

Assignment:

```
- For Next Time:
-SW, 31-60: 19th Century
- E, 68-71: Samoa Cyclone
- E, 82: Herndon and the Central
America }1857
```


Physical Laws

- Hydrostatic law: Pressure is the weight of the air above.
- Gas law: Warm air is less dense than cold
- Gradient Balance: Low pressure draws air into a (counterclockwise) circular path around the center of a cyclone.

Pressure-Wind Relation

$$
\begin{aligned}
& V_{\max }(\mathrm{kt})=15 \sqrt{1013-p_{\text {cent }}} \\
& \text { or } \\
& V_{\max }\left(\mathrm{m} \mathrm{~s}^{-1}\right)=7.5 \sqrt{1013-p_{\text {cent }}}
\end{aligned}
$$

Where $V_{\text {max }}$ is the strongest wind anywhere in the hurricane (in kt or $\mathrm{m} \mathrm{s}^{-1}$) and $p_{\text {cent }}$ is the surface pressure at the center in millibars. Not particularly accurate

Flow Around The Eye

Summary

- Circular, long-lived vortex that moves more slowly than its circulating wind (RR Paradigm)
- Warm, low-hydrostatic-pressure center
- Circulating wind in gradient balance with pressure distribution
- Wind increases from calm at the center to a maximum at the edge of the clear eye, and then decreases with distance from the center outside the eye
- Secondary circulation
- Frictional inflow
- Buoyant, outward sloping eyewall updraft
- Precipitation-driven downdraft
- Upper tropospheric outflow
- Outer anticyclone
- Clear eye filled with subsiding air.

Assignment:

```
- For NEXT TIME
- SW, 31-60: 19th Century
E, 68-71: Samoa Cyclone
E, 82: Herndon and the Central
America }1857
```

See You Next Time

