- 1. Hurricane Zoë is in an easterly (i.e., blowing straight from the east--- toward the west, 270° on a compass) steering flow at 5 m s⁻¹. For a cyclone with Zoë's size and latitude, the β drift is toward the NW (315°) at 2.0 m s⁻¹. Hint, cos 45° = sin 45° = 0.7071.
 - a. What are the westward (X) and northward (Y) components of Zoë's total motion due to steering and β ?
 - b. What is Zoë's speed of motion due to the combined effects of steering and β ?
 - c. What is Zoë's approximate direction of motion (W, WNW, NW, NW, N, ..., or compass heading) due to the combined effects of steering and β?

Hint: Solution of this problem requires use of vectors. In vector addition the velocities in the E-W and N-S directions are added separately. For example, $C_{xTOT} = C_{xSTEER} + C_{xBETA}$, and $C_{yTOT} = C_{ySTEER} + C_{yBETA}$. The magnitude of the resulting total motion (the speed) is computed using Pythagoras' Theorem, $C_{TOT} = \sqrt{C_{xTOT}^2 + C_{yTOT}^2}$. You should be able to get the approximate direction by drawing a to-scale sketch, or you could calculate it using, Direction = $360^\circ - \tan^{-1}(C_{xTOT} / C_{yTOT})$

- Zoë made landfall at 00h UTC (midnight) on the 19th with 56 m s⁻¹ maximum winds. Using Kaplan and DeMaria's rule for inland decay (and neglecting immediate frictional effects on the surface winds), what would Zoë's winds in m s⁻¹ be:
 - a. After 7h?
 - b. After 14h?
 - c. After 21h?

Due Friday 13OCT17.