simulation, we can replace the ensemble average by a time average,

(2.7) 〈w〉 = lim
T→∞

1

T

∫ T

0

w(q(t),p(t))dt,

provided that the system is ergodic.
The remaining step in the atomic/continuum coupling is to define the correspond-

ing macroscopic quantities at the atomic scale. Since the continuum equations (2.1)
are expressed in the Lagrangian coordinate, we first define the reference coordinate
for the atoms as the equilibrium positions, denoted by Qi. Next, we will mainly focus
on the calculation of the stress tensor. The first approach to define stress from the
atomic scale is from thermodynamics [7]. For the atomistic system, the free energy is
defined as

F = −kBT ln

∫
e−βHdqdp.

Implicit in the integral is the dependence on the deformation gradient ε, which changes
the volume and shape of the entire system. Here periodic boundary condition is
assumed. From the second law of thermodynamics, we have

1

Ω

∂F
∂ε

= P,
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fixing the temperature. Here Ω is the volume of the system in the reference coordinate.
This calculation yields

(2.8) P =
1

Ω

∑
i<j

φ′(rij)
rij ⊗Qij

r2
ij

, Qij = Qi −Qj .

A more natural approach for deriving the microscopic expressions is based on conser-
vation laws at the atomic scale [29]. More specifically, we define the local momentum
and energy:

(2.9)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q̃(x, t) =

∑
i

qi(t)δ(x −Qi),

ẽ(x, t) =
1

2

∑
i

[p2
i

mi
+
∑
j �=i

φ
(
qi(t) − qj(t)

)]
δ(x −Qi).

As a result, the total momentum and energy in a control volume can easily be com-
puted. Furthermore, one can derive conservation laws for the local momentum and
energy,

(2.10)

{
∂
∂t q̃ −∇ · P̃ = 0,

ρ0
∂
∂t ẽ + ∇ · j̃ = 0,

where

(2.11)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P̃ (x, t) =
1

2

∑
i �=j

φ′(qi − qj

)
⊗ (Qi −Qj)

×
∫ 1

0

δ
(
x − (Qj + λ(Qi −Qj))

)
dλ,

j̃(x, t) =
1

4

∑
i �=j

(
pi/mi + pj/mj

)
· φ′(qi − qj

)
⊗ (Qi −Qj)

×
∫ 1

0

δ
(
x − (Qj + λ(Qi −Qj))

)
dλ.

Averaging (2.11) in space, one also arrives at (2.8).
Equations (2.1) and (2.10) have been the starting point of HMM: the continuum

and atomistic models can be coupled at the level of conservation laws. Such an obser-
vation is also reminiscent of the concept of local equilibrium in the kinetic theory for
gas dynamics, where the Maxwellian distribution can be used to provide the equation
of state and therefore close the continuum equations.

3. Numerical methodology.

3.1. Macroscale solver: The DG method. In this paper, the discontinuous
Galerkin (DG) and the local discontinuous Galerkin (LDG) methods are used as
our macroscale solver. We will briefly review the DG method for solving hyperbolic
problems and the LDG method for solving parabolic problems. For more details,
we refer the reader to the series of papers of Cockburn, Shu, and their coworkers
[14, 13, 11, 16], the lecture notes [10], and the review paper [17].

To briefly illustrate the ideas, consider a one-dimensional conservation law on a
given interval I = [a, b]:

ut + f(u)x = 0.
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We divide interval I into N cells as follows:

(3.1) a = x 1
2
< x 3

2
< · · · < xN+ 1

2
= b.

We denote

(3.2) Ii = (xi− 1
2
, xi+ 1

2
), xi =

1

2
(xi− 1

2
+ xi+ 1

2
)

and

(3.3) �xi = xi+ 1
2
− xi− 1

2
, h = max

i
�xi.

Next, we define the approximation space as

(3.4) V k
h = {vh : (vh)|Ii ∈ P k(Ii), i = 1, . . . , N}.

Here P k(Ii) denotes the set of all polynomials of degree at most k in the interval
Ii. For simplicity, we will use the notation u and v instead of uh, vh to denote the
numerical solutions whenever they do not cause confusion. We can choose a basis of
P k(Ii) as, for example, {1, ξi, . . . , ξki }, where the monomials ξ = x−xi

�xi
. For a function

v ∈ V k, we use v−
i+ 1

2

and v+
i+ 1

2

to refer to the left and right limits of v at xi+ 1
2
,

respectively, at the interface where v is discontinuous.

The formulation of the DG method is as follows: find u(., t) ∈ V k
h such that for

any test functions v ∈ V k
h ,

(3.5)

∫
Ii

utvdx−
∫
Ii

f(u)vxdx + f̂(u)i+ 1
2
v−
i+ 1

2

− f̂(u)i− 1
2
v+
i− 1

2

= 0.

The single-valued flux f̂i+ 1
2

should be taken as a monotone flux depending on both

u−
i+ 1

2

and u+
i+ 1

2

(exact or approximate Riemann solvers in the system case); see, for

example, [34]. We will choose the numerical fluxes to be the Lax–Friedrichs flux

(3.6) f̂i+ 1
2

=
1

2
(f−

i+ 1
2

+ f+
i+ 1

2

− α(u+
i+ 1

2

+ u−
i+ 1

2

)),

where α = max |f ′(u)|.
Time discretization is done by the nonlinearly stable high-order TVD Runge–

Kutta methods developed in [44]. In particular, the second- and third-order TVD
Runge–Kutta methods are used to match the corresponding spatial accuracy in our
paper. For solving the method of the lines ODE

(3.7) ut = L(u),

where L(u) can be any spatial discretization of u, the second-order TVD Runge–Kutta
method is given by

u(1) = un + �tL(un),(3.8)

un+1 =
1

2
un +

1

2
u(1) +

1

2
�tL(u(1)),
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and the third-order TVD Runge–Kutta method is given by

u(1) = un + �tL(un),

u(2) =
3

4
un +

1

4
u(1) +

1

4
�tL(u(1)),(3.9)

un+1 =
1

3
un +

2

3
u(2) +

2

3
�tL(u(2)).

Since the DG method may have oscillations when the solutions contain disconti-
nuities, nonlinear total variation bounded (TVB) limiters are often used. The limiter
we use in this paper is briefly described below. For more details we refer the reader
to Shu [43], Cockburn, Lin, and Shu [13], and Cockburn and Shu [16]. Denote

(3.10) u−
i+ 1

2

= ūi + ũi, u+
i− 1

2

= ūi − ˜̃ui,

where ūi is the cell average. ũi and ˜̃ui are modified by
(3.11)

ũi
(mod) = m (ũi, ūi+1 − ūi, ūi − ūi−1) , ˜̃u

(mod)
i = m

(
˜̃ui, ūi+1 − ūi, ūi − ūi−1

)
,

where the minmod function m is given by

(3.12) m(a1, a2, . . . , an) =

{
s · min1≤j≤n |aj | if sign(a1) = · · · = sign(an) = s,

0 otherwise,

or by the TVB modified minmod function [43]

(3.13) m̃(a1, a2, . . . , an) =

{
a1 if |a1| ≤ Mh2,

m(a1, a2, . . . , an) otherwise,

where M > 0 is a constant. The choice of M depends on the solutions of the problem.
For the scalar case, it is possible to estimate M (M is related to the magnitude of the
second derivatives of the solution at smooth extrema); however, it is more difficult for
systems. In our paper, we apply the limiter to every component of the system with a
suitable M (which may not necessarily be the optimal M).

In the case where diffusion terms are present, e.g., the convection-diffusion prob-
lems

(3.14) ut + f(u)x = (a(u, x)ux)x,

where a(u, x) ≥ 0, the idea of the LDG method [15] is to rewrite (3.14) into a first-
order system

(3.15) q − ux = 0, ut − (a(u, x)q)x = 0.

We can then formally use the same DG method for the convection equation to solve
(3.15), resulting in the following scheme: find u(., t), q(., t) ∈ V k

h such that∫
Ii

qwdx +

∫
Ii

uwxdx− ûi+ 1
2
w−

i+ 1
2

+ ûi− 1
2
w+

i− 1
2

= 0,(3.16)

∫
Ii

utvdx +

∫
Ii

a(u, x)qvxdx− âqi+ 1
2
v−
i+ 1

2

+ âqi− 1
2
v+
i− 1

2

= 0(3.17)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THE DG METHOD FOR DYNAMICS OF CRYSTALLINE SOLIDS 301

for all test functions v, w ∈ V k
h . In [15], criteria are given for the numerical fluxes to

guarantee stability, convergence, and a suboptimal error estimate of order k in the
L2 norm for piecewise polynomials of degree k. A clever choice of the fluxes in an
alternating way

(3.18) ûi+ 1
2

= u−
i+ 1

2

, q̂i+ 1
2

= q+
i+ 1

2

or

(3.19) ûi+ 1
2

= u+
i+ 1

2

, q̂i+ 1
2

= q−
i+ 1

2

would satisfy these criteria and give a scheme of order k + 1.

3.2. MD simulation. In computing the elastic stress from the microscopic
model, we prepare the atomistic system as follows. We first arrange the atoms to the
equilibrium position, Qj , and then apply a uniform deformation, qj = (I+A)Qj . The
major axes of the simulation box are also deformed accordingly. Periodic boundary
conditions are applied with respect to the deformed box to maintain the deformation
gradient throughout the computation. The initial velocity for the atoms is sampled
from a Gaussian distribution with the variance given by kBT . In order to maintain the
system at a given temperature, we use the standard Nosé–Hoover thermostat [40, 26].
To ensure numerical stability, the time step is chosen so that δt ≤ 2/ωmax, where
ωmax is the largest phonon frequency. During the simulation, the stress is sampled
every 20 time steps and then averaged at the end of the simulation according to (2.7).
In addition the Verlet list method is used to speed up the force calculation. These
standard techniques can be found in [25].

3.3. The multiscale method. Having described the methodology for solving
the atomistic and continuum equations, we are now in a position to describe the
multiscale method. The coupling strategy is quite straightforward: we first divide
the computational domain into cells over which the macroscale equations (2.1) are
discretized. In computing the numerical fluxes, the stress and heat flux are obtained
directly from the atomistic model, either from a MD simulation or from a simplified
model, also calibrated from atomistic simulations beforehand (see the next section).
This procedure can be demonstrated from Figure 1. Comparing to the conventional
numerical procedure, we have used atomistic model as a supplemental component on
each cell to supply the constitutive data.

4. One-dimensional shock propagation. In our first example the system is
described at the atomistic level by a Lennard-Jones potential:

(4.1) φ(r) = 4ε

((σ
r

)12

−
(σ
r

)6
)
.

All the particles are assumed to have mass m. In the MD simulation, the parameters ε
and σ are normalized to unit. As a result, all the computational results are expressed
in terms of reduced units, represented by m, ε, and σ. The atomistic system is two-
dimensional, and it is constrained to a narrow slab so that the macroscopic dynamics
is essentially one-dimensional. The continuum equations then reduce to

(4.2)

⎧⎪⎨⎪⎩
∂tε11 − ∂xv1 = 0,

ρ0∂tv1 − ∂xP11 = 0,

ρ0∂te− ∂x(P11v1) = 0.
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(a) a conventional numerical method

(b) HMM

Fig. 1. (a) Conventional numerical method and (b) HMM. In the multiscale method, an
additional component, indicated by the small boxes, is applied to compute the elastic stress. Here
θ = kBT .

The initial condition for the macroscale quantities is set up as follows: For the
x < 0 half-plane, we impose a uniform deformation gradient ε11 = −0.01, and for the
other half-plane, the deformation gradient is zero. The system starts from zero velocity
and the temperature T = 0.1 on the left half-plane and T = 0.3 on the right half-plane.
From the continuum viewpoint, this is an example of the Riemann problem.

We apply the multiscale procedure described above to this problem with the DG
method as the macroscale solver. The P 1 and P 2 (second and third order based on
piecewise linear and quadratic polynomials) DG results are both presented. The nu-
merical results are shown in Figure 2. As a comparison, we also compute the solution
with the second-order Lax–Friedrichs-type central schemes, described in Nessyahu and
Tadmor [39]. At t > 0, one observes two shocks separated by a contact discontinuity.
We can see that the DG method captures the discontinuities very well. This type of
result has been confirmed by a full atomistic simulation [36].

5. Two-dimensional case. In our next simulation, the atomistic model is a
three-dimensional Lennard-Jones solid with the face-centered cubic structure. The
major axes of the system are along the (100), (010), (001) directions. We consider a
system in a state of plain strain so that the macroscale behavior is essentially two-
dimensional.
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x

A

-0.5 0 0.5

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

2nd central scheme
DG P1
DG P2

strain

x
v

-0.5 0 0.5
0

0.05

0.1

0.15

2nd central scheme
DG P1
DG P2

velocity

Fig. 2. Numerical test on one-dimensional shock formation and propagation. 100 macrocells
are used. The solutions are displayed at the physical time T = 0.01. Solid line with the square
symbol: the second-order central scheme; triangle and circle symbols: DG P 1 and P 2 with TVD
limiter. Left: strain, right: velocity.

5.1. Atomistic-based constitutive models. The energy flux j in the contin-
uum equations (2.1) can be written as

(5.1) j = −(vTP + q),

with q being the heat flux.
In principle the heat flux can be computed from an atomistic simulation with a

consistent temperature gradient [36]. However, such simulations typically take much
longer time to relax, making the computation rather expensive. Other models, such
as the kinetic equation for phonons [41], are available. But it is not yet clear how
those models can be coupled with MD or elastodynamics. For simplicity, we model
the heat flux by the Fourier law,

(5.2) q = κ∇T,

which has been confirmed via numerous numerical studies [8]. The heat conductivity
has been precomputed from the atomistic model. In the following computations, we
will consider both the case with the heat flux as well as the one without the heat flux.

In the case of small deformation and low temperature, a linear approximation can
be made to provide an explicit stress-strain relation:

(5.3) Pij = cijklεkl + αTδij , i, j, k, l = 1, 2,

where cijkl are elastic parameters. They can be computed directly from the atomistic
model [4]. In particular, we have

(5.4)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P11 = C11ε11 + C12ε22 + αT,

P12 = C44(ε12 + ε21),

P21 = P12,

P22 = C11ε22 + C12ε11 + αT.
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In terms of the reduced units, these parameters have been obtained from the atomistic
model:

C11 = 97.56753, C12 = 55.56524, C44 = 55.55364,

α = −9.91139, κ = 0.1925353265.

It has been calibrated that under the condition that

(5.5) ‖ε‖2 < 0.004 and T < 0.2,

the error of this linear approximation (5.4) is within one percent. However, this
model cannot be directly used because in the PDEs the temperature is not a derived
quantity and needs to be obtained from the atomistic models. For this purpose we
make another approximation for the temperature:

(5.6) ρ0e = E(ε, T ) = E0 +
1

2
cijklεklεij + 3T.

Here the first term is the cohesive energy of the crystalline, E0 = −7.4591 per atom,
and the second term is the familiar form of the strain energy for linear elasticity. In
the case of low energy, namely,

(5.7) |E − E0| < 1.2,

the modeling error for this approximation (5.6) is also within one percent.
Equations (5.4) and (5.6) provide an efficient constitutive model in the regime

of small strain and low temperature. It can be shown that with these constitutive
equations, the system of PDEs is hyperbolic (see Appendix A). With the heat flux q
present, the system is of parabolic type.

5.2. Implementation of the constitutive models. While the equilibrium
MD in principle offers the correct constitutive equation, such a procedure is typically
computationally intensive, making the overall computation rather expensive. On the
other hand, the simplified models in section 5.1 are efficient, but the accuracy can
be guaranteed only under small deformation and low temperature. Therefore it is
computationally feasible to include both these models in the simulation: we use the
constitutive relation (5.4) if the criterion (5.5) is met and (5.6) if the condition (5.7)
is satisfied; otherwise the data are obtained directly from a MD simulation. This
reminds us to apply the domain decomposition method (DDM) [9]. The main idea
of the DDM is to solve the relatively inexpensive macroscopic model in most parts
of the computational domain and solve only the microproblems in the subdomains
where the macroscopic model is not valid.

More specifically, our computational domain can be decomposed into four types
of subdomains. These subdomains are distinguished by whether the conditions (5.5)
and/or (5.7) are satisfied. For example, the first type of subdomain can be the one
satisfying both (5.5) and (5.7). In this case, a computationally inexpensive macro-
model is sufficient, and we no longer need to use MD. The procedure of using the
DDM is as follows: at each time step and in each cell, if the energy is low, namely, if
the condition (5.7) is satisfied, we will compute the temperature from (5.6) instead of
using the MD procedure. After the temperature is obtained, we compute the stress
and energy flux from the atomistic model via a canonical ensemble. For small defor-
mation and low temperature, i.e., when (5.5) holds, we use (5.4) to bypass the MD
procedure.
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In practice, we use parallel computing to speed up our program. At the macro-
computational domain, for each time step, we first need to get the information about
temperature. We label the L cells to be those which satisfy the condition (5.7) and
the H cells to be those in which this condition is not satisfied. Then we use the
macrorelation (5.6) to get the temperature in the L cells. This needs only a negligible
cost compared to MD. For the H cells, we do need to use MD with the canonical
ensemble (2.5), which is computationally expensive. To efficiently use all the pro-
cessors, we collect all the H cells and distribute them to available processors evenly.
Next, we need to get the information about the stress tensor. The procedure is the
same as above, except that now the condition (5.5) and the relation (5.4) are used to
distinguish different types of cells. This procedure is repeated for every macrotime
step.

5.3. Curl-free DG method. In the finite volume representation of the elastic
field, it is important to ensure the kinematic compatibility at the cell interface. This
issue has been recognized in [1]. In fact the macroscale PDEs are equipped with a
natural constraint:

∇× ε = 0,

which leads to two pairs of curl-free variables, (ε11, ε12) and (ε21, ε22). In order to
fulfill the constraints, we choose a curl-free basis for our DG method instead of the
standard polynomial basis. The original idea of using curl-free basis is from [12],
in which the locally divergence-free DG method is designed to solve the Maxwell
equations, and from [35], in which the locally curl-free DG method is designed to
solve the Hamilton–Jacobi equations.

In the standard Runge–Kutta discontinuous Galerkin (RKDG) method, we seek
the solution in the finite-dimensional polynomial space

(5.8) V̄7,k
h =

{
v = (v1, v2, v3, v4, v5, v6, v7) : v|K ∈ P7,k(K), K ∈ K

}
,

where K is the element and K is the collection of the elements, P7,k(K) = (P k(K))7,
and P k(K) denotes the space of polynomials in K of degree at most k. Now we are
looking for the solution space whose bases satisfy the curl-free condition, i.e.,

Vk
h =

{
v ∈ V̄7,k

h : ∂v1

∂y = ∂v2

∂x , ∂v3

∂y = ∂v4

∂x

}
=

{
v = (v1, v2) ∈ P2,k(K) : ∂v1

∂y = ∂v2

∂x

}
⊕

{
v = (v3, v4) ∈ P2,k(K) : ∂v3

∂y = ∂v4

∂x

}
⊕

{
v = (v5, v6, v7) : v ∈ P3,k(K)

}
= V2,k

h ⊕ V2,k
h ⊕ V̄3,k

h .

(5.9)

That is, the vectors (v1, v2) and (v3, v4) are curl-free polynomial vectors. Notice that

the dimension of the space V2,k
h is (k + 1)(k + 4)/2, only about half as the dimension

of V̄2,k
h , which is (k + 1)(k + 2). Thus the total dimension of the curl-free space Vk

h

is (k2 + k) less than the standard piecewise polynomial space V7,k
h , and we can save

a lot of computational cost by using the curl-free space.
It is very easy to obtain the local bases for V2,k

h . We can take the gradient of the
standard bases of (P k+1(K)), since we know ∇×∇f = 0 for any scalar function f .
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For example, if K is the rectangle, with the center (xi, yj) and width �xi, �yj , and
if we denote

ξ =
x− xi

�xi
, η =

y − yj
�yj

,

then one set of bases of V2,k
h would be, when k = 1,

(5.10)

(
1
0

)
,

(
ξ
0

)
,

(
�yjη
�xiξ

)
,

(
0
1

)
,

(
0
η

)
.

For k = 2, we need to add

(5.11)

(
ξ2

0

)
,

(
2�yjξη
�xiξ

2

)
,

(
�yjη

2

2�xiξη

)
,

(
0
η2

)
.

And for k = 3, we need to add

(5.12)

(
ξ3

0

)
,

(
3�yjξ

2η
�xiξ

3

)
,

(
�yjξη

2

�xiξ
2η

)
,

(
�yjη

3

3�xiξη
2

)
,

(
0
η3

)
.

5.4. Numerical results.

5.4.1. Comparison of RKDG methods using curl-free P k and standard
P k bases. In the following example, we consider a system under an external force
h(x, y, t). The macroscale equations take the form of

(5.13)

⎧⎪⎨⎪⎩
∂
∂tε−∇v = 0,

ρ0
∂
∂tv −∇ · P = h1(x, y, t),

ρ0
∂
∂te−∇ · (vTP ) = h2(x, y, t).

We choose the source terms as

h1(x, y, t) = 0.01(ρ0 − C11 − C12 − 2C44) cos(t + x + y),

h2(x, y, t) = 0.012(ρ0 − C11 − C12 − 2C44) sin(2(t + x + y)).

The initial conditions are given by

(5.14)

⎧⎪⎨⎪⎩
εij = 0.01 sin(x + y),

vi = 0.01 sin(x + y),

ρ0e = E0 + 0.012(C11 + C12 + 2C44) sin2(x + y),

i, j = 1, 2,

and with periodic boundary conditions the exact solutions are

(5.15)

⎧⎪⎨⎪⎩
εij = 0.01 sin(t + x + y),

vi = 0.01 sin(t + x + y),

ρ0e = E0 + 0.012(C11 + C12 + 2C44) sin2(t + x + y),

i, j = 1, 2.

We use this set of exact solutions to test the accuracy and efficiency of the curl-
free DG method compared to the standard DG method. We list the L2 errors and
orders of accuracy using P 1 and P 2 DG methods in Tables 5.1, 5.2, and 5.3. The
solutions are run to T = 2π. We can observe the optimal (k + 1)th order of accuracy
both for the standard DG method and the curl-free DG method. The magnitudes of
the errors for the same mesh are comparable for the two DG methods.
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Table 5.1

L2 error and order of accuracy for the stress strain ε.

Mesh Standard Pk Local curl-free Pk

L2 error Order L2 error Order

P 1

10 × 10 2.12E-03 – 2.12E-03 –
20 × 20 5.28E-04 2.01 5.27E-04 2.00
40 × 40 1.31E-04 2.00 1.31E-04 2.00
80 × 80 3.32E-05 1.98 3.32E-05 1.98

160 × 160 8.35E-06 1.99 8.35E-06 1.99
P 2

10 × 10 2.35E-03 – 1.92E-03 –
20 × 20 3.25E-04 2.86 2.62E-04 2.87
40 × 40 4.41E-05 2.88 3.39E-05 2.95
80 × 80 5.71E-06 2.95 4.33E-06 2.97

160 × 160 6.93E-07 3.04 5.47E-07 2.98

Table 5.2

L2 error and order of accuracy for the velocity.

Mesh Standard Pk Local curl-free Pk

L2 error Order L2 error Order

P 1

10 × 10 2.29E-02 – 2.28E-03 –
20 × 20 7.88E-03 1.54 7.88E-03 1.53
40 × 40 1.96E-03 2.01 1.96E-03 2.01
80 × 80 4.70E-04 2.06 4.69E-04 2.06

160 × 160 1.14E-04 2.04 1.14E-04 2.04
P 2

10 × 10 2.56E-03 – 2.49E-03 –
20 × 20 3.03E-04 3.08 2.95E-04 3.08
40 × 40 3.74E-05 3.02 3.68E-05 3.00
80 × 80 4.65E-06 3.01 4.63E-06 2.99

160 × 160 5.77E-07 3.01 5.82E-07 2.99

Table 5.3

L2 error and order of accuracy for the energy.

Mesh Standard Pk Local curl-free Pk

L2 error Order L2 error Order

P 1

10 × 10 3.38E-02 – 3.38E-02 –
20 × 20 7.97E-03 2.08 7.98E-03 2.08
40 × 40 7.42E-04 3.43 7.42E-04 3.43
80 × 80 1.75E-04 2.08 1.75E-04 2.08

160 × 160 4.42E-05 1.98 4.42E-05 1.98
P 2

10 × 10 1.34E-01 – 1.12E-01 –
20 × 20 1.78E-02 2.91 1.54E-02 2.87
40 × 40 2.29E-03 2.96 1.99E-03 2.95
80 × 80 2.92E-04 2.97 2.54E-04 2.97

160 × 160 3.68E-05 2.99 3.21E-05 2.98

5.4.2. Thermal expansion. In this example, we study the effect of thermal
expansion due to the temperature dependence of the stress. Initially the material is
at rest with a homogeneous temperature distribution T = 0.1. Our computational
domain is a square [−1, 1] × [−1, 1]. We then increase the temperature in the middle
[−0.4, 0.4]×[−0.4, 0.4] instantaneously to T = 0.4. This results in a thermal expansion
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that propagates outward. We solve the macroequations (2.1) by the DG methods
described above and compare the results with those obtained with the two-dimensional
central scheme [39].

We present results in the following two cases: one is without the heat flux; the
other is with the heat flux. Without the heat flux, the system is hyperbolic. Therefore
it will have discontinuities in the solution under discontinuous initial conditions. In
the presence of the heat flux, the system is parabolic. Therefore, the solution becomes
smooth at t > 0 even if the initial condition is discontinuous. We will demonstrate the
numerical results for the temperature distribution as well as the velocity field below.

The simplified constitutive model. We first run the simulation using the linear
constitutive model (5.4) and (5.6) everywhere.

Without the heat flux. The results of the temperature distribution at t = 0.01
are shown in Figure 3. The macrosolver from left to right in Figure 3 is the DG P 1,
DG P 2, and second-order central scheme, respectively. We can see that the DG scheme
captures the shocks much better than the second-order central scheme using the same
mesh. We can also see this from the cross section view of the three-dimensional
temperature distribution by the DG and the second-order central scheme in Figure 4.
Since we have not used any limiter for the results in the left picture of Figure 4, there
are some oscillations near the shocks. The application of limiters can eliminate these
oscillations; see Figure 4(right). For both figures, the shocks are sharper for the DG
method than for the second-order central scheme.
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Fig. 3. Temperature distribution without the heat flux (by the simplified constitutive model) at
t = 0.01 with 80 × 80 cells. Left: DG P 1 with the TVD limiter; middle: DG P 2 with the TVB
limiter M = 10; right: the second-order central scheme.

With the heat flux. Adding the heat flux in our model is adding a diffusion term
to the right side of PDEs. The LDG methods can easily deal with the diffusion term.
The results of the temperature distribution using both DG P 1 and P 2 at t = 0.01
with a 80 × 80 mesh are shown in Figure 5.

The full MD-based constitutive model. In this case, we compute the stress from
MD in every cell. We first compute the temperature from the atomistic models. After
the temperature is obtained, we compute the stress and energy flux from the atomistic
model via a canonical ensemble.

Without the heat flux. The results of the temperature distribution at t = 0.01
are shown in Figure 6. We compare our DG method again with the second-order
central scheme. Using four times as many cells for the second-order central scheme
as that for the DG P 1 method, we can still see the advantage of the DG method in
capturing shocks. A clearer view in Figure 7 shows the cross section of the three-
dimensional temperature distribution computed by the DG P 1 and the second-order
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Fig. 4. Cross section of the three-dimensional temperature distribution without the heat flux (by
the simplified constitutive model) at t = 0.01 with 80 × 80 cells. Left: DG P 1, P 2 without limiters
and the second-order central scheme; right: DG P 1 with the TVD limiter and P 2 with the TVB
limiter M = 10.
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Fig. 5. Temperature distribution with the heat flux (by the simplified constitutive model) at
t = 0.01 with 80 × 80 cells. Left: DG P 1; right: DG P 2.

central scheme. The results of the velocity field at t = 0.01 are shown in Figure 8.
The direction of the velocity is pointing outward since the temperature is propagating
outward.

With the heat flux. The results of the temperature distribution and the velocity
field at t = 0.01 are shown in Figure 9.

The domain decomposition model. Here we use the DDM procedure, as described
in section 5.2.

Without the heat flux. The results of the temperature distribution and the velocity
fields using DG P 1 at t = 0.01 by the DDM model are shown in Figure 10.

The results by the DDM are almost the same as the one we obtained by the full
MD-based model (see Figures 6(left) and 8(left)). This is more clearly seen from the
cross section of the three-dimensional temperature distribution by the DDM and the
MD (see Figure 13): they overlap almost completely.
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Fig. 6. Temperature distribution without the heat flux (by the full MD-based model) at t = 0.01.
Left: DG P 1 with 30 × 30 cells with the TVD limiter; right: the second-order central scheme with
60 × 60 cells.
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Fig. 7. Cross section of the three-dimensional temperature distribution without the heat flux
(by the full MD-based model) at t = 0.01. DG P 1 with 30 × 30 cells and the second-order central
scheme with 60 × 60 cells.

The results of the temperature distribution and the velocity fields using the DG P 1

at t = 0.03 by the DDM model are shown in Figure 11. As the time evolves, the
heating is expanding outward.

With the heat flux. The results of the temperature distribution and the velocity
fields at t = 0.01 are shown in Figure 12. Figure 14 shows the results at t = 0.03. We
can clearly see a thermal expansion propagating outward.

The DDM saves lots of computational cost. For example, we need 18 hours using
36 processors to evolve 1 time step with 30 × 30 cells for the MD DG P 1 method,
while we need only less than 3 hours to do the same thing for the DDM. Actually, we
need only run the MD for the high temperature region in the middle. Initially, this
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Fig. 8. The velocity field without the heat flux (by the full MD-based model) at t = 0.01. Left:
DG P 1 with 30× 30 cells with the TVD limiter; right: the second-order central scheme with 60× 60
cells.
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Fig. 9. With the heat flux at t = 0.01. DG P 1 with 30× 30 cells (by the full MD-based model).
Left: the temperature distribution; right: the velocity field.

part is only 16% of the whole domain. As time evolves, the high heat will propagate
outward and the area becomes even smaller.

5.4.3. Wave propagation. As the last example, we simulate elastic wave prop-
agation in a two-dimensional unbounded medium. The experiment we present is de-
scribed in [5]. The major difference is that their governing equations are based on
linear elastodynamics, but ours are based on the domain decomposition model. We
apply perfectly matched layers (PMLs) as described in [18] to simulate the propaga-
tion of waves in this open domain. See Appendix B for a brief description of the PML
method.

Our computational domain is Ω = [−5, 5] × [−5, 5] in two dimensions, occupied
by an elastic material, and we suppose that the initial condition (or the source) is
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Fig. 10. Without the heat flux at t = 0.01. DG P 1 with 30 × 30 cells (by the DDM). Left: the
temperature distribution; right: the velocity field.
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Fig. 11. Without the heat flux at t = 0.03. DG P 1 with 30 × 30 cells (by the DDM). Left: the
temperature distribution; right: the velocity field.

supported in D = [−3.5, 3.5] × [−3.5, 3.5] ⊂ Ω. We are solving this elastodynamics
problem with absorbing layers (PML) with width δ = 1.5 on all four boundaries.

The initial data of the velocity and the stress are taken to be equal to zero.
The material is of constant temperature T = 0.167 everywhere, and it is assumed
to stay in the same temperature environment. An explosive source located at the
point (xs, ys) = (−3.15, 3.15) is introduced to the right-hand side of the equations of
conservation of velocity,

(5.16) f((x, y), t) = h(t)g(r)�er,

where �er = (x− xs, y− ys), r = ||�er||. The function h(t) is the so-called second-order
Ricker signal with central frequency equal to f0 = 10Hz (see Figure 15(left)):

(5.17) h(t) = [2π2(f0t− 1)2 − 1]e−π2(f0t−1)2 ,
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Fig. 12. With the heat flux at t = 0.01. DG P 1 with 30 × 30 cells (by the DDM). Left: the
temperature distribution; right: the velocity field.
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Fig. 13. Comparison of DDM and full MD-based models: cross section of the three-dimensional
temperature distribution at t = 0.01. DG P 1 with 30 × 30 cells. Left: without the heat flux; right:
with the heat flux.

and the function g(r) is the Gaussian function defined by (see Figure 15(right))

(5.18) g(r) =
10e−7(r/r0)

2

r2
0

,

which is concentrated in a small disk of radius r0 = 0.3.
The damping factor we use is as follows:

(5.19) d(x) =
3c

2δ3
log

(
1

R

)
x2,

where R = 10−3 is the theoretical reflection coefficient from the terminating reflection
boundaries; i.e., the reflection coefficient is about 0.1%. c is an upper bound of the
wave velocities, chosen here as c = 1.
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Fig. 15. Left: the Ricker signal h(t); right: the Gaussian function g(r).

We show the snapshots of the velocity module using DG P 1 by the macromodel
in Figure 16 and by the DDM model in Figure 17. The PML works very well. The
wave fronts are not circles because of the anisotropy of the medium. The waves are
propagating outward. At t = 0.34 (see Figures 16, 17(upper right)), some waves
disappear on the upper left corner. The lower right waves are moving downward as
the time goes. At t = 1.0 (see Figures 16, 17(bottom middle)), these waves arrive
at the lower right corner. And at t = 1.5 (see Figures 16, 17(bottom right)), the
amplitude of velocity module is actually already below 5 × 10−4.

6. Concluding remarks. We have developed a multiscale solver based on the
DG method. The ability of the DG method to treat sharp wave front makes it partic-
ularly suitable for this problem. This has been demonstrated by a few test problems.
More importantly it allows us to conveniently use atomistic models to provide con-
stitutive data within the computation. The bottleneck of the method has been the
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Fig. 16. Snapshots of the velocity module at different times (by the simplified constitutive
model): DG P 1 with 80 × 80 cells.
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80 × 80 cells.
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atomistic component where MD is performed to calculate the elastic stress. This has
been alleviated to some extent in this paper by first obtaining a simplified model
in the case of small strain and low energy/temperature. More efficient methods are
needed here to completely bypass MD. This is our current work in progress. Finally
even though the numerical tests have been performed using rectangular elements,
the DG methodology allows the use of arbitrary unstructured meshes with a full h-p
adaptivity capability.

In the current framework, we have assumed that the material is a single perfect
crystal. The next step is to model the dynamics of isolated defects, such as dislocation,
phase boundary, or crack tips. These problems bring up many interesting issues, such
as the boundary conditions at the atomistic/continuum interface (e.g., see [37, 38]),
adaptive mesh refinement, thermal fluctuations, etc. These issues will be addressed
in future work.

Appendix A. The hyperbolicity of the constitutive model without the
heat flux. When the deformation is small and the temperature is low, we can use
the linearized stress-strain relation (5.4) and the linearized temperature relation (5.6)
to solve for the temperature T ; then we will have a closed system of equations. For
the case without the heat flux, this system of equations can be written in the form of
a system of conservation laws:

Ut + Fx + Gy = 0,

where
(A.1)

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε11

ε12

ε21

ε22

ρ0v1

ρ0v2

ρ0e + 1
2ρ0(v

2
1 + v2

2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−v1

0
−v2

0
−P11

−P21

−v1P11 − v2P21

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−v1

0
−v2

−P21

−P22

−v1P21 − v2P22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
with the relations (5.4) and (5.6).

It is known in [20, p. 55] that the system (A.1) is hyperbolic on a certain region
of the state space if, for every (ε, η) lying in that region, the following two conditions
hold:

∂Ê(ε, η)

∂η
> 0,(A.2)

∂2Ê(ε, η)

∂εij∂εkl
νjνlξiξk > 0 for all ν and ξ,(A.3)

where η is the entropy and Ê(ε, η) = E(ε, T ). The first condition ensures that the
temperature is positive, and the second condition, often referred to as the rank-one
convexity condition, implies that the local thermal equilibrium is stable.

First, to compute the entropy η = η(ε, T ), using the Helmholtz free energy [20,
p. 41]

(A.4) ψ(ε, T ) = e(ε, T ) − Tη,
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we obtain

(A.5) Pij = ρ0
∂ψ

∂εij
=

∂E(ε, T )

∂εij
− ρ0T

∂η

∂εij
= cijklεkl − ρ0T

∂η

∂εij
.

The last equality comes from the expression of E(ε, T ) given by (5.6).
Applying the definition of P in (5.3) to (A.5), we get

(A.6) ρ0T
∂η

∂εij
= −αTδij .

Thus

(A.7) η = − α

ρ0
(ε11 + ε22) + ϕ(T ).

To determine the function ϕ(T ), we know from (A.4) that

(A.8) η(ε, T ) = −∂ψ

∂T
= −∂(e− Tη)

∂T
= − ∂e

∂T
+ η + T

∂η

∂T
= − 3

ρ0
+ η + T

∂η

∂T
,

which then reduces to

(A.9) T
∂η

∂T
=

3

ρ0
.

Together with (A.7), we finally obtain the entropy for the system (A.1),

(A.10) η(ε, T ) = − α

ρ0
(ε11 + ε22) +

3

ρ0
log T,

up to a constant.
Next, T̂ = T̂ (ε, η) can be solved by (A.10):

(A.11) T̂ (ε, η) = e(ρ0η+α(ε11+ε22))/3.

Then

(A.12) Ê(ε, η) = E0 +
1

2
cijklεklεij + 3e(ρ0η+α(ε11+ε22))/3.

For the first condition given by (A.2),

(A.13)
∂Ê(ε, η)

∂η
= ρ0e

(ρ0η+α(ε11+ε22))/3 > 0.

The second condition (A.3), called the Legendre–Hadamard condition, means
that Ê is rank-one convex in ε. It is equivalent to the condition that the matrix(∂2Ê(ε,η)
∂εij∂εkl

)
4×4

is positive definite.

It is easy to check that the matrix

(
∂2Ê(ε,η)
∂εij∂εkl

)
4×4

=

⎛⎜⎜⎝
C11 + 1

3α
2e(ρ0η+α(ε11+ε22))/3 0 0 C12 + 1

3α
2e(ρ0η+α(ε11+ε22))/3

0 C44 C44 0
0 C44 C44 0

C12 + 1
3α

2e(ρ0η+α(ε11+ε22))/3 0 0 C11 + 1
3α

2e(ρ0η+α(ε11+ε22))/3

⎞⎟⎟⎠

(A.14)

is positive definite.
Therefore, the system (A.1) is hyperbolic.
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Appendix B. PML methods. The idea of the PML is to surround the com-
putational domain with an absorbing layer (the PML region) such that the coupled
system possesses the property of generating no reflection at the interface between the
free medium and the artificial absorbing medium. The principal ideas of the PML
were first introduced by Bérenger [6]. In [5], Bécache, Fauqueux, and Joly have shown
that it is possible to write in a systematic way of designing a PML model for a gen-
eral first-order hyperbolic system. In this section, we will briefly describe the general
construction.

Consider a general two-dimensional first-order hyperbolic system

Ut + AUx + BUy = 0,

U(t = 0) = U0,
(B.1)

where U is an m-vector, and A and B are m×m matrices. To simplify the presentation,
we assume our physical domain is in the left half-plane, i.e., [x1 < 0, x2 = 0]× [y1, y2].
The initial condition U0 is zero on the right half-plane. The main idea of the PML
model is to couple the equation in the left half-space with an equation in the right
half-space such that there is no reflection at the interface y = 0.

The construction of the PML in the x-direction is to split U = U (1) + U (2), such
that the unknown U (1) is associated only with the derivatives with respect to x and
U (2) with the derivatives with respect to y. Then we introduce a damping factor d(x)
only on U (1). We obtain the system in the following:

U
(1)
t + d(x)U (1) + AUx = 0,

U
(2)
t + BUy = 0,

U(t = 0) = U0,

(B.2)

where d(x) = 0 for x < 0, and d(x) ≤ 0 for x ≤ 0. It is easy to see that U
satisfies the same system of equations in the physical domain. The analysis [6] shows
that there will be no reflection at the interface between the physical domain and the
absorbing layers. Furthermore, the transmitted wave decreases exponentially during
its propagation inside the layer.

In our example, the macroequations are a two-dimensional nonlinear system of
parabolic equations. We will apply the PML to all the boundaries. So our macro-
equations can be rewritten in the following form:

U
(1)
t + d(x)U (1) + Fx = 0,

U
(2)
t + d(y)U (2) + Gy = 0,

U(t = 0) = U0,

(B.3)

where F and G are in (A.1), and d(x) and d(y) are zeros in the physical domain and
positive in the absorbing layers.
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