UNIVERSITY GRADUATE SCHOOL BULLETIN ANNOUNCEMENT

Florida International University

University Graduate School
Doctoral Dissertation Defense

Abstract
Design and Synthesis of 4-N-Alkanoyl and 4-N-Alkyl Gemcitabine Analogues Suitable for Positron Emission Tomography

By

Jesse E. Pulido

The coupling of gemcitabine to carboxylic acids with varying terminal moieties or reaction of 4- N -tosylgemcitabine with corresponding alkyl amines afforded the $4-\mathrm{N}$-alkanoyl and $4-\mathrm{N}$ alkyl gemcitabine analogues. Analogues bearing a terminal hydroxyl group on the alkyl chain were fluorinated with DAST or under conditions compatible with synthetic protocols for ${ }^{18} \mathrm{~F}$ labeling. The $4-N$-alkylgemcitabine-NOTA conjugate underwent efficient chelation with gallium chloride under conditions compatible with ${ }^{68} \mathrm{Ga}$ labeling protocols. The 4 - N -alkanoylgemcitabine analogues exhibited potent cytostatic activities against murine and human tumor cell lines with IC_{50} values in the low nM range. In comparison to the $4-\mathrm{N}$-alkanoyl analogues, the $4-\mathrm{N}$ alkylgemcitabines had modest cytostatic activities with IC_{50} values in the low $\mu \mathrm{M}$ range. The cytostatic activity for the $4-\mathrm{N}$-alkanoylgemcitabines was drastically diminished in the deoxycytidine kinase deficient CEM/dCK- cell line whereas the $4-N$-alkylgemcitabines were only moderately reduced. Although none of the selected compounds were found to be effective substrates for cytosolic dCK, both the 4-N-alkanoyl and 4-N-alkyl gemcitabine derivatives inhibited new DNA synthesis. Therefore, the $4-N$-alkanoyl gemcitabine derivatives need to be converted to gemcitabine before realizing their cytostatic potential. In contrast, the $4-N-$ alkylgemcitabines achieve their modest activity without any "measurable" conversion to gemcitabine and possibly via alternative dCK-independent pathway.

Date: March 06, 2014
Department: Chemistry and Biochemistry Major Professor: Dr. Stanislaw F. Wnuk
Time: 8:00 a.m.
Place: University Park, AHC-II 556

