1. Hurricane Zoë is in an easterly (i.e., blowing straight from the east--- toward the west , 270° on a compass) steering flow at $5 \mathrm{~m} \mathrm{~s}^{-1}$. For a cyclone with Zoë's size and latitude, the β drift is toward the NW $\left(315^{\circ}\right)$ at $2.0 \mathrm{~m} \mathrm{~s}^{-1}$. Hint, $\cos 45^{\circ}=\sin 45^{\circ}=0.7071$.
a. What are the westward (X) and northward (Y) components of Zoë's total motion due to steering and β ?
b. What is Zoë's speed of motion due to the combined effects of steering and β ?
c. What is Zoë's approximate direction of motion (W, WNW, NW, NNW, N, ..., or compass heading) due to the combined effects of steering and β ?

Hint: Solution of this problem requires use of vectors. In vector addition the velocities in the E-W and N -S directions are added separately. For example, $C_{\text {хтот }}=C_{\text {XSTEER }}+C_{\text {XветA }}$, and $C_{\text {YTOT }}=C_{\text {YSTEER }}+C_{\text {YBETA }}$. The magnitude of the resulting total motion (the speed) is computed using Pythagoras' Theorem, $C_{\text {Tот }}=\sqrt{C_{\text {хтот }}^{2}+C_{\text {Yтот }}^{2}}$. You should be able to get the approximate direction by drawing a to-scale sketch, or you could calculate it using, Direction = $360^{\circ}-\tan ^{-1}\left(C_{\text {хтот }} / C_{\text {утот }}\right)$
2. Zoë made landfall at OOh UTC (midnight) on the $19^{\text {th }}$ with $56 \mathrm{~m} \mathrm{~s}^{-1}$ maximum winds. Using Kaplan and DeMaria's rule for inland decay (and neglecting immediate frictional effects on the surface winds), what would Zoë's winds in $\mathrm{m} \mathrm{s}^{-1}$ be:
a. After 7h?
b. After 14 h ?
c. After 21 h?

Due Friday 130CT17.

