

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry

Bioorganic & Medicinal Chemistry 16 (2008) 5090-5102

S-Ribosylhomocysteine analogues with the carbon-5 and sulfur atoms replaced by a vinyl or (fluoro)vinyl unit

Stanislaw F. Wnuk,^{a,*} Jennifer Lalama,^{a,†} Craig A. Garmendia,^a Jenay Robert,^a Jinge Zhu^b and Dehua Pei^b

^aDepartment of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, USA ^bDepartment of Chemistry and Ohio State Biochemistry program, The Ohio State University, Columbus, OH 43210, USA

> Received 13 January 2008; revised 5 March 2008; accepted 10 March 2008 Available online 14 March 2008

Abstract—Treatment of the protected ribose or xylose 5-aldehyde with sulfonyl-stabilized fluorophosphonate gave (fluoro)vinyl sulfones. Stannyldesulfonylation followed by iododestannylation afforded 5,6-dideoxy-6-fluoro-6-iodo-D-*ribo* or *xylo*-hex-5-enof-uranoses. Coupling of the hexenofuranoses with alkylzinc bromides gave 10-carbon ribosyl- and xylosylhomocysteine analogues incorporating a fluoroalkene. The fluoroalkenyl and alkenyl analogues were evaluated for inhibition of *Bacillus subtilis S*-ribosylhomocysteinase (LuxS). One of the compounds, 3,5,6-trideoxy-6-fluoro-D-*erythro*-hex-5-enofuranose, acted as a competitive inhibitor of moderate potency ($K_I = 96 \mu$ M). © 2008 Elsevier Ltd. All rights reserved.

1. Introduction

S-Adenosyl-L-homocysteine (SAH) is a byproduct of many methyltransferase reactions and a potent inhibitor of the methyltransferases. In eukaryotes and some bacteria, detoxification of SAH is mediated by SAH hydrolase (EC 3.3.1.1), which effects hydrolytic cleavage of SAH to L-homocysteine (Hcy) and adenosine (Fig. 1).¹ Hcy appears to be a risk factor for coronary artery diseases.² Alternatively, most bacteria utilize enzyme 5'-methylthioadenosine (MTA)/SAH nucleosidase (EC 3.2.2.9) to irreversibly cleave SAH yielding adenine and S-ribosyl-L-homocysteine (SRH).³ The SRH is then converted to Hey and 2,4-dihydroxy-2,3-pentadione (DPD) by a metalloenzyme S-ribosylhomocysteinase (LuxS).⁴ DPD⁵ spontaneously cyclizes and complexes with borate to form a furanosyl borate diester, which acts as a type 2 autoinducer for bacterial interspecies quorum sensing.⁶ Since quorum sensing regulates many bacterial behaviors such as virulence and biofilm formation, LuxS and other proteins involved in quorum sensing have been proposed as attractive targets for novel antibacterial drug design.⁷

0968-0896/\$ - see front matter @ 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmc.2008.03.028

Several substrate analogues of SRH (e.g., 1 and 2) showed submicromolar inhibition of LuxS.^{4e,h}

We have previously observed that SAH hydrolase is capable of the addition of water across 5',6' isolated double bond of adenosine analogues 3 and 4 (Fig. 2).^{1c,8} The resulting adduct (or its derivative) caused covalent modification and inactivation^{8b} of the enzyme, a process which required the catalytic activity of the enzyme. Since LuxS catalyzes a similar reaction as SAH hydrolase (i.e., overall elimination of Hcy), we designed analogues of SRH with the vinyl or halovinyl moieties incorporated in place of the carbon-5 and sulfur atoms (e.g., 5). We envisaged that these ribosyl analogues might serve as mechanistic probes to study the mechanism of action of LuxS and evaluate the similarities between SAH hydrolase and LuxS. As mentioned above, LuxS inhibitors may provide a novel class of antibacterial agents. We now describe the syntheses of SRH analogues with the carbon-5 and sulfur atoms replaced by vinyl or (6-fluoro)vinyl motifs and discuss their interactions with LuxS enzyme.

2. Chemistry

Our initial plan to prepare compound **5** and its congeners is illustrated in Scheme 1. Treatment of the diacetone

Keywords: LuxS enzyme, Negishi coupling; *S*-Ribosylhomocysteine; Vinyl fluorides; Vinyl stannanes.

^{*} Corresponding author. Tel.: +1 305 348 6195; fax: +1 305 348 3772; e-mail: wnuk@fiu.edu

[†] Present address: Azopharma, Inc., Miramar, FL, USA.

Figure 1. Reaction pathways for SAH detoxification in eukaryotes (a) and the majority of bacteria (b). The latter is also utilized by the bacteria to produce the type 2 autoinducer.

Figure 2. Inhibitors of LuxS enzyme (1 and 2).^{4e,h} 5'-Deoxy-5'-(halomethylene)adenosine analogues (3 and 4) which serve as suicide substrates for SAH hydrolase⁸ and targeted SRH analogues (5) in which the sulfur and C5 atoms are replaced by a vinyl unit.

3-*O*-benzoylglucose **6** or allose **7** with periodic acid selectively removed the 5,6-*O*-isopropylidene group. Subsequent oxidative cleavage of the exposed vicinal diol^{9a} gave the corresponding 5-aldehydes **8** and **9**, respectively, in high yields (Scheme 1). Wittig olefination of aldehyde **8** with the ylide derived from commercially available [4-ethoxy-4-oxobutyltriphenylphoshonium bromide provided a complex mixture of products. Column chromatography yielded protected 5,6,7, 8-tetradeoxy- α -D-xylo-non-5(Z)-enofuranuronate **10** (18% yield). The stereochemistry was assigned as Z, based on the magnitude of the coupling constants for olefinic protons (${}^{3}J_{5-6} = 11.1$ Hz), and literature precedence for the Wittig condensations of aliphatic aldehydes with

Scheme 1. Reagent: (a) $H_5IO_6/EtOAc$; (b) $Ph_3PCH_2CH_2CH_2CO_2Et/HMDS/THF$.

the non-stabilized ylides.^{9b} Similarly, Wittig-treatment of *ribo* 5-aldehyde 9 gave 11; a nine-carbon analogue of SRH. Unfortunately, our attempts to add bromine (CH₂Cl₂/0 °C) across the double bond of 10 or 11 (as well as 16) produced a complex mixture which did not give the desired SRH analogues of type 5 bearing a (6bromo)vinyl unit when treated with DBU.¹⁰

In an alternative approach, we attempted a synthesis of 6-bromoalkenyl analogues 5 (X = Br) via Pd-catalyzed monoalkylation^{11–13} of the readily available (gem-dibromo)vinyl sugar precursors (e.g., 12 and 13) with the corresponding alkylzinc reagents. Thus, dibromolefination of xylo 5-aldehyde 8 by the Corey–Fuchs procedure¹⁴ gave 5-(dibromomethylene)-5-deoxyxylose 12 (81%) from 6; Scheme 2). Analogous treatment of the ribo 5-aldehyde 9 afforded 13.¹⁵ Treatment of 12 with 3 equiv of 4-ethoxy-4-oxobutylzinc bromide in the presence of Pd(PPh₃)₄ at 55 °C gave monoalkylated 5,6,7,8,9-pentadeoxy- α -D-*xylo*-dec-5(*E*)-enofurantian 14 (18%, ${}^{3}J_{5-6} = 15.4 \text{ Hz}$) and dialkylated **18** (48%) products, but did not yield the desired 6-bromoalkenyl product 15. Analogous Negishi coupling of 5-(dibromomethylene)-5-deoxyribose 13 afforded only dialkylated product 19 (54%). Changing catalyst [(Pd₂(dba)₃)], solvent (THF), reaction temperature (rt to 60 °C) as well as adding additives (CuI, tricyclohexylphosphine) did not lead to the formation of 15 or 17 but instead produced dialkylated byproducts 18 and 19 (3-49%) in agreement with a recent report.13b

We next explored stereoselective coupling of the *gem*dihalovinyl sugars containing two different halogens. We chose 5-deoxy-5-(fluoroiodomethylene) hexenofuranoses **26** and **27** because the iodo and fluoro substituents are known to have quite different reactivity towards oxidative–addition in Pd-mediated couplings.^{11b,16,17} The precursors **26** and **27** were prepared employing McCarthy's stannyldesulfonylation methodology.^{18,19} Thus, treatment of the *xylo* aldehyde **8** with the enolate generated from the sulfonyl-stabilized fluorophosphonate²⁰

Scheme 2. Reagents: (a) PPh_3/CBr_4 ; (b) $BrZn(CH_2)_3CO_2Et/Pd(PPh_3)$ 4/benzene/ Δ .

Scheme 3. Reagents and conditions: (a) PhSO₂CHFPO(OEt)₂ or PhSO₂CH₂PO(OEt)₂/LHMDS/ THF/-78 °C; (b) Bu₃SnH/AIBN/tol-uene/85 °C; (c) NIS/CH₂Cl₂.

gave (fluoro)vinyl sulfones **20** (E/Z, 7:3; 76%; Scheme 3). The stereoselective radical-mediated stannyldesulfonylation of **20** with Bu₃SnH produced (fluoro)vinyl stannanes **23** (E/Z, 7:3; 95%). Iododestannylation of **23** with

Scheme 4. Reagents: (a) $BrZn(CH_2)3CO_2Et/Pd(PPh_3)4/benzene/\Delta$; (b) $NH_3/MeOH$; (c) TFA/H_2O . *N*-iodosuccinimide (NIS) quantitatively afforded 6-fluoro-6-iodo-*xylo*-hex-5-enofuranoses **26** with retention of the *E/Z* configuration. The *ribo* analogue **27** (*E/Z*, 3:2; 57% overall yield from **9**) was similarly prepared. The isomeric ratio for the fluorinated sugars could be distinguished by the magnitude of the ${}^{3}J_{\text{F-H5}}$ in the NMR spectra.

Pd-mediated cross-coupling of the xylo analogue 26 (E/ Z, 4:1) with 2 equiv of 4-ethoxy-4-oxobutylzinc bromide resulted in selective consumption of (E)-26 to afford (Z)-29 in 61% isolated yield or 76% based on consumption of (E)-26 (Scheme 4). A small amount of (E)-29 was also isolated, although monocoupling with gem-dihalovinyl substrates is considered to be trans selective.^{12,13b,16} Similar monoalkylation of the ribo analogue 27 (E/Z, 3:2) with BrZn(CH₂)₃COOEt vielded (Z)-30 [54%, 90% based on the conversion of (*E*)-27]²¹ and (*E*)-30 [12%, 30% from (*Z*)-27]. Coupling of the (iodo)vinyl (E)-28, prepared as depicted in Scheme 3 $(9 \rightarrow 22 \rightarrow 25 \rightarrow 28)$, with BrZn(CH₂)₃COO-Et gave the unfluorinated analogue (E)-16 (56%) with the retention of configuration. Treatment of (Z)-29 with NH₃/MeOH removed the benzoyl group and converted the ethyl ester into a methyl ester (Z)-31 (74%). Subsequent removal of the isopropylidene group with aqueous trifluoroacetic acid (TFA) at 0 °C gave (Z)-33 (61%; α/β , 1:1). Successive treatment of (\tilde{Z})-30 with NH₃/MeOH followed by TFA/H₂O gave (Z)-34 (52% overall yield; α/β , 3:7); a 10-carbon 6-fluoroalkenyl analogue of SRH.

The 5,6-dideoxy-6-fluorohex-5-enofuranoses 42 and 43, depurinated analogues of 3 (X = F), were synthesized by protiodestannylation of the (fluoro)vinyl stannanes 23 and 24. Thus, treatment of 23 (E/Z, 7:3) with NH₃/ MeOH at 25 °C resulted in the removal of 3-O-benzoyl group to give 36 (Scheme 5). However, prolonged heating of 36 (or 23) with NH₃/MeOH at 65 °C for 48 h effected protiodestannylation to yield a separatable mixture of (E)-39 (29%) and (Z)-39 (48%). Treatment of (E)-39 with TFA/H₂O at 0 °C gave (E)-42 (α/β , \sim 1:1). Analogous debenzoylation and protiodestannylation of 24 (E/Z, 1:1) with NH₃/MeOH yielded (E)-40 (32%) and (Z)-40 (26%). Acid-catalyzed removal of the isopropylidene group in (E)-40 gave 5,6-dideoxy-6-fluoro-*D*-*ribo*-hex-5-enofuranose (*E*)-**43** (67%; α/β , ~1:4). Alternatively, concomitant protiodestannylation and removal of acetone unit in 36 or 37 with TFA also afforded 42 and 43.

The 3,5,6-trideoxy 6-fluorohex-5-enofuranose 44, which lacks a hydroxyl group at C3 and therefore cannot participate in the second enolization step of the LuxS-catalyzed reaction,^{4b} was also prepared. Thus, oxidation of the diacetone 3-deoxyglucose²² with $H_5IO_6^{9a}$ and in situ treatment of the rather unstable 3-deoxyribose 5-aldehyde with the enolate generated from the sulfonyl-stabilized fluorophosphonate²⁰ gave the (fluoro)vinyl sulfones **35** (48%; *E/Z*, 2:1). Subjection of **35** to the stannyldesulfonylation/protiodestannylation^{18b} sequence afforded 3-deoxy (6-fluoro)vinyl sugar **41**, which was deprotected to yield **44** (12% from **35**). Alter-

Scheme 5. Reagents and conditions: (a) $NH_3/MeOH/25 \,^{\circ}C$; (b) $Bu_3SnH/AIBN/toluene/85 \,^{\circ}C$; (c) $NH_3/MeOH/65 \,^{\circ}C$ or $NH_3/MeOH/CsF/65 \,^{\circ}C$; (d) TFA/H_2O .

natively, treatment of vinyl stannanes **38** with TFA effected simultaneous protiodestannylation and removal of the acetone unit to give **44** (23% from **35**; *E/Z*, \sim 1:3, $\alpha/\beta \sim$ 1:4).

3. Inhibition of LuxS

The (6-fluoro)vinyl *xylo*- (42) and *ribo*-hexofuranoses (43) and their 3-deoxy analogue 44 as well as (6-fluoro)vinyl *xylo*- and *ribo*-decofuranoses (33 and 34) were evaluated^{4h} as potential inhibitors of *Bacillus subtilis S*-ribosylhomocysteinase (LuxS). Compound 44 exhibited competitive inhibition of moderate potency, with a $K_{\rm I}$ value of 96 ± 3 μ M (Fig. 3). None of the other compounds showed significant inhibition under the assay conditions.

4. Summary and conclusions

We have developed synthesis of six-, nine-, and 10-carbon analogues of ribosyl- and xylosylhomocysteines in which the carbon-5 and sulfur atoms are replaced by a vinyl or (fluoro)vinyl unit. These fluoroalkenyl and alkenyl analogues of SRH were synthesized employing either the Wittig reaction or Pd-catalyzed coupling routes. They were evaluated against *B. subtilis S*-ribosylhomocysteinase (LuxS). Only 3,5,6-trideoxy-6-fluoro-D-*erythro*-hex-5-enofuranose acted as competitive inhibitor of moderate potency with $K_{\rm I} = 96 \,\mu\text{M}$.

5. Experimental

¹H (Me₄Si) NMR spectra were determined with solution in CDCl₃ at 400 or 600 MHz, ¹³C (Me₄Si) at 100.6 MHz and ¹⁹F (CFCl₃) at 376.5 MHz unless otherwise noted. Mass spectra (MS) were obtained by atmospheric pressure chemical ionization (APCI) and HRMS by electron impact techniques unless otherwise noted. Reagent grade chemicals were used as received. Solvents were

Figure 3. Inhibition of Co^{2+} -substituted *B. subtilis* LuxS by compound **44**. (A) Plot of remaining LuxS activity (relative to that in the absence of inhibitor) as a function of [I]. (B) Lineweaver–Burke plot of data from part A to show the competitive inhibition mode.

dried by reflux over and distillation from CaH₂ under an argon atmosphere except THF (K/benzophenone). TLC was performed on Merck kieselgel 60- F_{254} with MeOH/CHCl₃ (1:9) and EtOAc/MeOH (95:5) as developing systems, and products were detected with 254 nm light or by visualization with Ce(SO₄)₂/ (NH₄)₆Mo₇O₂₄·4H₂O/H₂SO₄/H₂O reagent. Merck kieselgel 60 (230–400 mesh) was used for column chromatography. Elemental analyses were determined by Galbraith Laboratories, Knoxville, TN.

5.1. Ethyl 3-O-benzoyl-5,6,7,8-tetradeoxy-1,2-O-isopropylidene- α -D-xylo-non-5(Z)-enofuranuronate (10)

Step (a). H_5IO_6 (150 mg, 0.66 mmol) was added to a stirred solution of 6 (200 mg, 0.55 mmol) in dried EtOAc at ambient temperature. A precipitate appeared within the first 5 min and the resulting solution was stirred for 90 min. The precipitate was filtered off and was washed with EtOAc ($2 \times 5 \text{ mL}$). The combined organic laver was washed with NaHCO₃/H₂O (10 mL), NaCl/ H₂O (10 mL), dried (Na₂SO₄), and evaporated to yield 3-O-benzoyl-1,2-O-isopropylidene-a-D-xylo-pentodialdo-1,4-furanose (8; 160 mg, 95%; approximately 90% pure based on ¹H NMR): ¹H NMR δ 1.35 and 1.48 $(2 \times s, 2 \times 3, 2 \times CH_3), 4.76$ (d, $J_{4-3} = 3.2$ Hz, 1, H4), 4.88 (d, $J_{2-1} = 3.1$ Hz, 1, H2), 5.77 (d, $J_{1-2} = 3.1$ Hz, 1, H1), 6.18 (d, $J_{3-4} = 3.3$ Hz, 1, H3), 7.42–8.01 (m, 5, Ar), 9.78 (s, 1, H5). Step (b). LHMDS (1 M/THF; 0.69 mL, 0.69 mmol) was added dropwise to a stirred solution of Ph₃PCH₂CH₂CH₂CO₂Et/Br (314 mg,

0.69 mmol) in anhydrous THF (4 mL) in a flame-dried flask under N₂ at ambient temperature. After 15 min, a solution of the crude, preferentially freshly prepared, aldehyde 8 (160 mg of the material from Step (a)) in THF (2 mL) was added via syringe and stirring was continued overnight. EtOAc (30 mL) and NaHCO₃/H₂O (10 mL) were added and the separated organic was washed with NaCl/H₂O (10 mL), dried (Na₂SO₄), and evaporated. Column chromatography $(10 \rightarrow 30\%$ hexanes/EtOAc) gave 10 (39 mg, 18%) as an oil: ¹H NMR δ 1.24 (t, J = 7.2 Hz, 3, CH₃), 1.37 and 1.62 (2× s, 2×3 , $2 \times CH_3$), 2.41 (t, $J_{8-7/7'} = 6.9$ Hz, 2, H8/8'), 2.50 ('q', $J_{7-6/8/8'} = 7.3$ Hz, 2, H7/7'), 4.15 (q, J = 7.1 Hz, 2, CH_2), 4.71 (d, $J_{2-1} = 3.8$ Hz, 1, H2), 5.22 (dd, $J_{4-5} = 7.7$ Hz, $J_{4-3} = 2.8$ Hz, 1, H4), 5.46 (d, $J_{3-4} = -2.8$ Hz, 1, H4), 5.46 (d, J_{3-4} = -2.8 2.8 Hz, H3), 5.58 (dd, $J_{5-6} = 11.1$ Hz, $J_{5-4} = 7.9$ Hz, 1, H5), 5.68 (dt, $J_{6-5} = 11.1$ Hz, $J_{6-7/7'} = 7.1$ Hz, 1, H6), 6.05 (d, $J_{1-2} = 3.7$ Hz, 1, H1), 7.48–8.04, (m, 5, Ar); ¹³C NMR δ 14.62 (CH₃), 24.08 (C7), 26.62 and 27.19 (CMe₂), 34.23 (C8), 60.90 (CH₂), 75.54 (C2), 78.59 (C3), 84.20 (C4), 105.02 (C1), 112.47 (CMe₂), 123.90 (C6), 128.91 (Bz), 129.78 (Bz), 130.15 (Bz), 133.85 (Bz), 134.39 (C5), 165.64 (Bz), 173.09 (C9); MS m/z 391 (100, MH⁺). HRMS (AP-ESI) m/z calcd for C₂₁H₂₆O₇Li (MLi⁺) 397.1839; found: 397.1833.

5.2. Ethyl 3-O-benzoyl-5,6,7,8-tetradeoxy-1,2-O-isopropylidene- α -D-*ribo*-non-5(Z)-enofuranuronate (11)

Step (a). Oxidation of 7 (200 mg, 0.55 mmol) with H_5IO_6 (150 mg, 0.66 mmol) as described for 10, gave 3-O-benzoyl-1,2-O-isopropylidene-α-D-ribo-pentodialdo-1,4-furanose (9; 145 mg, 85%; approximately 90% pure, ${}^{1}H$ NMR): ${}^{1}H$ NMR $\delta 1.39$ and 1.61 (2× s, 2×3, 2× CH₃), 4.64 (dd, J_{4-5}) = 2.2 Hz, J_{4-3} = 9.2 Hz, 1, H4), 5.01 (t, $J_{2-1/3}$ = 4.2 Hz, 1, H2), 5.13 (dd, $J_{3-4} = 9.2$ Hz, $J_{3-2} = 4.6$ Hz, 1, H3), 6.02 (d, $J_{1-2} = 3.4$ Hz, 1, H1), 7.48–8.03 (m, 5, Ar), 9.77 (d, $J_{5-4} = 2.2$ Hz, 1, H5). Step (b). Treatment of the crude 9 (145 mg)with Ph₃P(CH₂)₃CO₂Et/Br (275 mg, 0.60 mmol) and LHDMS (1 M/THF; 0.60 mmol, 0.60 mL) as described for 10, gave 11 (18 mg, 12%): ¹H NMR δ 1.26 (t, J = 7.1 Hz, 3, CH₃), 1.36 and 1.62 (2× s, 2×3 , $2 \times$ CH₃), 2.38 (t, $J_{8-7/7'} = 8.2$ Hz, 2, H8/8'), 2.46-2.55 (m, 1, H7), 2.55-2.67 (m, 1, H7'), 4.15 (q, J = 7.1 Hz, 2, CH₂), 4.74 (dd, $J_{3-4} = 9.1$ Hz, $J_{3-2} = 4.8$ Hz, 1, H3), 4.96 ('t', $J_{2-1/3} = 4.3$ Hz, 1, H2), 5.20 (t, $J_{4-3/5} = 8.7$ Hz, 1, H4), 5.50 (ddt, $J_{5-6} = 10.9$ Hz, $J_{5-4} = 8.7 \text{ Hz}, \quad J_{5-7/7'} = 1.0 \text{ Hz}, \quad 1, \quad \text{H5}), \quad 5.72 \quad (\text{dt},$ $J_{6-5} = 10.9$ Hz, $J_{6-7/7'} = 7.1$ Hz, 1, H6), 5.93 (d, $J_{1-2} = 3.8$ Hz, 1, H1), 7.48–8.04, (m, 5, Ar); ¹³C NMR δ 14.30 (CH₃), 24.01 (C7), 26.99 and 27.04 (CMe₂), 34.53 (C8), 60.89 (CH₂), 73.39 (C4), 77.34 (C2), 77.56 (C3), 104.61 (C1), 113.40 (CMe₂), 127.26 (C5), 128.90 (Bz), 129.80 (Bz), 130.28 (Bz), 133.80 (Bz), 135.14 (C6), 166.25 (Bz), 173.06 (C9). HRMS (AP-ESI) m/z calcd for C₂₁H₂₆O₇Li (MLi⁺) 397.1839; found: 397.1828.

5.3. 3-*O*-Benzoyl-5,6-dideoxy-6,6-dibromo-1,2-*O*-isopropylidene- α -D-*xylo*-hex-5-enofuranose (12)

(Dibromomethylene)triphenylphosphorane [generated in situ by stirring CBr₄ (8.09 g, 24.5 mmol), Ph₃P (6.46 g, 24.5 mmol) and activated Zn (dust; 1.60 g,

24.5 mmol) in dried CH₂Cl₂ (100 mL) at 0 °C (ice-bath) for 30 min followed by stirring at ambient temperature under N_2 for 3 h] was added to the solution of freshly prepared aldehyde 8 [prepared as described for 10 (Step (a) from 6 (4.68 g, 12.9 mmol) and dried for 1 h under vacuum prior to use] in CH₂Cl₂ (75 mL). After stirring for 14 h at ambient temperature, the reaction mixture was partitioned (NaHCO₃/H₂O/CHCl₃), and the organic layer was washed (H₂O, brine), dried (MgSO₄), and the volatiles were evaporated. Column chromatography $(15 \rightarrow 25\%$ EtOAc/hexane) gave 12 (4.68 g, 81% overall from 6) as a solidifying viscous oil: ¹H NMR δ 1.34 and 1.58 ($2 \times s$, 2×3 , $2 \times CH_3$), 4.68 (d, $J_{2-1} = 3.7$ Hz, 1, H2), 5.04 (dd, *J*₄₋₅ = 7.6 Hz, *J*₄₋₃ = 3.0 Hz, 1, H4), 5.54 (d, *J*₃₋₄ = 3.0 Hz, 1, H3), 6.00 (d, $J_{1-2} = 3.7$ Hz, 1, H1), 6.60 (d, $J_{5-4} = 7.6$ Hz, 1, H5), 7.48 (t, J = 7.6 Hz, 2 Ar), 7.60 (tt, J = 1.3, 7.6 Hz, 1 Ar), 8.02 ('dd', J = 1.4, 7.7 Hz, 2 Ar); ¹³C NMR δ 24.96 and 25.51 (CMe₂), 75.71 (C3), 78.18 (C4), 82.04 (C2), 93.26 (C6), 103.30 (C1), 111.26 (CMe₂), 127.31 (Bz), 127.73 (Bz), 128.44 (Bz), 130.49 (C5), 132.37 (Bz), 163.81 (Bz); MS m/z 451 (5, MH⁺ [⁸¹Br₂]), 449 (10, MH⁺ [^{81/79}Br₂]), 447 (5, MH⁺ [⁷⁹Br₂]).

5.4. Ethyl 3-O-benzoyl-5,6,7,8,9-pentadeoxy-1,2-O-isopropylidene- α -D-xylo-dec-5(E)-enofuranuronate (14) and ethyl 3-O-benzoyl-6-[3-(ethoxycarbonyl)propyl]-5,6,7,8,9pentadeoxy-1,2-O-isopropylidene- α -D-xylo-dec-5-enofuranuronate (18)

Pd[P(Ph)₃]₄ (22 mg, 0.014 mmol) was added to a stirred solution of 12 (42 mg, 0.094 mmol) in anhydrous benzene (3 mL) in a flame-dried flask under N₂ at ambient temperature. After 2 min, 4-ethoxy-4-oxobutylzinc bromide (0.5 M/THF; 0.56 mL, 129 mg, 0.28 mmol) was added and the resulting mixture was heated at 55 °C for 6 h. The reaction mixture was cooled down to ambient temperature and was partitioned between EtOAc (30 mL) and NaHCO₃/H₂O (10 mL). The separated organic layer was washed with H₂O (10 mL), NaCl/H₂O (10 mL), dried (Na₂SO₄), and evaporated. Column chromatography $(10 \rightarrow 30\%$ EtOAc/hexanes) gave recovered 12 (7 mg, 13%), 14 (7 mg, 18%), and 18 (19 mg, 48%). Compound 14 had: ¹H NMR δ 1.23 (t, J = 7.1 Hz, 3, CH₃), 1.28 and 1.58 (2× s, 2×3, 2× CH₃), 1.68 (quint, $J_{8-7/7'/9/9'}$ = 7.5 Hz, 2, H8/8'), 2.07 ('q', $J_{7-6/8/8'}$ = 7.0 Hz, 2, H7/ 7'), 2.23 (t, $J_{9-8/8'} = 7.4$ Hz, 2, H9/9'), 4.15 (q, J = 7.1 Hz, 2, CH₂), 4.70 (d, $J_{2-1} = 3.7$ Hz, 1, H2), 4.86 (dd, $J_{4-5} = 7.1$ Hz, $J_{4-3} = 2.8$ Hz, 1, H4), 5.42 (d, $J_{3-4} = 2.7$ Hz, 1, H3), 5.56 (dd, $J_{5-6} = 15.4$ Hz, $J_{5-4} = 7.3$ Hz, 1, H5), 5.92 (dt, $J_{6-5} = 15.4$ Hz, $J_{6-7/7'}$ = 6.9 Hz, 1, H6), 6.03 (d, J_{1-2} = 3.7 Hz, 1, H1), 7.46– 8.05, (m, 5, Ar); ¹³C NMR δ 14.59 (CH₃), 23.34 (C8), 26.69 and 27.16 (CMe₂), 30.10 (C7), 34.05 (C9), 60.74 (CH₂), 75.90 (C2), 81.58 (C3), 85.44 (C4), 105.00 (C1), 112.52 (CMe₂), 128.35 (C5), 130.17 (Bz), 130.65 (Bz), 132.47 (Bz), 133.60 (Bz), 135.50 (C6), 165.89 (Bz), 173.74 (C10); MS m/z 405 (100, MH⁺). Compound 18 had: ¹H NMR δ 1.21 (t, J = 7.1 Hz, 3, CH₃), 1.29 (t, J = 7.1 Hz, 3, CH₃), 1.36 and 1.61 (2× s, 2× 3, 2× CH₃), 1.69 (quint, J = 7.5 Hz, 2H), 1.71–1.80 (m, 2H), 2.05 (t, J = 7.5 Hz, 2H), 2.10–2.26 (m, 4H), 2.33 (t, J = 7.2 Hz, 2H), 4.09 (q, J = 7.1 Hz, 2, CH₂), 4.18 (q, J = 7.1 Hz, 2, CH₂), 4.70 (d, J_{2-1} = 3.8 Hz, 1, H2), 5.14 (dd, J_{4-5} =

8.7 Hz, $J_{4\cdot3} = 2.9$ Hz, 1, H4), 5.35 (d, $J_{5\cdot4} = 8.4$ Hz, 1, H5), 5.41 (d, $J_{3\cdot4} = 2.8$ Hz, 1, H3), 6.02 (d, $J_{1\cdot2} = 3.8$ Hz, 1, H1), 7.47–8.06, (m, 5, Ar); ¹³C NMR δ 14.60 (CH₃), 14.65 (CH₃), 26.65 and 27.15 (CMe₂), 23.32 and 23.84 (C8/8'), 30.53 and 36.22 (C7/7'), 34.04 and 34.08 (C9/9'), 60.59 (CH₂), 60.75 (CH₂), 75.90 (C4), 78.71 (C3), 84.24 (C2), 104.84 (C1), 112.36 (CMe₂), 119.09 (C5), 146.90 (C6), 128.92 (Bz), 128.92 (Bz), 129.81 (Bz), 130.17 (Bz), 133.83 (Bz), 165.70 (Bz), 173.62 and 173.75 (C10/10'); MS *m/z* 519 (100, MH⁺).

5.5. Ethyl 3-*O*-benzoyl-5,6,7,8,9-pentadeoxy-1,2-*O*-isopropylidene- α -D-*ribo*-dec-5(*E*)-enofuranuronate (16)

Treatment (55 °C, 3 h) of 28 (E; 20 mg, 0.048 mmol) with 4-ethoxy-4-oxobutylzinc bromide (0.5 M/THF; 0.19 mL, 65 mg, 0.096 mmol) as described for 14/18 gave 16 (11 mg, 56%): ¹H NMR δ 1.24 (t, J = 7.1 Hz, 3, CH₃), 1.35 and 1.59 (2× s, 2 × 3, 2× CH₃), 1.72 (quint, $J_{8-7/7'/9/9'}$ = 7.4 Hz, 2, H8/8'), 2.13 ('q', $J_{7-6/8/8'} = 7.2$ Hz, 2, H7/7'), 2.28 (t, $J_{9-8/8'} = 7.6 \text{ Hz}, 2, \text{H9/9'}, 4.10 \text{ (q, } J = 7.1 \text{ Hz}, 2, \text{ CH}_2\text{)},$ 4.65 (dd, $J_{4.5} = 7.6$ Hz, $J_{4.3} = 8.9$ Hz, 1, H4), 4.74 (dd, $J_{3.4} = 9.2$ Hz, $J_{3.2} = 4.6$ Hz, 1, H3), 4.96 (t, $J_{2-1/3}$ = 4.3 Hz, 1, H2), 5.53 (dd, J_{5-6} = 15.4 Hz, J_{5-4} = 7.3 Hz, 1, H5), 5.89 (d, $J_{1-2} = 4.0$ Hz, 1, H1), 5.91 (dt, J_{6-5} = 15.8 Hz, $J_{6-7/7'}$ = 6.8 Hz, 1, H6), 7.46–8.05, (m, 5, Ar); ¹³C NMR δ 14.62 (CH₃), 24.40 (C8), 26.92 and 27.00 (CMe2), 31.99 (C7), 33.89 (C9), 60.65 (CH2), 76.92 (C2), 77.65 (C3), 78.60 (C4), 104.37 (C1), 113.35 (CMe₂), 127.04 (C5), 128.85 (Bz), 129.83 (Bz), 130.28 (Bz), 133.76 (Bz), 136.28 (C6), 166.29 (Bz), 173.84 (C10); MS m/z 405 (100, MH⁺).

5.6. Ethyl 3-O-benzoyl-5,6,7,8,9-pentadeoxy-6-[3-(ethoxy-carbonyl)propyl]-1,2-O-isopropylidene- α -D-*ribo*-dec-5-eno-furanuronate (19)

Treatment of 13^{15} (42 mg, 0.094 mmol) with Pd[P(Ph)₃]₄ (22 mg, 0.014 mmol) and 4-ethoxy-4-oxobutylzinc bromide (0.56 mL, 129 mg, 0.28 mmol) as described for **14/18** gave **19** (26 mg, 54%): ¹H NMR δ 1.22 (t, J = 7.1 Hz, 6, 2× CH₃), 1.37 and 1.62 (2× s, 2×3, 2× CH₃), 1.75 (quint, J = 7.5 Hz, 4H), 2.11 (t, J = 7.0 Hz, 2H), 2.24 (t, J = 9.0 Hz, 2H), 2.26 (t, J = 9.0 Hz, 2H), 2.32 (t, J = 7.2 Hz, 2H), 4.10 (q, J = 7.1 Hz, 2, CH₂), 4.16 (q, J = 7.1 Hz, 2, CH₂), 4.74 (dd, $J_{3-4} = 9.0$ Hz, $J_{3-2} = 4.8$ Hz, 1, H3), 4.95 (t, $J_{2-3} = 4.3$ Hz, 1, H2), 5.01 (t, $J_{4-5} = 9.0$ Hz, 1, H4), 5.26 (d, $J_{5-4} = 8.9$ Hz, 1, H5), 5.89 (d, J_{1-2} = 3.9 Hz, 1, H1), 7.40–8.10 (m, 5, Ar); ¹³C NMR δ 14.55 (CH₃), 14.61 (CH₃), 21.48 (C8/ 8'), 23.11 and 27.03 (CMe2), 30.08 and 30.12 (C7/7'), 32.34 and 34.04 (C9/9'), 60.73 (CH₂), 60.83 (CH₂), 73.86 (C4), 78.71 (C3), 84.24 (C2), 104.37 (C1), 113.28 (CMe₂), 122.65 (C5), 128.92 (Bz), 128.92 (Bz), 129.81 (Bz), 130.17 (Bz), 133.83 (Bz), 143.90 (C6), 165.70 (Bz), 170.57 and 171.62 (C10/10'); MS m/z 519 (100, MH^+).

5.7. (*ElZ*)-3-*O*-benzoyl-5,6-dideoxy-6-fluoro-1,2-*O*-isopropylidene-6-phenylsulfonyl-α-D-*xylo*-hex-5-enofuranose (20)

LHMDS (0.84 mL, 140 mg, 0.84 mmol) was added dropwise to a solution of diethyl fluoro(phenylsulfo-

nyl)methylphosphonate²⁰ (260 mg, 0.84 mmol) in anhydrous THF (8 mL) in a flame-dried flask under N₂ at -78 °C. After 30 min, a solution of 8 (265 mg, 0.82 mmol) in THF (4 mL) was added and stirring was continued for 1.5 h. EtOAc (30 mL) and NH₄Cl/ H₂O (10 mL) were added and the reaction mixture was allowed to warm to ambient temperature. The separated organic layer was washed with NaHCO₃/H₂O (10 mL), NaCl/H₂O (10 mL), dried (Na₂SO₄), and evaporated. Column chromatography $(10 \rightarrow 30\%)$ EtOAc/hexanes) gave 20 (166 mg, 76%; E/Z, 7:3) as inseparable mixture of isomers: HRMS (AP-ESI) m/z: calcd for C₂₂H₂₂FO₇S (MH⁺) 449.1065; found: 449.1071. ¹⁹F NMR δ –110.25 (d, $J_{\text{F-H5}}$ = 18.8 Hz, 0.30F, Z), -119.30 (d, $J_{\text{F-H5}} = 32.1$ Hz, 0.70F, E). Compound (E)-**20** had: ¹H NMR δ 1.35 and 1.56 (2× s, 2×3 , $2 \times CH_3$), 4.73 (d, $J_{2-1} = 3.7$ Hz, 1, H2), 5.23 (dt, $J_{4-5} = 7.4$ Hz, $J_{4-3/F} = 2.3$ Hz, 1, H4), 5.49 (d, $J_{3-4} = 3.1$ Hz, 1, H3), 6.03–6.05 (m, 1, H1), 6.43 (dd, $J_{5-F} = 32.4 \text{ Hz}, J_{5-4} = 7.2 \text{ Hz}, 1, \text{H5}), 7.48-8.03 \text{ (m, 10,}$ Ar); ¹³C NMR δ 26.55 and 27.10 (CMe₂), 73.78 (C4), 78.21 (C3), 83.77 (C2), 105.31 (C1), 113.13 (CMe₂), 112.10 (d, ${}^{2}J_{5-F} = 3.3$ Hz, C5), 128.99 (Ph), 129.08 (Bz), 129.13 (Bz), 129.79 (Ph), 129.94 (Ph), 130.12 (Ph), 130.17 (Bz), 134.25 (Bz), 135.02 (Ph), 156.00 (d, ${}^{1}J_{6-F}$ = 300.0 Hz, C6), 165.36 (Bz). Compound (Z)-20 had: ${}^{1}H$ NMR δ 1.38 and 1.69 (2× s, 2× 3, 2× CH₃), 4.76 (d, $J_{2-1} = 3.7$ Hz, 1, H2), 5.68 (d, $J_{3-4} = 2.8$ Hz, 1, H3), 5.99 (dd, $J_{5-F} = 19.3$ Hz, $J_{5-4} = 8.6$ Hz, 1, H5), 6.05–6.07 (m, 1, H1), 6.07–6.09 (m, 1, H4), 7.48–8.03 (m, 10, Ar); ¹³C NMR δ 26.98 and 27.32 (CMe₂), 73.15 (d, ${}^{3}J_{4-F} = 10.14$ Hz, C4), 79.06 (C3), 83.93 (C2), 105.37 (C1), 113.35 (CMe₂), 114.10 (d, ${}^{2}J_{5-F}$ = 15.0 Hz, C5), 128.99 (Ph), 129.08 (Bz), 129.13 (Bz), 129.79 (Ph), 129.94 (Ph), 130.12 (Ph), 130.17 (Bz), 134.25 (Bz), 135.02 (Ph), 155.58 (d, ${}^{1}J_{6-F} = 292.3$ Hz, C6), 165.36 (Bz). Note: Freshly prepared aldehyde 8, dried under vacuum for 2 h at ambient temperature prior to the use, gave the best results.

5.8. (*E*/*Z*)-3-*O*-Benzoyl-5,6-dideoxy-6-fluoro-1,2-*O*-isopropylidene-6-phenylsulfonyl-α-D-*ribo*-hex-5-enofuranose (21)

Treatment of 9 (200 mg, 0.68 mmol) with diethyl fluoro(phenylsulfonyl)methylphosphonate²⁰ (212 mg, 0.68 mmol) and LHMDS (0.68 mL, 114 mg, 0.68 mmol) as described for 20 gave 21 (216 mg, 71%; E/Z, 6:4): HRMS (AP-ESI) m/z: calcd for C₂₂H₂₂FO₇S (MH⁺) 449.1065; found: 449.1069. ¹⁹F NMR δ –108.98 (d, $J_{\text{F-H5}} = 22.6 \text{ Hz}, 0.40 \text{F}, Z), -121.25 \text{ (d, } J_{\text{F-H5}} =$ 30.1 Hz, 0.60F, E). Compound (E)-21 had: ¹H NMR δ 1.28 and 1.38 (2× s, 2×3, 2× CH₃), 4.85 (dd, J_{3-4} = 9.0 Hz, $J_{3-2} = 4.7$ Hz, 1, H3), 5.00 ('t', $J_{2-1/3} = 4.5$ Hz, 1, H2), 5.10 (t, $J_{4-3/5} = 8.2$ Hz, 1, H4), 5.94 (d, $J_{1-2} =$ 112), 5.16 (i, $J_{4,3/5}$ (i, I12, 1, 114), 5.94 (i, J12) 3.7 Hz, 1, H1), 6.37 (dd, $J_{5-F} = 31.3$ Hz, $J_{5-4} = 8.3$ Hz, 1, H5), 7.44–8.20 (m, 10, Ar); ¹³C NMR δ 26.86 and 26.93 (CMe₂), 71.36 (d, ³J_{4-F} = 2.2 Hz, C4), 76.64 (d, ⁴J_{3-F} = 1.8 Hz, C3), 77.54 (C2), 104.96 (C1), 114.10 (CMe₂), 114.22 (d, ²J_{5-F} = 3.1 Hz, C5), 128.88 (Ph), 120.12 (D), 120.16 (Ph), 120.28 (Ph), 129.13 (Bz), 129.18 (Bz), 129.88 (Ph), 130.28 (Ph), 133.98 (Bz), 135.10 (Ph), 136.96 (Ph), 156.91 (d, ${}^{1}J_{6-F}$ = 306.0 Hz, C6), 165.96 (Bz). Compound (Z)-21 had: ¹H NMR δ 1.28 and 1.38 (2× s, 2×3, 2× CH₃), 4.84 (dd,

 $J_{3.4} = 9.2$ Hz, $J_{3.2} = 4.6$ Hz, 1, H3), 5.01 ('t', $J_{2.1/3} = 4.6$ Hz, 1, H2), 5.86 (dd, $J_{5.F} = 19.8$ Hz, $J_{5.4} = 9.9$ Hz, H5), 5.96 (d, $J_{1.2} = 3.7$ Hz, 1, H1), 6.07 (t, $J_{4.3/5} = 10.4$ Hz, 1, H4), 7.44–8.20 (m, 10, Ar); ¹³C NMR δ 27.17 and 27.39 (CMe₂), 70.71 (d, ³J_{4-F} = 8.5 Hz, C4), 77.17 (C3), 77.86 (C2), 104.82 (C1), 114.37 (CMe₂), 116.23 (d, ²J_{5-F} = 16.2 Hz, C5), 128.95 (Ph), 129.22 (Bz), 129.46 (Bz), 129.80 (Ph), 130.02 (Ph), 133.61 (Bz), 134.00 (Ph), 135.19 (Ph), 156.62 (d, ¹J_{6-F} = 296.3 Hz, C6), 166.30 (Bz).

5.9. (*E*)-3-*O*-Benzoyl-5,6-dideoxy-1,2-*O*-isopropylidene-6-phenylsulfonyl-α-D-*ribo*-hex-5-enofuranose (22)

Treatment of **9** (150 mg, 0.50 mmol) with diethyl (phenylsulfonyl)methylphosphonate²⁰ (146 mg, 0.50 mmol) and LHMDS (0.50 mL, 84 mg, 0.50 mmol) as described for **20** gave **22** (166 mg, 82%): ¹H NMR δ 1.33 and 1.55 (2× s, 2 × 3, 2× CH₃), 4.76 (dd, J_{3-4} = 9.5 Hz, J_{3-2} = 4.6 Hz, 1, H3), 4.92 (ddd, J_{4-5} = 3.7 Hz, J_{4-6} = 1.7 Hz, J_{4-3} = 9.5 Hz, 1, H4), 5.01 ('t', $J_{2-3/1}$ = 4.2 Hz, 1, H2), 5.90 (d, J_{1-2} = 3.7 Hz, 1, H1), 6.79 (dd, J_{6-4} = 1.8 Hz, J_{6-5} = 15.0 Hz, 1, H6), 7.09 (dd, J_{5-6} = 15.0 Hz, J_{5-4} = 3.8 Hz, 1, H5), 7.50–8.05 (m, 10, Ar); MS *m*/*z* 431 (100, MH⁺).

5.10. (E/Z)-3-O-Benzoyl-5,6-dideoxy-6-fluoro-1,2-O-isopropylidene-6-tributylstannyl- α -D-xylo-hex-5-enofuranose (23)

Bu₃SnH (407 mg, 0.38 mL, 1.4 mmol) was added dropwise to a degassed solution of 20 (300 mg, 0.70 mmol; E/Z, 7:3) in anhydrous toluene (5 mL) in a flame-dried flask under N₂ at ambient temperature. After an additional 10 min of degassing with N₂, AIBN (86 mg, 0.53 mmol) was added and the reaction mixture was refluxed at 110 °C with stirring for 5 h. The volatiles were evaporated and the residue was partitioned between EtOAc (50 mL) and NaHCO₃/H₂O (30 mL). The organic layer was washed with NaCl/H₂O (30 mL), dried (Na_2SO_4) , and evaporated. Column chromatography (hexanes $\rightarrow 10\%$ EtOAc/hexanes) gave 23 (794 mg, 95%; *E/Z*, 7:3) as an inseparable mixture: MS m/z 599 (89, MH⁺, ¹²⁰Sn), 597 (63, MH⁺, ¹¹⁸Sn), 595 (33, MH⁺, ¹¹⁶Sn), 541 (100, M-57, ¹²⁰Sn), 539 (78, M-57, ¹¹⁸Sn), 537 (42, M-57, ¹¹⁶Sn); ¹⁹F NMR δ –87.67 (d, $J_{\text{F-H5}} = 34.3 \text{ Hz}, 84\% \text{ of } 0.30\text{F}, Z$), $-87.67 \text{ (dd, } J_{\text{F-Sn}} =$ 229.5 Hz, $J_{\text{F-H5}}$ = 34.8 Hz, 16% of 0.30F, Z), -92.73 (d, $J_{\text{F-H5}} = 52.7 \text{ Hz}, 84\% \text{ of } 0.70\text{F}, E$, -92.73 (ddd, $J_{\text{F-Sn}} =$ 213.1 Hz, $J_{\text{F-H5}} = 52.7$ Hz, $J_{\text{F-H4}} = 4.9$ Hz, 16% of 0.70F, *E*). Compound (*E*)-23 had: ¹H NMR δ 0.90– 1.60 (m, 27, 3× Bu), 1.34 and 1.36 (2× s, 2×3, 2× CH₃), 4.71 (d, $J_{2-1} = 3.8$ Hz, 1, H2), 5.10 (dd, J_{5-F} = 52.6 Hz, $J_{5.4}$ = 7.4 Hz, 1, H5), 5.32 (d, $J_{3.4}$ = 3.0 Hz, 1, H3), 5.47–5.49 (m, 1, H4), 6.02 (d, $J_{1.2}$ = 3.8 Hz, 1, H1), 7.47–8.06 (m, 5, Ar); ¹³C NMR δ 10.33 (Bu), 11.15 (Bu), 17.90 (Bu), 27.42 and 27.54 (CMe₂), 28.24 (Bu), 70.56 (d, $-3J_{4-F} = 17.6$ Hz, C4), 77.21 (C3), 77.52 (C2), 104.31 (C1), 113.07 (*C*Me₂), 120.53 (d, ${}^{2}J_{5-F}$ = 3.9 Hz, C5), 128.75 (Bz), 129.83 (Bz), 130.25 (Bz), 133.61 (Bz), 166.16 (Bz), 177.14 (d, ${}^{2}J_{6-F} = 262.0$ Hz, C6). Compound (Z)-23 had: ¹H NMR δ 0.90–1.60 (m, 27, 3× Bu), 1.38 and 1.69 (2× s, 2×3, 2× CH₃), 4.69 (d, $J_{1-2} =$ 3.9 Hz, 1, H2), 4.75 (d, J₃₋₄ = 7.9 Hz, 1, H3), 5.47-5.49

(m, 1, H4), 5.98 (d, $J_{1-2} = 3.8$ Hz, 1, H1), 6.02 (dd, $J_{5-F} = 34.3$ Hz, $J_{5-4} = 9.2$ Hz, 1, H5), 7.47–8.06 (m, 5, Ar); ¹³C NMR δ 10.33 (Bu), 11.15 (Bu), 17.90 (Bu), 27.42 and 27.54 (*CMe*₂), 28.24 (Bu), 74.73 (d, ³J_{4-F} = 22.2 Hz, C4), 77.38 (d, ⁴J_{3-F} = 1.4 Hz, C3), 77.52 (C2), 104.53 (C1), 113.47 (*CMe*₂), 121.24 (d, ²J_{5-F} = 9.5 Hz, C5), 128.75 (Bz), 129.88 (Bz), 130.34 (Bz), 133.73 (Bz), 166.35 (Bz), 180.03 (d, ²J_{6-F} = 254.3 Hz, C6).

5.11. (*E*/*Z*)-3-*O*-Benzoyl-5,6-dideoxy-6-fluoro-1,2-*O*-isopropylidene-6-tributylstannyl-α-D-*ribo*-hex-5-enofuranose (24)

Treatment of 21 (300 mg, 0.70 mmol; E/Z, 3:2) with Bu₃SnH (407 mg, 0.38 mL, 1.4 mmol) and AIBN (86 mg, 0.53 mmol) as described for 23 gave 24 (397 mg, 95%; E/Z, 3:2): MS m/z 599 (89, MH⁺, 120 Sn), 597 (63, MH⁺, 118 Sn), 595 (33, MH⁺, 116 Sn), 541 (100, M-57, 120 Sn), 539 (78, M-57, 118 Sn), 537 (42, M-57, ¹¹⁶Sn); ¹⁹F NMR δ -87.58 (d, $J_{\text{F-H5}}$ = 33.1 Hz, 84% of 0.40F, Z), -87.58 (ddd, $J_{\text{F-Sn}} = 226.7$ Hz, $J_{\text{F-H5}} = 32.8 \text{ Hz}, J_{\text{F-H4}} = 4.1 \text{ Hz}, 16\% \text{ of } 0.40\text{F}), -94.80$ (d, $J_{\text{F-H5}} = 51.1 \text{ Hz}$, 84% of 0.60F, E), -94.80 (ddd, $J_{\text{F-Sn}} = 213.9 \text{ Hz}, J_{\text{F-H5}} = 50.8 \text{ Hz}, J_{\text{F-H4}} = 4.5 \text{ Hz}, 16\%$ of 0.60F, *E*). Compound (*E*)-**24** had: ¹H NMR δ 0.70– 1.70 (m, 27, $3 \times Bu$), 1.24 and 1.26 (2× s, 2×3, 2× CH₃), 4.62 (dd, $J_{3-4} = 9.3$ Hz, $J_{3-2} = 4.7$ Hz, 1, H3), 4.86–4.87 (m, 1, H2), 4.90 (dd, $J_{5-F} = 51.0$ Hz, $J_{5-4} =$ 8.4 Hz, 1, H5), 5.28 ('t', $J_{4-3/5} = 8.9$ Hz, 1, H4), 5.79 (d, $J_{1-2} = 3.9$ Hz, 1, H1), 7.57–8.06 (m, 5, Ar); ¹³C NMR δ 11.15 (Bu), 14.03 (Bu), 29.96 (Bu), 27.48 and 27.59 (CMe_2) , 29.23 (Bu), 70.55 (d, ${}^{3}J_{4-F} = 18.1$ Hz, C4), 77.36 (C3), 77.48 (C2), 104.50 (C1), 113.54 (CMe₂), 120.59 (d, ${}^{2}J_{5-F}$ = 3.8 Hz, C5), 128.77 (Bz), 129.81 (Bz), 130.38 (Bz), 133.69 (Bz), 166.44 (Bz), 176.10 (d, ${}^{1}J_{6}$ -_F = 260.0 Hz, C6). Compound (Z)-24 had: ¹H NMR δ 0.70–1.70 (m, 27, 3× Bu), 1.28 and 1.30 (2× s, 2×3, 2× CH₃), 4.47 ('t', $J_{4-3/5} = 9.3$ Hz, 1, H4), 4.71 (dd, $J_{3-4} = 9.0$ Hz, $J_{3-2} = 4.8$ Hz, 1, H3), 4.85–4.86 (m, 1, H2), 5.81 (d, J_{1-2} = 3.8 Hz, 1, H1), 5.83 (dd, J_{5-F} = 33.7 Hz, J_{5-4} = 9.5 Hz, 1, H5), 7.57–8.06 (m, 5, Ar); ¹³C NMR δ 11.15 (Bu), 14.03 (Bu), 29.96 (Bu), 27.48 and 27.59 (CMe_2) , 29.23 (Bu), 74.72 (d, ${}^{3}J_{4-F} = 22.0$ Hz, C4), 77.16 (C3), 77.67 (C2), 104.28 (C1), 113.13 (*C*Me₂), 121.18 (d, ${}^{2}J_{5-F} = 9.9$ Hz, C5), 128.77 (Bz), 129.76 (Bz), 130.28 (Bz), 130.80 (Bz), 166.24 (Bz), 177.00 (d, ${}^{1}J_{6-F} =$ 255.0 Hz, C6).

5.12. (*E*)-3-*O*-Benzoyl-5,6-dideoxy-1,2-*O*-isopropylidene-6-tributylstannyl-α-D-*ribo*-hex-5-enofuranose (25)

Treatment of **22** (*E*; 300 mg, 0.70 mmol) with Bu₃SnH (407 mg, 0.38 mL, 1.4 mmol) and AIBN (86 mg, 0.53 mmol) as described for **23** gave **25** (385 mg, 95%): ¹H NMR δ 1.51–1.90 (m, 33, 3× Bu and 2× CH₃), 4.66 (dd, $J_{4-5} = 6.5$ Hz, $J_{4-3} = 8.4$ Hz, 1, H4), 4.77 (dd, $J_{3-4} = 9.2$ Hz, $J_{3-2} = 4.7$ Hz, 1, H3), 4.97 (t, $J_{2-1/3} = 3.6$ Hz, 1, H2), 5.93 (d, $J_{1-2} = 3.8$ Hz, 1, H1), 6.10 (dd, $J_{5-6} = 19.1$ Hz, $J_{5-4} = 6.5$ Hz 1, H6), 7.57–8.06 (m, 5, Ar); MS *m*/*z* 581 (89, MH⁺, ¹¹⁰Sn), 579 (63, MH⁺, ¹¹⁸Sn), 577 (33, MH⁺, ¹¹⁶Sn), 523 (100, M-57, ¹²⁰Sn), 521 (78, M-57, ¹¹⁸Sn), 519 (42, M-57, ¹¹⁶Sn).

5.13. (*E*/*Z*)-3-*O*-Benzoyl-5,6-dideoxy-6-fluoro-6-iodo-1,2-*O*-isopropylidene- α -D-*xylo*-hex-5-enofuranose (26)

A solution of NIS (50 mg, 0.23 mmol) in anhydrous CH₂Cl₂ (3 mL) was added dropwise to a stirred solution of 23 (90 mg, 0.15 mmol; E/Z, 7:3) in CH₂Cl₂ (5 mL) under N₂ at -20 °C. After 1 h, CHCl₃ (30 mL) and diluted NaH- $SO_3/H_2O(10 \text{ mL})$ were added. The separated organic layer was washed with NaHCO₃/H₂O (10 mL), NaCl/H₂O (10 mL), dried (Na₂SO₄), and evaporated. Column chromatography (hexanes $\rightarrow 30\%$ EtOAc/hexanes) gave 26 (155 mg, 83%; E/Z, 8:2) as an inseparable mixture: MS m/z 435 (100, MH⁺); ¹⁹F NMR δ -56.54 (d, $J_{\rm F-H5}$ = 15.8 Hz, 0.20F, Z), -60.98 (d, $J_{\text{F-H5}} = 33.1$ Hz, 0.80F, E). Compound (E)-26 had: ¹H NMR δ 1.35 and 1.38 $(2 \times s, 2 \times 3, 2 \times CH_3), 4.69 (d, J_{2-1} = 3.8 Hz, 1, H2), 5.28$ (ddd, $J_{4-5} = 9.8$ Hz, $J_{4-3} = 2.9$ Hz, $J_{4-6} = 1.6$ Hz, 1, H4), 5.45 (d, $J_{3.4} = 3.0$ Hz, 1, H3), 5.58 (dd, $J_{5.F} = 33.0$ Hz, $J_{5.4} = 8.7$ Hz, 1, H5), 5.99 (d, $J_{1.2} = 3.7$ Hz, 1, H1), 7.47–8.06 (m, 5, Ar); ¹³C NMR δ 26.60 and 27.12 (CMe₂), 74.04 (d, ³J_{4-F} = 4.4 Hz, C4), 77.88 (C3), 83.73 (C2), 104.74 (C1), 107.89 (d, ${}^{1}J_{6-F} = 338.7$ Hz, C6), 112.85 (*C*Me₂), 116.80 (d, ${}^{2}J_{5-F} = 5.4$ Hz, C5), 129.04 (Bz), 129.50 (Bz), 130.18 (Bz), 134.09 (Bz), 165.54 (Bz). Compound (Z)-26 had: ¹H NMR δ 1.35 and 1.68 (2× s, 2×3 , $2 \times CH_3$), 4.71 (d, $J_{1-2} = 3.7$ Hz, 1, H2), 4.84 (dd, 3.0 Hz, 1, H3), 5.77 (dd, $J_{5-F} = 15.4$ Hz, $J_{5-4} = 8.8$ Hz, 1, H5), 6.03 (d, J_{1-2} = 3.7 Hz, 1, H1), 7.47–8.06 (m, 5, Ar); ¹³C NMR δ 26.78 and 27.27 (CMe₂), 77.88 (C3), 80.06 (d, ${}^{3}J_{4-F} = 8.2$ Hz, C4), 83.84 (C2), 105.04 (C1), 112.94 $(d, {}^{2}J_{5-F} = 16.9 \text{ Hz}, \text{C5}), 112.95 (CMe_2), 114.78 (d, {}^{1}J_{6-F} =$ 332.0 Hz, C6), 129.04 (Bz), 129.40 (Bz), 130.18 (Bz), 134.14 (Bz), 165.54 (Bz).

5.14. (E/Z)-3-O-Benzoyl-5,6-dideoxy-6-fluoro-6-iodo-1,2-O-isopropylidene- α -D-ribo-hex-5-enofuranose (27)

Treatment of 24 (250 mg, 0.42 mmol; E/Z, 3:2) with NIS (142 mg, 0.63 mmol) as described for 26 gave 27 (155 mg, 85%; E/Z, 3:2) as an inseparable mixture: HRMS (AP-FAB) m/z: calcd for C₁₆H₁₆FIO₅Li (MLi⁺) 441.0181; found: 441.0192. ¹⁹F NMR δ -56.42 (d, $J_{\text{F-H5}} = 15.1 \text{ Hz}$, 0.40F, Z), -63.30 (d, $J_{\text{F-H5}} =$ 33.5 Hz, 0.60F, E). Compound (E)-27 had: ¹H NMR δ 1.36 and 1.60 (2× s, 2×3, 2× CH₃), 4.75 (dd, J_{3-4} = 9.2 Hz, $J_{3-2} = 4.7$ Hz, 1, H3), 4.98 (t, $J_{2-1/3} = 4.5$ Hz, 1, H2), 5.16 (t, $J_{4-3/5} = 9.0$ Hz, 1, H4), 5.49 (dd, $J_{5-F} =$ 32.7 Hz, $J_{5.4} = 8.7$ Hz, 1, H5), 5.89 (d, $J_{1.2} = 3.8$ Hz, 1, H1), 7.50–8.10 (m, 5, Ar); ¹³C NMR δ 26.96 and 27.11 (CMe₂), 72.45 (d, ³J_{4-F} = 4.3 Hz, C4), 76.74 (d, ⁴J_{3-F} = 2.1 Hz, C3), 77.32 (C2), 104.39 (C1), 113.78 (*C*Me₂), 114.96 (d, ${}^{1}J_{6-F} = 331.5$ Hz, C6), 119.90 (d, ${}^{2}J_{5-F} =$ 5.5 Hz, C5), 128.92 (Bz), 129.46 (Bz), 130.50 (Bz), 133.94 (Bz), 166.21 (Bz). Compound (Z)-27 had: ¹H NMR δ 1.38 and 1.64 (2× s, 2×3, 2× CH₃), 4.72–4.75 (m, 1, H4), 4.84 (dd, $J_{3-4} = 9.2$ Hz, $J_{3-2} = 4.6$ Hz, 1, H3), 4.98 (t, $J_{2-3/1} = 4.5$ Hz, 1, H2), 5.68 (dd, $J_{5-F} =$ 15.3 Hz, $J_{5-4} = 8.9$ Hz, 1, H5), 5.91 (d, $J_{1-2} = 3.8$ Hz, 1, H1), 7.50–8.14 (m, 5, Ar); 13 C NMR δ 26.96 and 27.11 (CMe_2) , 76.85 (d, ${}^{4}J_{3-F}$ = 2.1 Hz, C3), 77.63 (C2), 78.13 (d, ${}^{3}J_{4-F} = 8.3$ Hz, C4), 104.54 (C1), 108.75 (d, ${}^{1}J_{6-F} = 339.4$ Hz, C6), 113.90 (CMe₂), 115.77 (d, ${}^{2}J_{5-F} =$ 16.2 Hz, C5), 128.91 (Bz), 129.49 (Bz), 130.37 (Bz), 133.95 (Bz), 166.21 (Bz).

5.15. (*E*)-3-*O*-Benzoyl-5,6-dideoxy-6-iodo-1,2-*O* -isopropylidene- α -D-*ribo*-hex-5-enofuranose (28)

Treatment of **25** (150 mg, 0.25 mmol) with NIS (85 mg, 0.38 mmol) as described for **26** gave **28** (93 mg, 87%): ¹H NMR δ 1.35 and 1.62 (2× s, 2 × 3, 2× CH₃), 4.67 (dd, $J_{2\cdot3}$ = 9.2 Hz, $J_{2\cdot1}$ = 4.6 Hz, 1, H2), 4.77 (dd, $J_{3\cdot4}$ = 3.4 Hz, $J_{3\cdot2}$ = 9.2 Hz, 1, H3), 4.97 (t, $J_{4\cdot3/5}$ = 4.2 Hz, 1, H4), 5.91 (d, $J_{1\cdot2}$ = 3.8 Hz, 1, H1), 6.61–6.70 (m, 2, H5/6), 7.49–8.08 (m, 5, Ar); ¹³C NMR δ 26.95 and 26.96 (CMe₂), 76.37 (C4), 77.59 (C3), 79.61 (C2), 81.32 (C6), 104.43 (C1), 113.68 (CMe₂), 128.89 (Bz), 129.60 (Bz), 130.94 (Bz), 133.89 (Bz), 141.58 (C5), 166.08 (Bz); MS m/z 417 (100, MH⁺).

5.16. Ethyl 3-O-benzoyl-5,6,7,8,9-pentadeoxy-6-fluoro-1, 2-O-isopropylidene- α -D-xylo-dec-5-(E/Z)-enofuranuro-nate (29)

Pd[P(Ph)₃]₄ (5 mg, 0.004 mmol) was added to a stirred solution of 26 (30 mg, 0.07 mmol; E/Z, 4:1) in anhydrous benzene (3 mL) under N₂ at ambient temperature. After 2 min, 4-ethoxy-4-oxobutylzinc bromide (0.5 M/ THF; 0.28 mL, 65 mg, 0.14 mmol) was added and the resulting mixture was heated at 55 °C for 5 h. EtOAc (30 mL) and NaHCO₃/H₂O (10 mL) were added and the separated organic layer was washed with H₂O (10 mL), NaCl/H₂O (10 mL), dried (Na₂SO₄), and then was evaporated. Column chromatography $(10 \rightarrow 30\%)$ EtOAc/hexanes) gave (Z)-29 (18 mg, 61%, 76% based on the conversion of the *E*-isomer), (*E*)-29 (2 mg, 7%, 35% based on the conversion of the Z-isomer) and more polar byproduct tentatively assigned as 3-*O*-debenzoy-lated-(*Z*)-**26** [~5%, TLC; ¹⁹F NMR δ -57.21 (*J*_{F-H5} = 16.4 Hz)]. Compound (*Z*)-**29** had: ¹H NMR δ 1.22 (t, J = 7.1 Hz, 3, CH₃), 1.36 and 1.61 (2×s, 2×3, 2× CH₃), 1.81 ('quint', $J_{8-7/7'/9/9'} = 7.4$ Hz, 2, H8/8'), 2.26 (dt, $J_{7-F} = 18.1$ Hz, $J_{7-8/8'} = 7.4$ Hz, 2, H7/7'), 2.30 (t, $J_{9-8/8'} = 7.4$ Hz, 2, H9/9'), 4.09 (q, J = 7.1 Hz, 2, CH₂), 4.69 (d, $J_{2-1} = 3.7$ Hz, 1, H2), 4.84 (dd, $J_{5-F} = 35.8$ Hz, $J_{5-4} = 8.4$ Hz, H5), 5.33 (dd, $J_{4-5} = 8.5$ Hz, $J_{4-3} = 2.8$ Hz, 1, H4), 5.45 (d, $J_{3.4} = 2.8$ Hz, 1, H3), 6.00 (d, $J_{1.2} =$ 3.7 Hz, 1, H1), 7.48–8.04, (m, 5, Ar); ^{13}C NMR δ 14.59 (CH₃), 21.49 (C8), 26.64 and 27.11 (CMe₂), 31.61 (d, ${}^{2}J_{7-F}$ = 25.4 Hz, C7), 33.34 (C9), 60.75 (CH₂), 73.37 (d, ${}^{3}J_{4-F} = 6.6$ Hz, C4), 77.63 (C2), 78.33 (C3), 100.03 (d, ${}^{2}J_{5-F} = 10.9$ Hz, C5), 104.78 (C1), 112.60 (CMe₂), 128.97 (Bz), 129.70 (Bz), 130.16 (Bz), 133.93 (Bz), 162.94 (d, ${}^{1}J_{6-F} = 260.7$ Hz, C6), 165.61 (Bz), 173.32 (C10); ${}^{19}F$ NMR δ –99.93 (dt, $J_{F-H5} = 35.8$ Hz, J = 18.0 Hz); HRMS (AP-FAB⁺) m/z calcd for C₂₂H₂₇FO₇Li (MLi⁺) 429.1910; found: 429.1900. Compound (*E*)-29 had: ¹H NMR δ 1.28 (t, *J* = 7.1 Hz, 3, CH₃), 1.35 and 1.61 (2× s, 2×3, 2× CH₃), 1.85–1.95 (m, 2, H8/8'), 2.38 (t, $J_{9-8/8'} = 7.2$ Hz, 2, H9/9'), 2.39– 2.50 (m, 2, H7/7'), 4.15 (q, J = 7.1 Hz, 2, CH₂), 4.69 (d, $J_{2-1} = 3.8$ Hz, 1, H2), 4.93 ('dt', $J_{4-5} = 9.3$ Hz, $J_{4-F/3} =$ 2.5 Hz, 1, H4), 5.30 (dd, $J_{5-F} = 18.6$ Hz, $J_{5-4} = 9.4$ Hz, H5), 5.38 (d, $J_{3-4} = 2.9$ Hz, 1, H3), 6.00 (d, $J_{1-2} = 3.8$ Hz, 1, H1), 7.48–8.04 (m, 5, Ar); ¹⁹F NMR δ -94.53 ('q', J = 22.1 Hz). HRMS (AP-FAB⁺) m/z calcd for C₂₂H₂₇FO₇Li (MLi⁺) 429.1910; found: 429.1903.

5.17. Ethyl 3-*O*-benzoyl-5,6,7,8,9-pentadeoxy-6-fluoro-1,2-*O*-isopropylidene-α-D-*ribo*-dec-5(*E*/*Z*)-enofuranuronate (30)

Treatment of 27 (42 mg, 0.097 mmol; E/Z, 3:2) with Pd[P(Ph)₃]₄ (22 mg, 0.01 mmol) and 4-ethoxy-4-oxobutylzinc bromide (0.5 M/THF; 0.30 mmol, 0.60 mL) as described for 29 followed by column chromatography $(10 \rightarrow 40\% \text{ EtOAc/hexanes})$ gave (Z)-30 (22 mg, 54%; 90% based on the conversion of E-isomer), (E)-30 (5 mg, 12%; 30% based on the conversion of the Z-isomer), and more polar 3-O-debenzoylated-(Z)-27 (3 mg, 10%). Compound (Z)-30 had: ¹H NMR δ 1.24 (t, J = 7.1 Hz, 3, CH₃), 1.37 and 1.60 (2× s, 2×3, 2× CH₃), 1.84 ('quint', $J_{8-7/7'/9/9'} = 7.4$ Hz, 2, H8/8'), 2.25 (dt, $J_{7-F} =$ 17.6 Hz, $J_{7-8/8'} = 7.5$ Hz, 2, H7/7'), 2.32 (t, $J_{9-8/8'} =$ 7.4 Hz, 2, H9/9'), 4.09 (q, J = 7.1 Hz, 2, CH₂), 4.72 (dd, $J_{3-4} = 9.2 \text{ Hz}, J_{3-2} = 4.7 \text{ Hz}, 1, \text{ H3}), 4.75 \text{ (dd, } J_{5-\text{F}} =$ 35.0 Hz, $J_{5-4} = 8.9$ Hz, 1, H5), 4.95 (t, $J_{2-1/3} = 4.3$ Hz, 1, H2), 5.19 (t, $J_{4-3/5} = 9.1$ Hz, 1, H4), 5.89 (d, $J_{1-2} = 3.8$ Hz, 1, H1), 7.48-8.09 (m, 5, Ar); ¹³C NMR δ 14.60 (CH₃), 21.45 (C8), 26.95 and 27.00 (CMe₂), 31.63 (d, ${}^{2}J_{7-F} = 26.5$ Hz, C7), 33.32 (C9), 60.79 (CH₂), 71.39 (d, ${}^{3}J_{4-F} = 6.3$ Hz, C4), 77.54 (C2), 73.63 (C3), 103.40 (d, ${}^{2}J_{5-F} = 11.8 \text{ Hz}, \text{ C5}$, 104.39 (C1), 113.52 (CMe₂), 128.84 (Bz), 129.71 (Bz), 130.33 (Bz), 133.77 (Bz), 164.13 (d, ${}^{1}J_{6-F} = 272.7 \text{ Hz}, \text{ C6}$), 165.33 (Bz), 173.30 (C10); ¹⁹F NMR δ –102.14 (dt, $J_{\text{F-H5}}$ = 34.1 Hz, $J_{\text{F-H7/7'}}$ = 17.6 Hz). HRMS (AP-ESI) m/z calcd for $C_{22}H_{28}FO_7$ (MH⁺) 423.1814; found 423.1815. Compound (E)-30 had: ¹H NMR δ 1.26 (t, J = 7.1 Hz, 3, CH₃), 1.36 and 1.61 (2× s, 2×3, 2× CH₃), 1.90 ('quint', $J_{8-7/7'/9/9'}$ = 6.9 Hz, 2, H8/8'), 2.38 (t, J_{9-8/8'} = 6.9 Hz, 2, H9/9'), 2.50 (dt, $J_{7-F} = 23.0 \text{ Hz}$, $J_{7-8/8'} = 7.3 \text{ Hz}$, 2, H7/7'), 4.14 (q, $J = 7.1 \text{ Hz}, 2, \text{CH}_2$, 4.75-4.80 (m, 2, H3/4), 4.95 (t, $J_{2-1/3} =$ 4.0 Hz, 1, H2), 5.17 (dd, $J_{5-F} = 19.2$ Hz, $J_{5-4} =$ 8.7 Hz, 1, H5), 5.88 (d, $J_{1-2} = 3.8$ Hz, 1, H1), 7.48–8.09 (m, 5, Ar); ¹³C NMR δ 14.63 (CH₃), 21.99 (C8), 26.92 and 27.00 (CMe₂), 28.49 (d, ²J_{7-F} = 27.0 Hz, C7), 33.67 (C9), 60.78 (CH₂), 73.65 (d, ³J_{4-F} = 14.7 Hz, C4), 77.50 (C2), 77.61 (C3), 104.58 (d, ²J_{5-F} = 25.8 Hz, C5), 104.37 (C1), 113.39 (CMe₂), 128.88 (Bz), 129.64 (Bz), 130.25 (Bz), 133.83 (Bz), 165.15 (d, ${}^{1}J_{6-F} = 256.5$ Hz, C6), 165.99 (Bz), 173.21 (C10); ${}^{19}F$ NMR δ -94.73 ('q', $J_{\text{F-H5/7/7'}} = 22.8 \text{ Hz}$). HRMS (AP-ESI) m/z calcd for C₂₂H₂₈FO₇ (MH⁺) 423.1814; found: 423.1819. The 3-Odebenzoylated-(Z)-27 had: ¹H NMR δ 1.27 and 1.58 $(2 \times s, 2 \times 3, 2 \times CH_3), 3.82 - 3.84 (m, 1, H3), 4.18 (t, J_{4-3/5} =$ 8.8 Hz, 1, H4), 4.60–4.62 (m, 1, H2), 5.61 (dd, $J_{5-F} =$ 8.8 Hz, 1, 114), 4.00–4.02 (iii, 1, 112), 5.01 (dd, $J_{5-F} = 15.1$ Hz, $J_{5-4} = 8.9$ Hz, 1, H5), 5.83 (d, $J_{1-2} = 3.7$ Hz, 1, H1); ¹³C NMR δ 26.99 and 27.07 (CMe₂), 76.63 (C3), 78.56 (C2), 80.47 (d, $^{3}J_{4-F} = 8.0$ Hz, C4), 104.16 (C1), 115.85 (d, $^{1}J_{6-F} = 344.1$ Hz, C6), 113.70 (CMe₂), 115.85 (d, $^{2}J_{5-F} = 15.7$ Hz, C5); ¹⁹F NMR δ –56.50 (d, $J_{F-H5} = 15.7$ Hz, C5); ¹⁹F NMR δ –56.50 (d, $J_{F-H5} = 15.7$ Hz, C5); ¹⁰F NMR δ –50.50 (d, J15.1 Hz); MS *m*/z 331 (100, MH⁺).

5.18. Methyl 5,6,7,8,9-pentadeoxy-6-fluoro-1,2-O-iso-propylidene- α -D-xylo-dec-5(Z)-enofuranuronate (31)

Compound (Z)-29 (26 mg, 0.062 mmol) was dissolved in MeOH (6 mL) and the saturated $NH_3/MeOH$ (3 mL)

was added at 0 °C (ice bath). The resulting mixture was stirred for 48 h (0 °C \rightarrow ambient temperature). The volatiles were evaporated and the residue was column chromatographed (15 \rightarrow 50% EtOAc/hexanes) to give **31** (14 mg, 74%): ¹H NMR δ 1.35 and 1.55 (2× s, 2× 3, 2× CH₃), 1.90 (quint, $J_{8.7/7'/9/9'} = 7.2$ Hz, 2, H8/8'), 2.23–2.40 (m, 2, H7/7'), 2.41 (t, $J_{9.8/8'} = 7.2$ Hz, 2, H9/9'), 3.70 (s, 3, CH₃), 4.17 (d, $J_{3.4} = 2.6$ Hz, 1, H3); 4.59 (d, $J_{2.1} = 3.7$ Hz, 1, H2), 4.84 (dd, $J_{5.F} = 37.6$ Hz, $J_{5.4} = 7.7$ Hz, 1, H5), 5.08 ('dm', $J_{4.5} = 7.6$ Hz, 1, H4), 5.95 (d, $J_{1.2} = 3.7$ Hz, 1, H1); ¹³C NMR δ 21.40 (C8), 26.59 and 27.12 (CMe₂), 31.65 (d, ² $J_{7-F} = 26.6$ Hz, C7), 33.29 (C9), 52.08 (CH₃), 75.29 (d, ³ $J_{4.F} = 4.9$ Hz, C4), 76.74 (d, ⁴ $J_{3.F} = 1.0$ Hz, C3), 85.51 (C2), 101.15 (d, ² $J_{5.F} = 11.0$ Hz, C5), 104.74 (C1), 112.08 (CMe₂), 161.86 (d, ¹ $J_{6-F} = 261.8$ Hz, C6), 174.02 (C10); ¹⁹F NMR δ –100.23 (dt, $J_{F-H5} = 38.0$ Hz, $J_{F-H7} = 18.0$ Hz); MS *m*/z 305 (100, MH⁺).

5.19. Methyl 5,6,7,8,9-Pentadeoxy-6-fluoro-1,2-O-iso-propylidene- α -D-*ribo*-dec-5(Z)-enofuranuronate (32)

Saturated NH₃/MeOH (3 mL) was added to a solution of (*Z*)-**30** (26 mg, 0.062 mmol) in MeOH (3 mL) and the mixture was stirred at 0 °C for 48 h to ambient temperature. The volatiles were evaporated and the residue was column chromatographed (15 \rightarrow 60% EtOAc/hexanes) to give **32** (13 mg, 69%): ¹H NMR δ 1.39 and 1.62 (2× s, 2×3, 2× CH₃), 1.90 (quint, *J*_{8-7/7'/9/9'} = 7.3 Hz, 2, H8/8'), 2.31 (dt, *J*_{7-F} = 17.6 Hz, *J*_{7-8/8'} = 7.4 Hz, 2, H7/7'), 2.40 (t, *J*_{9-8/8'} = 6.9 Hz, 2, H9/9'), 3.75 (s, 3, CH₃), 4.56–4.72 (m, 4, H2/3/4/5), 5.82 (d, *J*₁₋₂ = 3.9 Hz, 1, H1); ¹³C NMR δ 21.44 (C8), 26.81 and 26.94 (C*Me*₂), 31.74 (d, ²*J*_{7-F} = 26.1 Hz, C7), 33.20 (C9), 52.07 (CH₃), 73.94 (d, ³*J*_{4-F} = 5.1 Hz, C4), 76.80 (C2), 78.62 (C3), 103.63 (d, ²*J*_{5-F} = 11.6 Hz, C5), 104.00 (C1), 113.07 (*C*Me₂), 163.91 (d, ¹*J*_{6-F} = 262.70 Hz, C6), 173.90 (C10); ¹⁹F NMR δ –100.23 (dt, *J*_{F-H5} = 37.1 Hz, *J*_{F-H7/7'} = 18.1 Hz). HRMS (AP-ESI) *m*/*z* calcd for C₁₄H₂₂FO₆ (MH⁺) 305.1395; found: 305.1396.

5.20. Methyl 5,6,7,8,9-pentadeoxy-6-fluoro- α/β -D-*xylo*-dec-5(*Z*)-enofuranuronate (33)

A solution of 31 (17 mg, 0.056 mmol) in TFA/H₂O (9:1, 3 mL) was stirred for 45 min at 0 °C and was evaporated and coevaporated [toluene (3×), CH₃CN $(2\times)$]. The residue was dissolved in H₂O and the aqueous layer was extracted with ether (2×). The water layer was evaporated to give 33 (9 mg, 61%; α/β , 1:1): ¹H NMR (MeOH- d_4) δ 1.81–1.94 (m, 2, H8/8'), 2.27–2.38 (m, 2, H7/7'), 2.38–2.45 (m, 2, H9/9'), 3.67 (m, 3, CH₃), 3.92 (dd, $J_{3-4} = 3.8$ Hz, $J_{3-2} = 1.8$ Hz, 0.5, H3), 3.97 (dd, $J_{3-4} = 3.9$ Hz, $J_{3-2} = 2.6$ Hz, 0.5, H3), 4.00–4.04 (m, 1, H2), 4.91 (d, $J_{4-5} = 8.9$ Hz, 0.5, H4), 4.99 (d, $J_{4-5} = 9.1$ Hz, 0.5, H4), 5.04–5.12 (m, 1, H5), 5.08 (s, 0.5, H1 β), 5.37 (d, $J_{1-2} = 4.0$ Hz, 0.5, H1 α); ¹⁹F NMR δ -106.29 (dt, $J_{\text{F-H5}}$ = 37.2 Hz, $J_{\text{F-H7}}$ = 17.6 Hz, 0.5F), -106.87 (dt, $J_{\text{F-H5}} = 37.8$ Hz, $J_{\text{F-H7}} =$ 18.2 Hz, 0.5F). HRMS (AP-ESI) m/z calcd for C₁₁H₁₈FO₆ (MH⁺) 265.1082; found: 265.1088.

5.21. Methyl 5,6,7,8,9-pentadeoxy-6-fluoro- α/β -D-*ribo*-dec-5(Z)-enofuranuronate (34)

A solution of **32** (12 mg, 0.04 mmol) in TFA/H₂O (9:1, 3 mL) was stirred for 30 min at 0 °C and was evaporated and coevaporated [toluene (3×)]. The residue was dissolved in H₂O and the aqueous layer was extracted with ether (2×). The water layer was evaporated to give **34** (8 mg, 76%; α/β, 3:7): ¹H NMR (D₂O) δ 1.72–1.76 (m, 2, H8/8'), 2.20 (dt, $J_{7-F} = 18.1 \text{ Hz}$, $J_{7-8/8'} = 8.4 \text{ Hz}$, 2, H7/7'), 2.31–2.38 (m, 2, H9/9'), 3.59 (d, $J_{2-3} = 2.4 \text{ Hz}$, 0.7, H2), 3.82–3.85 (m, 0.3, H2), 3.90–3.93 (s, 0.7, H3), 3.90–4.06 (m, 4.3, H3/H4/CH₃), 4.64-4.77 (m, 1, H5), 5.12 (s, 0.7, H1), 5.28 (d, $J_{1-2} = 3.7 \text{ Hz}$, 0.3, H1); ¹⁹F NMR δ –104.06 (dt, $J_{F-H5} = 36.4 \text{ Hz}$, $J_{F-H7/7'} = 17.8 \text{ Hz}$, 0.3, α); -105.04 (dt, $J_{F-H5} = 35.8 \text{ Hz}$, $J_{F-H7/7'} = 18.8 \text{ Hz}$, 0.7F, β). HRMS (AP-ESI) *m*/*z* calcd for C₁₁H₁₈FO₆ (MH⁺) 265.1082; found: 265.1090.

5.22. (*E*/*Z*)-3,5,6-Trideoxy-6-fluoro-1,2-*O*-isopropylidene-6-phenylsulfonyl-α-D-erythro-hex-5-enofuranose (35)

Step (a). Treatment of diacetone 3-deoxyglucose²² (204 mg, 0.83 mmol) with H_5IO_6 (228 mg, 1.00 mmol) as described for 10 (Step (a), except no aqueous workup was performed) gave 3-deoxy-1,2-O-isopropylidene-α-Derythro-pentdialdo-1,4-furanose [~85% pure; ¹H NMR δ 9.75 (d, J_{5-4} = 4.8 Hz, H5)] was directly used in the next step. Step (b). Treatment of the crude aldehyde with fluoro(phenylsulfonyl)methylphosphonate²⁰ diethyl (297 mg, 0.96 mmol) and LHMDS (0.96 mL, 0.96 mmol) as described for 20, gave 35 (150 mg, 48%; E/Z, 2:1) as an inseparable mixture of isomers. Compound (E)-35 had: ¹H NMR δ 1.30 and 1.47 (2× s, 2×3, 2× CH₃), 1.71 (ddd, $J_{3-4} = 10.9$ Hz, $J_{3-3'} = 15.5$ Hz, $J_{3-2} = 4.6$ Hz, 1, H3), 2.28 (dd, $J_{3'-4} = 4.5$ Hz, $J_{3'-3} = 13.4$ Hz, 1, H3'), 4.77 (t, $J_{2-1/3} = 4.0$ Hz, 1, H2), 4.93-4.97 (m, 1, H4), 4.77 (t, $J_{2-1/3} = 4.0$ Hz, 1, H2), 4.93 - 4.97 (ti, 1, H4), 5.85 (d, $J_{1-2} = 3.6$ Hz, 1, H1), 6.31 (dd, $J_{5-F} = 32.4$ Hz, $J_{5-4} = 7.5$ Hz, 1, H5), 7.56–7.97 (m, 5, Ar); ¹³C NMR δ 26.42 and 27.00 (CMe₂), 39.25 (d, ${}^{4}J_{3-F} = 2.0$ Hz, C3), 71.26 (d, ${}^{3}J_{4-F} = 2.4$ Hz, C4), 80.69 (C2), 105.90 (C1), 112.01 (CMe₂), 116.77 (d, ${}^{2}J_{5-F} = 3.7$ Hz, C5), 129.17 (Pb) 120.01 (ch) 125.08 (Pb) 127.22 (Pb) 155.54 (d (Ph), 129.91 (ph), 135.08 (Ph), 137.22 (Ph), 155.54 (d, ${}^{1}J_{6-F} = 301.9 \text{ Hz}, \text{ C6}; {}^{19}\text{F} \text{ NMR} \quad \delta - 122.72 \quad (d, \delta)$ $J_{\text{F-H5}} = 32.5 \text{ Hz}, 0.66$). Compound (Z)-35 had: ^{1}H NMR δ 1.34 and 1.60 (2× s, 2×3, 2× CH₃), 1.68 (ddd, $J_{3-4} = 10.5 \text{ Hz}, J_{3-3'} = 15.2 \text{ Hz}, J_{3-2} = 4.7 \text{ Hz}, 1, \text{ H3}),$ 2.46 (ddd, $J_{3'-4} = 4.6$ Hz, $J_{3'-3} = 13.2$ Hz, 1, H3'), 4.79 (t, $J_{2-1/3} = 3.9$ Hz, 1, H2), 5.71 (ddd, $J_{4-5} = 8.7$ Hz, $J_{4-3} =$ 10.6 Hz, $J_{4-3'} = 4.5$ Hz, 1, H4), 5.84–5.85 (m, 1, H1), 5.86 (dd, $J_{5-F} = 20.1$ Hz, $J_{5-4} = 8.6$ Hz, H5), 7.56–7.97 (m, 5, Ar); ¹⁹F NMR δ –114.04 (d, $J_{F-H5} = 20.0$ Hz, 0.33); MS m/z 329 (100, MH⁺).

5.23. (*E*/*Z*)-3,5,6-Trideoxy-6-fluoro-1,2-*O*-isopropylidene-6-tributylstannyl-α-D-*erythro*-hex-5-enofuranose (38)

Treatment of **35** (128 mg, 0.39 mmol) with Bu₃SnH (0.21 mL, 228 mg, 0.78 mmol,) and AIBN (481 mg, 0.29 mmol) as described for **23**, gave **38** (83 mg, 44%; *E/Z*, 1:1): ¹⁹F NMR δ –92.83 (d, $J_{\text{F-H5}}$ = 33.9 Hz, 84% of 0.50F, *Z*), -92.83 (ddd, $J_{\text{F-Sn}}$ = 230.4 Hz, $J_{\text{F-H5}}$ = 34.7 Hz, $J_{\text{F-H4}}$ = 5.2 Hz 16% of 0.50F, *Z*), -96.75 (d,

 $J_{\text{F-H5}} = 52.7 \text{ Hz}, 84\% \text{ of } 0.50\text{F}, E$, -96.75 (ddd, $J_{\text{F-Sn}} =$ 221.1 Hz, $J_{\text{F-H5}} = 52.7$ Hz, $J_{\text{F-H4}} = 4.9$ Hz, 16% of 0.50F, *E*); MS *m*/*z* 479 (100, MH⁺, ¹²⁰Sn), 477 (73, MH⁺, ¹¹⁸Sn), 475 (48, MH⁺, ¹¹⁶Sn). Compound (*E*)-**38** had: ¹H NMR δ 0.98–1.70 (m, 34, 3× Bu/2× CH₃/H3), 2.26 (dd, $J_{3'-4} = 4.3$ Hz, $J_{3'-3} = 13.4$ Hz, 1, H3), 4.45– 4.55 (m, 1, H4), 4.75 (t, $J_{2-1/3} = 4.2$ Hz, 1, H2), 4.96 (dd, $J_{5-F} = 52.9$ Hz, $J_{5-4} = 7.5$ Hz, 1, H5), 5.83 (d, $J_{1-2} = 3.8$ Hz, 1, H1); ¹³C NMR δ 10.31 (Bu), 11.00 (Bu), 13.97 (Bu), 27.04 and 27.08 (CMe_2), 27.50 (Bu), 40.19 (d, ${}^{2}J_{3-F} = 1.6$ Hz, C3), 71.25 (d, ${}^{3}J_{4-F} = 17.3$ Hz, C4), 81.06 (C2), 105.47 (C1), 111.41 (CMe₂), 123.42 (d, ²J_{5-F} = 3.7 Hz, C5), 174.29 (d, ${}^{1}J_{5-F} = 323.5$ Hz, C6). Compound (Z)-38 had: ¹H NMR δ 0.98–1.70 (m, 34, 3× Bu/2× CH₃/H3), 2.11 (dd, $J_{3'-4} = 4.3$ Hz, $J_{3'-3} = 13.4$ Hz, 1, H3'), 4.73 (t, $J_{2-1/3}$ = 4.2 Hz, 1, H2), 5.21 (ddd, J_{4-5} = 7.5 Hz, $J_{4-3} = 4.4$ Hz, $J_{4-3'} = 15.2$ Hz, 1, H4), 5.81 (d, $J_{1-2} = 3.7$ Hz, 1, H1), 5.84 (dd, $J_{5-F} = 34.2$ Hz, $J_{5-4} = 9.2$ Hz, 1, H5); ¹³C NMR δ 10.31 (Bu), 11.00 (Bu), 13.97 (Bu), 27.04 and 27.08 (CMe2), 27.50 (Bu), 41.00 (d, ${}^{2}J_{3-F} = 1.8$ Hz, C3), 74.73 (d, ${}^{3}J_{4-F} = 21.7$ Hz, C4), 80.83 (C2), 105.69 (C1), 111.17 (CMe₂), 123.26 (d, ${}^{2}J_{5-F} = 8.1$ Hz, C5), 177.16 (d, ${}^{1}J_{6-F} = 316.5$ Hz, C6).

5.24. (*E*/*Z*)-5,6-Dideoxy-6-fluoro-1,2-*O*-isopropylidene- α -D-*xylo*-hex-5-enofuranose (39)

Step (a). Compound 23 (200 mg, 0.34 mmol; E/Z, 7:3) was dissolved in saturated NH₃/MeOH (20 mL) and the resulting solution was stirred overnight at ambient temperature. The volatiles were evaporated to give 36 in quantitative yield of sufficient purity for use in the subsequent reaction. Step (b). Compound 36 (crude from Step (a), 0.34 mmol) was dissolved in NH₃/MeOH (20 mL) and the resulting mixture was heated in a pressure Ace tube at 65 °C for 18 h. The volatiles were evaporated and the residue was column chromatographed (hexanes/ EtOAc, $8:2 \rightarrow 3:7$) to give (*E*)-**39** (20 mg, 29% from **23**) and (Z)-39 (33 mg, 48% from 23). Compound (E)-39 had: ¹H NMR δ 1.35 and 1.58 (2× s, 2×3, 2× CH₃), 1.78 (br s, 1, OH3), 4.32 (d, $J_{3-4} = 2.5$ Hz, 1, H3), 4.59 (d, $J_{2-1} = 3.7$ Hz, 1, H2), 4.69 ('dm', $J_{4-5} = 7.0$ Hz, 1, H4), 5.53 (ddd, $J_{5-F} = 18.1$ Hz, $J_{5-6} = 11.2$ Hz, $J_{5-4} =$ 7.1 Hz, 1, H5), 5.94 (d, $J_{1-2} = 3.7$ Hz, 1, H1), 6.86 (ddd, $J_{6-F} = 82.9$ Hz, $J_{6-5} = 11.2$ Hz, $J_{6-4} = 1.0$ Hz, 1, H6); ¹³C NMR δ 26.47 and 27.06 (CMe₂), 76.48 (d, ${}^{4}J_{3-F}$ = 2.0 Hz, C3), 76.80 (d, ${}^{3}J_{4-F} = 12.6$ Hz, C4), 85.31 (C2), 104.87 (C1), 106.20 (d, ${}^{2}J_{5-F} = 13.7$ Hz, C5), 112.25 (CMe₂), 153.79 (d, ${}^{1}J_{6-F} = 262.6$ Hz, C6); ${}^{19}F$ NMR δ -122.18 (dd, $J_{\text{F-H5}} = 17.8$ Hz, $J_{\text{F-H6}} = 82.9$ Hz). Compound (Z)-39 had: 1.35 and 1.54 (2× s, 2×3, 2× CH₃), 1.81 (br s, 1, OH3), 4.22 (br s, 1, H3), 4.58 (d, $J_{2-1} = 3.7$ Hz, 1, H2), 5.07 (ddd, $J_{5-F} = 40.1$ Hz, $J_{5-6} = 4.9$ Hz, $J_{5-4} = 7.5$ Hz, 1, H5), 5.12–5.15 (m, 1, H4), 5.96 (d, $J_{1-2} = 3.7$ Hz, 1, H1), 6.63 (dd, $J_{6-F} = 82.7$ Hz, $J_{6-5} = 4.8$ Hz, $J_{6-4} = 1.2$ Hz, 1, H6); ¹³C NMR δ 26.57 and 27.10 (CMe₂), 74.49 (d, ³J_{4-F} = 5.1 Hz, C4), 76.74 (d, ${}^{4}J_{3-F}$ = 1.9 Hz, C3), 85.47 (C2), 104.80 (C1), 106.24 (C5), 112.24 (CMe₂), 150.20 (d, ${}^{1}J_{6-F} = 265.2$ Hz, C6); ¹⁹F NMR δ –121.02 (dd, $J_{\text{F-H5}}$ = 41.1 Hz, $J_{\text{F-H6}}$ = 83.3 Hz). MS (APCI⁺) m/z 205 (100, MH⁺). Anal. Calcd for C₉H₁₃FO₄ (204.19): C, 52.94; H, 6.42. Found: C, 53.19; H, 6.63.

5.25. (*E*/*Z*)-5,6-Dideoxy-6-fluoro-1,2-*O*-isopropylidene- α -D-*ribo*-hex-5-enofuranose (40)

Step (a). Compound 24 (200 mg, 0.34 mmol; E/Z, 1:1) was dissolved in NH₃/MeOH (20 mL) and stirred overnight at ambient temperature. The volatiles were evaporated to give 37 in quantitative yield of sufficient purity for use in the subsequent step. Step (b). Treatment of 37 (crude, 0.34 mmol)with NH₃/MeOH (20 mL) at 65 °C, as described for 39, gave unchanged 37 (17 mg, 10% from 24; E/Z, 2:3) and 40 as separable isomers (E; 22 mg, 32% from 24) and (Z; 18 mg, 26% from 24). Compound (E)-40 had: ¹H NMR δ 1.40 and 1.60 (2× s, 2×3, $2 \times$ CH₃), 2.37 (d, $J_{OH3-3} = 10.0$ Hz, 1, OH3), 3.70–3.73 (m, 1, H3), 4.12 (t, $J_{4-5/3} = 8.3$ Hz, 1, H4), 4.60 (t, $J_{2-1/3} = 4.6$ Hz, 1, H2), 5.53 (ddd, $J_{5-F} = 17.1$ Hz, $J_{5-6} =$ 11.2 Hz, $J_{5-4} = 7.8$ Hz, 1, H5), 5.84 (d, $J_{1-2} = 3.9$ Hz, 1, H1), 6.82 (ddd, $J_{6-F} = 82.4$ Hz, $J_{6-5} = 11.1$ Hz, $J_{6-4} =$ 0.7 Hz, 1, H6); ¹³C NMR δ 26.75 and 26.84 (CMe₂), 76.55 (d, ${}^{3}J_{4-F}$ = 17.0 Hz, C4), 76.49 (C3), 78.57 (C2), 104.08 (C1), 109.44 (d, ${}^{2}J_{5-F} = 12.9$ Hz, C5), 113.11 (CMe_2) , 152.81 (d, ${}^{1}J_{6-F}$ = 262.1 Hz, C6); ${}^{19}F$ NMR δ -123.67 (dd, J_{F-H5} = 17.1 Hz, J_{F-H6} = 82.5 Hz). Compound (Z)-40 had: 1.40 and 1.60 ($2 \times s$, 2×3 , $2 \times CH_3$), 2.39 (d, $J_{OH3-3} = 11.0$ Hz, 1, OH3), 3.74 (ddd, $J_{3-OH3} =$ 10.9 Hz, $J_{3-4} = 8.9$ Hz, $J_{3-2} = 5.1$ Hz, 1, H3), 4.60 (t, $J_{2-1/3} = 4.5$ Hz, 1, H2), 4.70 (t, $J_{4-3/5} = 8.8$ Hz, 1, H4), 4.89 (ddd, $J_{5-F} = 40.0$ Hz, $J_{5-6} = 4.9$ Hz, $J_{5-4} = 8.9$ Hz, 1, H5), 5.84 (d, $J_{1-2} = 3.9$ Hz, 1, H1), 6.69 (ddd, $J_{6-F} = 82.7 \text{ Hz}, J_{6-5} = 4.9 \text{ Hz}, J_{6-4} = 0.8 \text{ Hz}, 1, \text{ H6});$ ¹³C NMR δ 26.79 and 26.92 (CMe₂), 73.18 (d, ${}^{3}J_{4-F}$ = 5.1 Hz, C4), 76.74 (d, ${}^{4}J_{3-F} = 2.0$ Hz, C3), 78.58 (C2), 104.20 (C1), 108.69 (${}^{2}J_{5-F} = 1.9$ Hz, C5), 113.17 (CMe₂), 153.71 (d, ${}^{1}J_{6-F} = 265.8$ Hz, C6); ${}^{19}F$ NMR δ -123.90 (dd, $J_{\text{F-H5}} = 40.1$ Hz, $J_{\text{F-H6}} = 82.6$ Hz): MS (APCI⁺) m/z 205 (100, MH⁺). Anal. Calcd for C₉H₁₃FO₄ (204.19): C, 52.94; H, 6.42. Found: C, 53.07; H, 6.67.

5.26. (E/Z)-3,5,6-Trideoxy-6-fluoro-1,2-*O*-isopropylidene- α -D-erythro-hex-5-enofuranose (41)

Treatment of 38 (100 mg, 0.21 mmol; E/Z, 1:1)with NH₃/MeOH (15 mL) and CsF (51 mg, 0.33 mmol) at 65 °C for 4 h, as described for **39** (Step (b)), gave **41** (16 mg, 40%; E/Z, ~45:55): ¹⁹F NMR δ –124.79 (dd, $J_{\text{F-H5}} = 41.8 \text{ Hz}, J_{\text{F-H6}} = 83.0 \text{ Hz}, 0.55\text{F}), -125.95 \text{ (dd,}$ $J_{\text{F-H5}} = 16.7 \text{ Hz}, J_{\text{F-H6}} = 82.9 \text{ Hz}, 0.45 \text{F}); \text{ MS} (\text{APCI}^+)$ m/z 189 (100, MH⁺). Compound (E)-41 had: ¹H NMR δ 1.35 and 1.55 (2× s, 2×3, 2× CH₃), 1.55–1.68 (m, 1, H3), 2.20 (dd, $J_{3'-3} = 13.5$ Hz, $J_{3'-4} = 4.3$ Hz, 1, H3'), 4.62 (ddd, $J_{4-3} = 11.5$ Hz, $J_{4-5} = 8.2$ Hz, $J_{4-3'} = 4.3$ Hz, 1, H4), 4.75–4.79 (m, 1, H2), 5.42 (ddd, J_{5-F} = 16.8 Hz, $J_{5-6} = 11.2 \text{ Hz}, J_{5-4} = 8.3 \text{ Hz}, 1, \text{ H5}), 5.82-5.84 \text{ (m, 1,}$ H1), 6.80 (dd, $J_{6-F} = 82.7$ Hz, $J_{6-5} = 11.2$ Hz, 1, H6). Compound (Z)-41 had: 1.28 and 1.57 ($2 \times s$, 2×3 , $2 \times$ CH₃), 1.55–1.68 (m, 1, H3), 2.28 (dd, $J_{3'-3} = 13.5$ Hz, $J_{3'-4} = 4.3$ Hz, 1, H3'), 4.75–4.79 (m, 1, H2), 4.92 (ddd, $J_{5-F} = 41.3 \text{ Hz}, J_{5-4} = 8.1 \text{ Hz}, J_{5-6} = 4.8 \text{ Hz}, 1, \text{ H5}), 5.13$ (ddd, $J_{4-3} = 11.5 \text{ Hz}$, $J_{4-5} = 8.0 \text{ Hz}$, $J_{4-3'} = 4.1 \text{ Hz}$, 1, H4), 5.82–5.84 (m, 1, H1), 6.53 (dd, $J_{6-F} = 82.8$ Hz, $J_{6-5} = 4.8$ Hz, 1, H6).

5.27. (E)-5,6-Dideoxy-6-fluoro- α/β -D-xylo-hex-5-enofuranose (42)

A solution of (E)-39 (13 mg, 0.064 mmol) in TFA/H₂O (9:1; 3 mL) was stirred for 50 min at 0 °C (ice bath). The volatiles were evaporated, coevaporated [toluene $(3\times)$ and MeCN $(2\times)$], and the residue was flash column chromatographed ($50 \rightarrow 95\%$ EtOAc/hexanes) to give 42 (4 mg, 38%; α/β , 1:1): ¹H NMR (MeOH- d_4) δ 3.91-4.03 (m, 2 H2/3), 4.56-4.63 (m, 1, H4), 5.07 (s, 0.5, H1 β), 5.37 (d, $J_{1-2} = 4.0$ Hz, 0.5, H1 α), 5.51 (ddd, $J_{5-F} = 17.8$ Hz, $J_{5-6} = 11.2$ Hz, $J_{5-4} = 8.9$ Hz, 0.5, H5), 5.65 (ddd, $J_{5-F} = 17.9$ Hz, $J_{5-6} = 11.1$ Hz, $J_{5-4} = 8.9$ Hz, 0.5, H5), 6.87 (dd, $J_{6-F} = 84.0$ Hz, $J_{6-5} = 11.0$ Hz, 0.5, H6), 6.90 (dd, $J_{6-F} = 83.7$ Hz, $J_{6-5} = 11.0$ Hz, 0.5, H6); ¹³C NMR (MeOH- d_4) δ 75.29 (d, ${}^{3}J_{4-F} = 13.8$ Hz, C4), 77.00 and 77.20 (C3), 77.73 (C2), 78.17 (d, ${}^{3}J_{4-F} = 13.7$ Hz, C4), 81.26 (C2), 96.72 (C1 α), 103.17 (C1 β), 108.71 (d, ${}^{2}J_{5-F} = 12.0$ Hz, C5), 109.32 (d, ${}^{2}J_{5-F} = 11.7$ Hz, C5), 152.14 (d, ${}^{1}J_{6-F} = 258.7 \text{ Hz}, \text{ C6}, \text{ 152.24 } (\text{d}, {}^{-1}J_{6-F} = 259.2 \text{ Hz}, \text{ }$ C6); ¹⁹F NMR (MeOH- d_4) δ –126.55 (dd, $J_{\text{F-H5}}$ = 17.8 Hz, $J_{\text{F-6}}$ = 83.9 Hz, 0.5F), –126.85 (dd, $J_{\text{F-H5}}$ = 18.1 Hz, $J_{\text{F-H6}} = 84.0$ Hz, 0.5F); MS (APCI⁻) m/z 163 $(100, MH^{-}).$

Analogous treatment of **39** (*E*/*Z*, 1:1; 20 mg, 0.040 mmol) gave **42** (5 mg, 76%) as a mixture (*E*/*Z*, ~1:1; α/β , ~1:1). Compound (*E*/*Z*)-**37** had: ¹⁹F NMR (MeOH-*d*₄) δ -126.55 (dd, *J*_{F-H5} = 17.3 Hz, *J*_{F- H6} = 84.0 Hz; *E*, 0.25, α), -126.85 (dd, ³*J*_{F-H5} = 17.5 Hz, ²*J*_{F-H6} = 84.0 Hz; *E*, 0.25, β), -127.66 (dd, *J*_{F-H5} = 41.5 Hz, *J*_{F-H6} = 84.9 Hz; *Z*, 0.25, α), -128.34 (dd, *J*_{F-H5} = 42.2 Hz, *J*_{F-H6} = 84.8 Hz; *Z*, 0.25, β); MS(APCI⁻) *m*/*z* 163 (100, MH⁻).

Treatment of the crude **36** [from Step (a) for the preparation of **39**] with TFA/H₂O (1 h, 0 °C) followed by evaporation, coevaporation [toluene (2×) and MeCN (1×)], partition (H₂O/ethyl ether), and evaporation of the aqueous layer also gave **42** (55% from **23**, α/β , 1:1).

5.28. (E)-5,6-Dideoxy-6-fluoro- α/β -D-*ribo*-hex-5-enofuranose (43)

Treatment of (*E*)-40 (13 mg, 0.064 mmol)with TFA/H₂O (9:1, 3 mL) as described for 42, gave 43 (7 mg, 67%; α/β , 1:4): ¹H NMR (MeOH- d_4) δ 3.77 (t, $J_{3-2/4} = 6.1$ Hz, 0.2, H3), 3.87 (d, $J_{2-1} = 4.5$ Hz, 0.8, H2), 4.01–4.05 (m, 1, H2 α and H3 β), 4.20 (t, $J_{4-3/5} = 8.0$ Hz, 0.8, H4), 4.30 (dd, $J_{4-5} = 8.2$ Hz, $J_{4-3} = 6.4$ Hz, 0.2, H4), 5.12 (br s, 0.8, H1), 5.28 (d, $J_{1-2} = 4.1$ Hz, 0.2, H1), 5.42 (ddd, $J_{5-F} = 17.5$ Hz, $J_{5-6} = 11.1$ Hz, $J_{5-4} = 8.3$ Hz, 0.2, H5), 5.49 (ddd, $J_{5-F} = 17.6$ Hz, $J_{5-6} = 11.1$ Hz, $J_{6-5} = 11.1$ Hz, 0.8, H6), 6.87 (dd, $J_{6-F} = 83.9$ Hz, $J_{6-5} = 11.0$ Hz, 0.2, H6); ¹³C NMR (MeOH- d_4) δ 70.90 (C2 α), 75.32 (d, $^4J_{3-F} = 2.6$ Hz, C3 α), 75.5 (d, $^4J_{3-F} = 2.5$ Hz, C3 β), 76.13 (C2 β), 77.55 (d, $^3J_{4-F} = 13.6$ Hz, C4 α), 77.88 (d, $^3J_{4-F} = 13.7$ Hz, C4 β), 96.63 (C1 α), 102.09 (C1 β), 111.19 (d, $^2J_{5-F} = 11.4$ Hz, C5 α), 112.65 (d, $^2J_{5-F} = 10.6$ Hz, C5 β), 151.98 (d, $^1J_{6-F} = 258.6$ Hz, C6 β), 152.17 (d, $^1J_{6-F} = 258.7$ Hz, C6 α); ¹⁹F NMR (MeOH-

 d_4) δ -128.55 (dd, $J_{\text{F-H5}}$ = 17.4 Hz, $J_{\text{F-H6}}$ = 83.5 Hz, 0.2F, α), -129.00 (dd, $J_{\text{F-H5}}$ = 17.3 Hz, $J_{\text{F-H6}}$ = 83.7 Hz, 0.8F, β); MS (APCI⁻) *m*/*z* 163 (100, MH⁻).

Analogous treatment of **40** (*E*/*Z*, 1:1; 16 mg, 0.032 mmol) gave **43** (3 mg, 57%) as a mixture (*E*/*Z*, ~3:1; α/β , ~1:4 for *E* isomer and α/β , ~1:15 for *Z* isomer): ¹⁹F NMR (MeOH-*d*₄) δ -128.01 (dd, $J_{\text{F-H5}} = 41.3 \text{ Hz}$, $J_{\text{F-H6}} = 83.4 \text{ Hz}$; *Z*, 0.02F, α) -128.55 (dd, $J_{\text{F-H5}} = 17.6 \text{ Hz}$, $J_{\text{F-H6}} = 84.2 \text{ Hz}$; *E*, 0.14F, α), -129.00 (dd, $J_{\text{F-H5}} = 17.5 \text{ Hz}$, $J_{\text{F-H6}} = 83.8 \text{ Hz}$; *E*, 0.60F, β), -129.69 (dd, $J_{\text{F-H5}} = 40.8 \text{ Hz}$, $J_{\text{F-H6}} = 84.4 \text{ Hz}$; *Z*, 0.24F, β); MS(APCI⁻) *m*/*z* 163 (100, MH⁻).

Treatment of the crude **37** [from Step (a) for the preparation of **40**] with TFA/H₂O (1 h, 0 °C) followed by evaporation, coevaporation [toluene (2×) and MeCN (1×)], partition (H₂O/ethyl ether), and evaporation of the aqueous layer also gave **43** (45% from **24**, α/β , 1:3).

5.29. (E/Z)-3,5,6-Trideoxy-6-fluoro- α -D-*erythro*-hex-5-enofuranose (44)

Treatment of **38** (62 mg, 0.13 mmol; *E/Z*, 3:2) with TFA/ $H_2O(9:1, 1 \text{ mL}; 1 \text{ h}, 0 \text{ °C})$ followed by evaporation, coevaporation [toluene (2×) and MeCN (1×)], partition ($H_2O/$ ethyl ether), and evaporation of the aqueous layer gave 44 (10 mg, 52%; $E/Z \sim 1.3$, α/β , ~ 1.4): ¹H NMR (D₂O) δ 1.85-2.10 (m, 2, H3,3'), 4.05-4.25 (m, 1, H2), 4.58-4.75 (m, 1, H4), 4.86 (ddd, J_{5-F} = 41.7 Hz, J_{5-4} = 8.9 Hz, J_{5-6} = 4.7, Hz, 0.15, H5), 4.92 (ddd, $J_{5-F} = 41.6$ Hz, $J_{5-4} =$ 8.9 Hz, J₅₋₆ = 4.7 Hz, 0.6, H5), 5.12 (s, 0.15, H1β), 5.13 (s, 0.6, H1 β), 5.24 (d, J_{1-2} = 3.5 Hz, 0.05, H1 α), 5.25 (d, $J_{1-2} = 3.8$ Hz, 0.2, H1 α), 5.39 (ddd, $J_{5-F} = 17.4$ Hz, $J_{5-6} =$ 11.2 Hz, $J_{5.4} = 9.3$ Hz, 0.2, H5), 5.45 (ddd, $J_{5-F} =$ 17.6 Hz, $J_{5-6} = 11.1$ Hz, $J_{5-4} = 9.1$ Hz, 0.05, H5), 6.52 (ddd, $J_{6-F} = 83.7$ Hz, $J_{6-5} = 4.7$ Hz, $J_{6-4} = 1.0$ Hz, 0.15, H6), 6.55 (dd, $J_{6-F} = 83.7$ Hz, $J_{6-5} = 4.7$ Hz, $J_{6-5} = 4.7$ Hz, $J_{6-4} = 1.0$ Hz, 0.15, 1.0, 0.60, H6), 6.77 (dd, $J_{6-F} = 83.9$ Hz, $J_{6-5} = 10.7$ Hz, 0.05, H6), 6.78 (dd, J_{6-F} = 83.9 Hz, J_{6-5} = 11.0 Hz, 0.20, H6); ¹⁹F NMR (D₂O) δ – 126.35 (dd, J_{F-H5} = 17.3 Hz, $J_{\text{F-H6}} = 83.6 \text{ Hz}; E, 0.20\text{F}, \beta), -126.45 \text{ (dd, } J_{\text{F-H5}} =$ 17.2 Hz, $J_{\text{F-H6}} = 82.8$ Hz; E, 0.05F, α), -126.81 (dd, $J_{\text{F-H5}} = 42.0 \text{ Hz}, J_{\text{F-H6}} = 83.7 \text{ Hz}; Z, 0.15\text{F}, \alpha), -127.55$ (dd, $J_{\text{F-H5}} = 42.0 \text{ Hz}$, $J_{\text{F-H6}} = 83.8 \text{ Hz}$; Z, 0.60F, β); HRMS (LCT-ESI) m/z: calcd for C₆H₉FO₃ [M+Na]⁺ 171.0433; found: 171.0434.

Analogous treatment of **41** (10 mg, 0.053 mmol; E/Z, ~45:55) with TFA/H₂O gave **44** (5 mg, 64%; $E/Z \sim 1:2$, $\alpha/\beta \sim 1:3$).

5.30. Enzymatic assay

Inhibition assays were performed in a buffer containing 50 mM Hepes (pH 7.0), 150 mM NaCl, 150 μ M 5,5'-dithio-bis-(2-nitrobenzoic acid),²³ and various concentrations of SRH (0-55 μ M) and inhibitors (0–1 mM). The reactions were initiated by the addition of Co²⁺-substituted LuxS from *B. subtilis* (final concentration 0.4–0.5 μ M) and monitored continuously at 412 nm ($\epsilon = 14,150 \text{ M}^{-1} \text{ cm}^{-1}$) in a Perkin-Elmer $\lambda 25 \text{ UV-vis}$

spectrophotometer at room temperature. The initial rates recorded from the early regions of the progress curves were fitted into the Lineweaver–Burk equation $1/V = K_{\rm M}'/(k_{\rm cat}~[{\rm E}]_0) \times 1/[{\rm S}] + 1/(k_{\rm cat}~[{\rm E}]_0)$ and the Michaelis–Menten equation $V = k_{\rm cat}~[{\rm E}]_0~[{\rm S}]/(K_{\rm M}' + [{\rm S}])$ using KaleidaGraph 3.5 to determine the inhibition pattern. $K_{\rm I}$ values were calculated from the equation $K_{\rm M}' = K_{\rm M} \times (1 + [{\rm I}]/K_{\rm I})$, where $K_{\rm M} = 2.2 \,\mu {\rm M}$.

Acknowledgments

This work was partially supported by grants from the National Institutes of Health (S06GM08205 and R01AI062901). C.A.G and J.R were sponsored by MBRS RISE program (NIH/NIGMS; R25GM61347). C.A.G is also thankful to R.E. McNair Program for summer support. The support of US Army Research Office (W911NF-04-1-0022) in the purchase of 600 MHz NMR spectrometer is gratefully acknowledged.

References and notes

- (a) Yuan, C.-S.; Liu, S.; Wnuk, S. F.; Robins, M. J.; Borchardt, R. T.. In *Advances in Antiviral Drug Design*; DeClercq, E., Ed.; JAI Press: Greenwich, 1996; Vol. 2, p 41; (b) Turner, M. A.; Yang, X.; Yin, D.; Kuczera, K.; Borchardt, R. T.; Howell, P. L. *Cell Biochem. Biophys.* 2000, 33, 101; (c) Wnuk, S. F. *Mini-Rev. Med. Chem.* 2001, 1, 307.
- (a) Schneyder, G.; Roffi, M.; Pin, R.; Flammer, Y.; Lange, H.; Eberli, F. R.; Meier, B.; Turi, Z. G.; Hess, O. M. N. Engl. J. Med. 2001, 345, 1593; (b) Langheinrich, A. C.; Braun-Dullaeus, R. C.; Walker, G.; Jeide, I.; Schiling, R.; Tammoscheit, K.; Dreyer, T.; Fink, L.; Bohle, R. M.; Haberbosch, W. Atherosclerosis 2003, 171, 181.
- (a) Lee, J. E.; Cornel, K. A.; Riscoe, M. K.; Howell, P. L. *Structure* 2001, 9, 941; (b) Lee, J. E.; Cornel, K. A.; Riscoe, M. K.; Howell, P. L. J. Biol. Chem. 2003, 278, 8761.
- (a) Chen, X.; Schauder, S.; Potier, N.; Van Dorsselaer, A.; Pelczer, I.; Bassler, B. L.; Hughson, F. M. Nature 2002, 415, 545; (b) Zhu, J.; Hu, X.; Dizin, E.; Pei, D. J. Am. Chem. Soc. 2003, 125, 13379; (c) Zhu, J.; Dizin, E.; Hu, X.; Wavreille, A. S.; Park, J.; Pei, D. Biochemistry 2003, 42, 4717; (d) Zhu, J.; Patel, R.; Pei, D. Biochemistry 2004, 43, 10166; (e) Alfaro, J. F.; Zhang, T.; Wynn, D. P.; Karschner, E. L.; Zhou, Z. S. Org. Lett. 2004, 6, 3043; (f) Pei, D.; Zhu, J. Curr. Opin. Chem. Biol. 2004, 8, 492; (g) Rajan, R.; Zhu, J.; Hu, X.; Pei, D.; Bell, C. E. Biochemistry 2005, 44, 3745; (h) Shen, G.; Rajan, R.; Zhu, J.; Bell, C. E.; Pei, D. J. Med. Chem. 2006, 49, 3003.
- (a) Meijler, M. M.; Hom, L. G.; Kaufmann, G. F.; McKenzie, K. M.; Sun, C.; Moss, J. A.; Matsushita, M.; Janda, K. D. Angew. Chem. Int. Ed. 2004, 43, 2106; (b) Semmelhack, M. F.; Campagna, S. R.; Federle, M. J.; Bassler, B. L. Org. Lett. 2005, 7, 569; (c) De Keersmaecker, S. C. J.; Varszegi, C.; van Boxel, N.; Habel, L. W.; Metzger, K.; Daniels, R.; Marchal, K.; De Vos, D.; Vanderleyden, J. J. Biol. Chem. 2005, 280, 19563; (d) Frezza, M.; Soulere, L.; Balestrino, D.; Gohar, M.; Deshayes, C.; Queneau, Y.; Forestier, C.; Doutheau, A. Bioorg. Med. Chem. Lett. 2007, 17, 1428.

- (a) Waters, C. M.; Bassler, B. L. Annu. Rev. Cell Dev. Biol. 2005, 21, 319; (b) Bassler, B. L.; Losick, R. Cell 2006, 125, 237.
- (a) Geske, G. D.; Wezeman, R. J.; Siegel, A. P.; Blackwell, H. E. J. Am. Chem. Soc. 2005, 127, 12762; (b) Pomianek, M. E.; Semmelhack, M. F. ACS Chem. Biol. 2007, 2, 293; (c) Higgins, D. A.; Pomianek, M. E.; Kraml, C. M.; Taylor, R. K.; Semmelhack, M. F.; Bassler, B. L. Nature 2007, 450, 883.
- (a) Wnuk, S. F.; Yuan, C.-S.; Borchardt, R. T.; Balzarini, J.; De Clercq, E.; Robins, M. J. J. Med. Chem. 1994, 37, 3579; (b) Yuan, C.-S.; Wnuk, S. F.; Robins, M. J.; Borchardt, R. T. J. Biol. Chem. 1998, 273, 18191; (c) Wnuk, S. F.; Mao, Y.; Yuan, C. S.; Borchardt, R. T.; Andrei, J.; Balzarini, J.; DeClercq, E.; Robins, M. J. J. J. Med. Chem. 1998, 41, 3078.
- (a) Xie, M.; Berges, D. A.; Robins, M. J. J. Org. Chem. 1996, 61, 5178; (b) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863.
- Analogous bromination-dehydrobromination strategy applied to the adenosine derivatives bearing a C5'-C6' double bond produced a single (5'-bromo)vinyl SAH analogue Andrei, D.; Wnuk, S. F. Org. Lett. 2006, 8, 5093.
- 11. (a) Although Pd-catalyzed cross-coupling reactions are powerful methods for the formation of new carboncarbon bonds,^{11b} monocross-coupling reactions of 1,1dihalovinyl electrophiles with $C_{sp}2$ and C_{sp} nucleophiles are less common¹² and monocouplings between 1,1dihalovinyl electrophiles and $C_{sp}3$ nucleophiles are scarce.¹³; (b) *Metal-Catalyzed Cross-Coupling Reactions*; de Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004.
- 12. Negishi, E.-I.; Hu, Q.; Huang, Z.; Qian, M.; Wang, G. Aldrichim. Acta 2005, 38, 71, and references cited therein.
- For successful Pd-catalyzed monoalkylation of vinyl dihalides via trans-selective monobutylation of 1,1-dichloro-2-phenylethene with *n*-C₄H₉ZnCl in 81% yield see (a) Minato, A.; Suzuki, K.; Tamao, K. J. Am. Chem. Soc. 1987, 109, 1257; For studies on differentiation of two chlorine atoms in stepwise double alkylation reactions of 1,1-dichloroalkenes see (b) Tan, Z.; Negishi, E.-i. Angew. Chem. Int. Ed. 2006, 45, 762; For Suzuki-Miyaura protocol to the selective monocoupling of 1,1-dichloroalk-

enes with 9-alkyl-9-BBN see (c) Liron, F.; Fosse, C.; Pernolet, A.; Roulland, E. J. Org. Chem. 2007, 72, 2220.

- (a) Corey, E. J.; Fuchs, P. L. *Tetrahedron Lett.* **1972**, *36*, 3769; (b) Tronchet, J. M. J.; Bonenfant, A. P.; Perret, F.; Gonzalez, A.; Zumwald, J. B.; Martinez, E. M.; Baehler, B. *Helv. Chim. Acta* **1980**, *63*, 1181.
- Robins, M. J.; Wnuk, S. F.; Yang, X.; Yuan, C.-S.; Borchardt, R. T.; Balzarini, J.; De Clercq, E. J. Med. Chem. 1998, 41, 3857.
- Pd-catalyzed Negishi monoalkylation of 1-fluoro-1-(iodo, or bromo, or chloro)alkenes with alkylzincs give stereoselective access to the internal fluoroalkenes Andrei, D.; Wnuk, S. F. J. Org. Chem. 2006, 71, 405.
- For Pd-catalyzed couplings of 1-fluoro-1-haloalkenes with C_{sp}2 and C_{sp} nucleophiles see (a) Chen, C.; Wilcoxen, K.; Huang, C. Q.; Strack, N.; McCarthy, J. R. J. Fluorine Chem. 2000, 101, 285; (b) Xu, J.; Burton, D. J. Tetrahedron Lett. 2002, 43, 2877; (c) Xin, Z.; Burton, D. J. J. Fluorine Chem. 2001, 112, 317.
- (a) McCarthy, J. R.; Huber, E. W.; Le, T.-B.; Laskovics, M.; Matthews, D. P. *Tetrahedron* **1996**, *52*, 45; (b) McCarthy, J. R.; Matthews, D. P.; Stemerick, D. M.; Bey, P.; Lippert, B. J.; Snyder, R. D.; Sunkara, P. S. *J. Am. Chem. Soc.* **1991**, *113*, 7439.
- For other examples of synthetic sequences involving introduction of alkenes substituted with F/SO₂Ph, F/SnBu₃, or F/H into amino acids or nucleoside frames see (a) Berkowitz, D. B.; De la Salud-Bea, R.; Jahng, W.-J. Org. Lett. 2004, 6, 1821; (b) Karukurichi, K. R.; De la Salud-Bea, R.; Jahng, W.-J.; Berkowitz, D. B. J. Am. Chem. Soc. 2007, 129, 258; (c) Pan, Y.; Calvert, K.; Silverman, R. B. Bioorg. Med. Chem. 2004, 12, 5719; (d) Shen, Y. J. Organomet. Chem. 2006, 691, 1452; (e) Rapp, M.; Haubrich, T. A.; Perrault, J.; Mackey, Z. B.; McKerrow, J. H.; Chiang, P. K.; Wnuk, S. F. J. Med. Chem. 2006, 49, 2096.
- (a) Appel, R. B. B. Synth. Commun. 1995, 25, 3583; (b) Wnuk, S. F.; Bergolla, L. A.; Garcia, P. I., Jr. J. Org. Chem. 2002, 67, 3065; (c) Wnuk, S. F.; Garcia, P. I., Jr.; Wang, Z. Org. Lett. 2004, 6, 2047.
- 21. Wnuk, S. F.; Lalama, J.; Robert, J.; Garmendia, C. A. *Nucleosides Nucleotides Nucleic Acids* **2007**, *26*, 1051.
- Robins, M. J.; Wilson, J. S.; Hansske, F. J. Am. Chem. Soc. 1983, 105, 4059.
- 23. Ellman, G. L. Arch. Biochem. Biophys. 1959, 82, 70.