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SPARSE DISTRIBUTION OF LATTICE POINTS IN ANNULAR

REGIONS

YANQIU GUO AND MICHAEL ILYIN

Abstract. This paper is inspired by Richards’ work on large gaps between sums of two
squares [10]. It is shown in [10] that there exist arbitrarily large values of λ and µ,
where µ ≥ C log λ, such that intervals [λ, λ+ µ] do not contain any sums of two squares.
Geometrically, these gaps between sums of two squares correspond to annuli in R2 that
do not contain any integer lattice points. A major objective of this paper is to investigate
the sparse distribution of integer lattice points within annular regions in R2. Specifically,
we establish the existence of annuli {x ∈ R2 : λ ≤ |x|2 ≤ λ + κ} with arbitrarily large
λ and κ ≥ Cλs for 0 < s < 1

4
, satisfying that any two integer lattice points within any

one of these annuli must be sufficiently far apart. This result is sharp, as such a property
ceases to hold at and beyond the threshold s = 1

4
. Furthermore, we extend our analysis

to include the sparse distribution of lattice points in spherical shells in R3.

1. Introduction

This article is inspired by Richards’ paper on large gaps between integers that can be
expressed as sums of two squares [10]. It is proved in [10] that large gaps between sums of
two squares increase at least logarithmically as an asymptotic rate. More precisely, let s1,
s2, · · · be the sequence, arranged in increasing order, of sums of two squares x2 + y2, then

lim sup
n→∞

sn+1 − sn
log sn

≥ C > 0. (1.1)

In [10], C = 1
4 ; but this constant has been improved to C ≈ 0.87 in [4] by Dietmann et al.

The logarithmic-type estimate (1.1), established by Richards, represents an improvement
over a result by Erdös [5].

Note that, formula (1.1) can be interpreted as stating that there exist arbitrarily large
values of n for which sn+1 − sn ≥ α log sn, where α > 0. In other words, the lower bound
of large gaps between sums of two squares increases logarithmically. Geometrically, these
gaps between sums of two squares correspond to annular regions in R2 that contain no
integer lattice points. Therefore, Richards’ result [10] can be restated as follows: there exist
arbitrarily large values of λ and µ, where µ ≥ α log λ, such that intervals [λ, λ + µ] do
not contain sums of two squares, meaning that there are no integer lattice points in annuli
{x ∈ R2 : λ ≤ |x|2 ≤ λ+ µ}.
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On the other hand, there has been research in the literature regarding the upper bound of
large gaps between sums of squares. Bambah and Chowla [2] proved that if β > 2

√
2, then

for all large integers k, there are integers u and v such that k ≤ u2 + v2 < k + βk
1
4 . This

implies that gaps between sums of two squares have an upper bound of polynomial growth

rate. In particular, sn+1 − sn ≤ βs
1
4
n for sufficiently large n, where {sn} is the sequence

of sum of two squares arranged in increasing order. Also, Shiu [11] provided a very short
proof of Bambah-Chowla theorem.

By combining the results from [2] and [10], it can be concluded that large gaps between
sums of two squares have both lower and upper bounds. Specifically, there exist arbitrarily
large n for which:

α log sn ≤ sn+1 − sn ≤ βs
1
4
n , (1.2)

for some positive constants α and β.
Geometrically, gaps between sums of two squares correspond to annuli in R2 that contain

no integer lattice points, and the size of the gap is related to the thickness of the annulus.
Motivated by this geometric perspective on gaps between sums of two squares, our study fo-
cuses on the sparse distribution of integer lattice points within annular regions. Specifically,
we aim to identify annuli in R2 where any two integer lattice points inside such an annulus
are sufficiently distant from each other. We anticipate that an annulus containing sparsely
distributed lattice points will have greater thickness than one with no lattice points. To
formalize this, we prove that, for any large distance d, there exist arbitrarily large λ and
κ ≥ Cλs, where 0 < s < 1

4 , satisfying the condition that any two integer lattice points be-

longing to the annulus {x ∈ R2 : λ ≤ |x|2 ≤ λ+ κ} must be separated by a distance greater
than d. It’s essential to note that the polynomial growth rate of the interval’s length, i.e.,
κ ≥ Cλs with 0 < s < 1

4 , is significantly larger than the logarithmic growth rate of the gaps
between sums of squares. Our result is sharp in the sense that such a property of sparse
lattice point distribution ceases to hold, at and beyond the threshold s = 1

4 .
We also consider three dimensions. There are no large gaps between sums of three

squares. Due to the representation of sums of three squares (as seen in, e.g., [6]), the gaps
between sums of three squares can only be 1, 2 or 3. Consequently, if [m, m + δ] does
not contain sums of three squares, then 0 < δ < 3. In other words, if a spherical shell
{x ∈ R3 : m ≤ |x|2 ≤ m + δ} does not contain any integer lattice points, then 0 < δ < 3.
This suggests that a spherical shell that contains no integer lattice points has small thickness.
However, in this paper, we show that a spherical shell containing sparsely distributed lattice
points can have a more substantial thickness. In particular, we establish that, for any large
distance d, there exist arbitrarily large m and h ≥ Cd

√
logm, satisfying the condition that

any two integer lattice points belonging to the spherical shell {x ∈ R3 : m ≤ |x|2 ≤ m+ h}
must be separated by a distance greater than d. Moreover, we prove that if h reaches the
order of h ∼ Cm1/8, then the property of sparse distribution of lattice points in spherical
shells ceases to hold.

Large gaps between sums of squares and the sparse distribution of integer lattice points
in annular regions have significant applications in the study of the long-term behavior of
dissipative dynamical systems. One example of a dissipative dynamical system, modeled
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by nonlinear partial differential equations, is the reaction-diffusion equation:

∂tu−∆u+ f(u) = 0, (1.3)

where f(u) is a nonlinear term, such as f(u) = u3. When studying this equation on a two-
dimensional periodic physical domain, the solution u can be represented as a Fourier series:
u(x, t) =

∑

k∈Z2 û(k, t)eik·x for x ∈ T2 = [0, 2π]2, t ≥ 0. In the Hilbert space L2(T2), the

Laplace operator −∆ has eigenfunctions {eik·x} with corresponding eigenvalues {k21 + k22},
where k = (k1, k2) ∈ Z2. It’s important to note that these eigenvalues {k21 + k22} are sums
of two squares.

In general, a PDE can be considered as a system of infinitely many ODEs with infinitely
many unknowns û(k, t), where k ∈ Z2. Some nonlinear dissipative PDEs can be reduced to
a system of finitely many ODEs as t → ∞. This type of finite-dimensional reduction often
relies on the existence of large gaps between the eigenvalues of the Laplacian. In fact, large
gaps between sums of two squares, as demonstrated in Richards’ result [10], can lead to
the finite-dimensional reduction for certain dissipative PDEs, such as the reaction-diffusion
equation (1.3) in a 2D periodic domain.

However, in some cases, large gaps between the eigenvalues of the Laplacian are not
available. For instance, if one considers the Laplacian operator acting on functions defined
in a 3D periodic domain, the eigenvalues are sums of three squares, which do not exhibit
large gaps. In such scenarios, the sparse distribution of integer lattice points in spherical
shells can be valuable in reducing a dissipative PDE to a finite-dimensional system at
large times. For example, an important work by Mallet-Paret and Sell [9] shows a finite-
dimensional simplification for 3D reaction-diffusion equations using the sparse distribution
of lattice points in spherical shells.

2. Statements of main results

Our first result is concerned with the sparse distribution of lattice points in annuli in R2.

Theorem 2.1. Assume 0 < s < 1
4 . Given that d ≥ 1 and C > 0. There exist arbitrarily

large λ ∈ R+ and κ ≥ Cλs, such that, any two lattice points k, ℓ ∈ Z2 that belong to the
annulus {x ∈ R2 : λ ≤ |x|2 ≤ λ+ κ} must satisfy |k − ℓ| > d.

Remark 2.2. The annulus {x ∈ R2 : λ ≤ |x|2 ≤ λ+κ} described in the theorem may contain
either no lattice points, only one lattice point, or multiple lattice points. However, when
there are multiple lattice points within such an annulus, it is ensured that the distance
between any two lattice points is sufficiently large.

The following result shows the optimality of Theorem 2.1.

Proposition 2.3. Let α > 4
√
2. For any sufficiently large λ ∈ R+, there exist two integer

lattice points with a distance of 1, belonging to the annulus {x ∈ R2 : λ ≤ |x|2 ≤ λ+αλ1/4}.
Remark 2.4. In Theorem 2.1, the value κ reflects the “width” of the annulus where lattice
points are sparsely distributed, with

√
λ being the inner radius of the annulus. These

parameters are related by the inequality κ ≥ Cλs for 0 < s < 1
4 . Theorem 2.1 is sharp

because, if s reaches the threshold power of 1
4 , then the property of sparse distribution of
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lattice points in annuli ceases to hold. It can be seen from Proposition 2.3 that for any
sufficiently large λ, an annulus {x ∈ R2 : λ ≤ |x|2 ≤ λ + αλ1/4}, with α > 4

√
2, must

contain at least two integer lattice points separated by a small distance of 1. Furthermore,
it is important to notice that the power 1/4 also appears in a classical result by Bambah
and Chowla [2], regarding the upper bound of large gaps between sums of two squares.
It fact, Bambah and Chowla’s result can be stated geometrically as follows: any annular
region {x ∈ R2 : λ ≤ |x|2 ≤ λ+ βλ1/4}, where β > 2

√
2, must contain at least one integer

lattice point, for any large λ. By comparison, in Bambah and Chowla’s result, an annulus
contains at least one lattice point, whereas, in Proposition 2.3, an annulus contains at least
two lattice points separated by a distance of 1.

Our next result is about the sparse distribution of lattice points in spherical shells in R3.

Theorem 2.5. Let d ≥ 1. There exist arbitrarily large m ∈ R+ and h ≥ Cd

√
logm for

some constant Cd depending only on d, such that, any two lattice points k, ℓ ∈ Z3 that belong
to the spherical shell {x ∈ R3 : m ≤ |x|2 ≤ m+ h} must satisfy |k − ℓ| > d.

The next result complements Theorem 2.5. It provides a sufficient condition under which
the sparse distribution of lattice points in spherical shells does not occur.

Proposition 2.6. Let C > 4 4
√
8. For any sufficiently large m ∈ R+, there exist two integer

lattice points with a distance of 1, belonging to the spherical shell {x ∈ R3 : m ≤ |x|2 ≤
m+ Cm1/8}.
Remark 2.7.

(i) In Theorem 2.5, the value h exhibits the “thickness” of the spherical shell where the
lattice points are sparsely distributed. Theorem 2.5 states that h has a lower bound
Cd

√
logm. On the other hand, Proposition 2.6 provides that h has an upper bound

Cm1/8 with C > 4 4
√
8. At and beyond this threshold, spherical shells no longer contain

sparsely distributed lattice points. An open problem is to find an optimal asymptotic
estimate for h, similar to what we have obtained for the 2D case. It is also worth
mentioning that the upper and lower bounds of h, namely, Cd

√
logm ≤ h < Cm1/8,

align with the upper and lower bounds of large gaps between sums of squares specified
in (1.2).

(ii) Because the gaps between sums of three squares are at most 3, there exists at least
one integer lattice point belonging to the spherical shell {x ∈ R3 : m ≤ |x|2 ≤ m+ 3}
for any real number m ≥ 0. This fact complements Proposition 2.6.

3. Proof of Theorem 2.1 and Proposition 2.3

3.1. Proof of Theorem 2.1. We provide a proof of Theorem 2.1, which asserts the sparse
distribution of lattice points in annuli in R2. Before presenting the proof, we introduce a
notation for asymptotic equivalence: given functions f(x) and g(x), we denote

f(x) ∼ g(x) to mean lim
x→∞

f(x)

g(x)
= 1. (3.1)
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Proof. We draw ideas from [9].
Assume the distance d ≥ 1. Also, we fix an arbitrary constant C > 0.
Consider the family of disjoint annuli in R2:

Nµ
m = {x ∈ R2 : µ+mκ < |x|2 ≤ µ+ (m+ 1)κ},

where m ∈ Z with 0 ≤ m ≤ J = ⌊µ1/2⌋. We set

κ = Cµs, where 0 < s <
1

4
.

We aim to show that, for sufficiently large µ, there exists m ∈ [0, J ] such that Nµ
m does

not contain a pair of lattice points with a distance less than or equal to d.
The union of these annuli is denoted as

Nµ =
J
⋃

m=0

Nµ
m = {x ∈ R2 : µ < |x|2 ≤ µ+ (J + 1)κ}.

Notice that Nµ is also an annulus.
We will estimate the thickness of the annulus Nµ:

thickness ofNµ =
√

µ+ (J + 1)κ−√
µ. (3.2)

Using J = ⌊µ1/2⌋ and κ = Cµs for 0 < s < 1
4 , a simple calculation shows that, as µ → ∞,

thickness ofNµ ∼ 1

2
Cµs, namely, lim

µ→∞
thickness ofNµ

1
2Cµs

= 1. (3.3)

Suppose there exist lattice points k, ℓ ∈ Z2 such that

k, ℓ ∈ Nµ
m with 0 < |k − ℓ| ≤ d,

for some m ∈ [0, J ]. Let j = ℓ− k, then 0 < |j| ≤ d. Since

|ℓ|2 = |k|2 + 2k · j + |j|2,
then

|k · j| ≤ 1

2

∣

∣|k|2 − |ℓ|2
∣

∣+
1

2
|j|2 <

1

2
κ+

1

2
d2,

because k, ℓ ∈ Nµ
m. Since k and ℓ are interchangeable, we have also |ℓ · j| < 1

2κ + 1
2d

2.
Therefore, the lattice points k and ℓ belong to the strip

Sµ
j = {x ∈ R2 : |x · j| < 1

2
κ+

1

2
d2}, (3.4)

for some j ∈ Z2 satisfying 0 < |j| ≤ d. The strip Sj is symmetric about the origin, and also
symmetric about the straight line x · j = 0.

We denote Sµ as the finite union:

Sµ =
⋃

j∈Z2

0<|j|≤d

Sµ
j .
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Note that the set Sµ contains all pairs of lattice points (k, ℓ) with distance less than or
equal to d belonging to an annulus Nµ

m for some m ∈ [0, J ]. In other words,

Sµ ⊃
{

k, ℓ ∈ Z2 : 0 < |k − ℓ| ≤ d with k, ℓ ∈ Nµ
m for some m ∈ [0, J ]

}

. (3.5)

We remark that constructing set Sµ is crucial for this proof.
Using (3.4), we observe that, for sufficiently large µ,

the width of Sµ
j ≤ 2κ = 2Cµs. (3.6)

Also, as µ → ∞, asymptotically,

meas(Sµ
j ∩Nµ) ∼ 2(width of Sµ

j )(thickness of N
µ). (3.7)

Combining (3.3), (3.6) and (3.7), it follows that, for sufficiently large µ,

meas(Sµ
j ∩Nµ) ≤ 3C2µ2s. (3.8)

Notice that the region Sµ
j ∩ Nµ is the intersection of an annulus and a strip symmetric

about the origin. As µ → ∞, both the thickness of the annulus and the width of the strip
approach infinity. Therefore, as µ → ∞, the number of integer lattice points in the region
Sµ
j ∩Nµ is asymptotically equal to its area:

card(Sµ
j ∩Nµ ∩ Z2) ∼ meas(Sµ

j ∩Nµ). (3.9)

By (3.8) and (3.9), for sufficiently large µ,

card(Sµ
j ∩Nµ ∩ Z2) ≤ 4C2µ2s. (3.10)

Moreover, since Sµ =
⋃

j∈Z2

0<|j|≤d

Sµ
j is a finite union, then by (3.10), for sufficiently large µ,

card(Sµ ∩Nµ ∩ Z2) ≤ 16d2C2µ2s. (3.11)

If each of the disjoint sets Sµ∩Nµ
m∩Z2 is not empty for everym ∈ [0, J ], where J = ⌊µ1/2⌋,

then card(Sµ ∩ Nµ ∩ Z2) will grow at least as fast as µ1/2 as µ → ∞, which contradicts
(3.11) because 0 < 2s < 1/2. Therefore, for sufficiently large µ, there exists m0 ∈ [0, J ]
such that the set Sµ ∩Nµ

m0 ∩ Z2 is empty. Then, we conclude from (3.5) that the annulus
Nµ

m0 does not contain two lattice points with a distance less than or equal to d. Denote
λ = µ+m0κ, then

Nµ
m0

= {x ∈ R2 : µ+m0κ < |x|2 ≤ µ+ (m0 + 1)κ}
= {x ∈ R2 : λ < |x|2 ≤ λ+ κ}. (3.12)

Notice that limµ→∞ λ
µ = 1 and κ = Cµs, and therefore, limλ→∞

Cλs

κ = 1, where 0 < s < 1/4.

Hence, we have κ ≥ 1
2Cλs, for sufficiently large λ. Also, the half open annulus given in

(3.12) can be easily adjusted to a closed annulus. �
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3.2. Proof of Proposition 2.3.

Proof. Let α > 4
√
2. Consider an integer m = ⌊λ1/2⌋. For any sufficiently large λ, we claim

that
√

λ+ αλ1/4 −m2 −
√
λ−m2 > 2. Indeed,

√

λ+ αλ1/4 −m2 −
√

λ−m2 =
αλ1/4

√

λ+ αλ1/4 −m2 +
√
λ−m2

≥ αλ1/4

√

λ+ αλ1/4 − (λ1/2 − 1)2 +
√

λ− (λ1/2 − 1)2

=
αλ1/4

√

αλ1/4 + 2λ1/2 − 1 +
√

2λ1/2 − 1
∼ α

2
√
2
> 2, as λ → ∞. (3.13)

Thus, there exists a positive integer n such that
√

λ−m2 ≤ n < n+ 1 ≤
√

λ+ αλ1/4 −m2. (3.14)

It follows that the integer lattice points (m,n) and (m,n + 1) both belong to the annulus
{x ∈ R2 : λ ≤ |x|2 ≤ λ+ αλ1/4}. �

4. Proof of Theorem 2.5 and Proposition 2.6

This section is devoted to the proof of Theorem 2.5. It is about the sparse distribution
of lattice points in spherical shells in R3. Before presenting the proof, we introduce some
concepts in number theory and state some lemmas.

4.1. Definitions and lemmas.

Let us recall the definitions of Legendre’s symbol and Kronecker’s symbol. One may refer
to classic books [7, 8]. The notation p ∤ m means that p does not divide m.

Definition 4.1. Given an odd prime p > 0 and an integer m with p ∤ m. The integer m is
called a quadratic residue mod p if m ≡ k2 (mod p) for some k ∈ Z. If the equation m ≡ k2

(mod p) has no solution k, then m is called a quadratic non-residue mod p. The Legendre’s
symbol is defined as

(

m

p

)

=

{

1 if m is a quadratic residue mod p ,

−1 if m is a quadratic non-residue mod p .
(4.1)

In the theory of quadratic forms, the discriminant d = b2 − 4ac is considered, which
implies d = 0 or 1 (mod 4). Under this scenario, we define the Kronecker’s symbol as
follows.

Definition 4.2. Assume d ≡ 0 or 1 (mod 4) and d 6= 0. Let n > 0 with the prime

factorization n =
∏k

j=1 pj . Assume gcd(d, n) = 1. The Kronecker’s symbol
(

d
n

)

is defined
as

(

d

n

)

=

k
∏

j=1

(

d

pj

)

, (4.2)
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where
(

d
p

)

is the Legendre’s symbol for odd prime p with p ∤ d, and

(

d

2

)

=

{

1 if d ≡ 1 (mod 8),

−1 if d ≡ 5 (mod 8).
(4.3)

The Kronecker’s symbol
(

d
n

)

can be extended to negative values of n by using
(

d
−m

)

=
(

d
−1

)

(

d
m

)

with
(

d
−1

)

= 1 when d > 0;
(

d
−1

)

= −1 when d < 0.

Kronecker’s symbol has the property
(

d

n1

)

=

(

d

n2

)

, if n1 ≡ n2 (mod d) and d ≡ 0 or 1 (mod 4), (4.4)

provided d 6= 0, nj 6= 0, and gcd (d, nj) = 1, for j = 1, 2.

Lemma 4.3 and Lemma 4.4 have been proved by Mallet-Paret and Sell in [9].

Lemma 4.3. (Mallet-Paret and Sell [9]) Let D ⊂ Z be a finite nonempty set of integers
d ≡ 0 or 1 (mod 4), with the property that

∏

d∈A d is not a perfect square whenever A ⊂ D
has odd cardinality. Then there exists an integer r 6= 0 such that

gcd(d, r) = 1 and

(

d

r

)

= −1

for each d ∈ D.

Before stating the next lemma, we introduce some notations. Let p > 0 be a prime. We
use notations p |e n and p |o n to represent that p divides n an even or odd number of times,
respectively. More precisely, we write

p |e n
to mean either n = pαm where α is even and p ∤ m, or else n = 0. Note that α = 0 is
permitted, so p |e n holds if p ∤ n. Similarly, we write

p |o n
to mean n = pαm, where α is odd and p ∤ m.

Lemma 4.4. (Mallet-Paret and Sell [9]) Consider a quadratic form T (k1, k2) = ak21 +
bk1k2 + ck22 with integer coefficients and discriminant d = b2 − 4ac, and let p be a prime

satisfying p ∤ d and
(

d
p

)

= −1. Then

p |e T (k1, k2)
for any k1, k2 ∈ Z.

Remark 4.5. In [9], Lemma 4.4 was proved for odd prime p. The same conclusion holds
for the case p = 2, and we briefly show the proof as follows. Let p = 2. Since

(

d
2

)

= −1,

then d ≡ 5 (mod 8) by (4.3). Then, d2 ≡ 9 (mod 16). Since 2 ∤ d and d = b2 − 4ac, we
obtain that b is odd. Then, a and c must both be odd. In fact, if either a or c is even,
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then d2 = (b2 − 4ac)2 ≡ 1 (mod 16), contradicting that d2 ≡ 9 (mod 16). Therefore, we
conclude that all of a, b, c are odd, namely, coefficients of quadratic form T (k1, k2) are all
odd. Therefore, if 2 divides T (k1, k2), then 2 divides both k1 and k2, and thus 4 divides
T (k1, k2). Repeatedly factoring out 4 gives that 2 |e T (k1, k2).

The following lemma is motivated by the works in [10, 9]. It’s essential to emphasize
that we present a logarithmic-type estimate for the length of an interval, satisfying the
condition that a family of quadratic forms does not take values within the interval. It is a
generalization of Richards’ result in [10] to a family of quadratic forms. This logarithmic-
type estimate plays a critical role in justifying Theorem 2.5, which concerns the thickness
of spherical shells containing sparsely distributed lattice points.

Lemma 4.6. Let D ⊂ Z be a finite nonempty set of integers d ≡ 0 or 1 (mod 4), with the
property that

∏

d∈A d is not a perfect square whenever A ⊂ D has odd cardinality. There
exist arbitrarily large m and h ≥ C logm for some constant C > 0 that depends solely on
D, satisfying: if T is any quadratic form

T (k1, k2) = ak21 + bk1k2 + ck22 , a, b, c ∈ Z,

with discriminant d = b2 − 4ac ∈ D, then

T (k1, k2) 6∈ [m,m+ h] for each k1, k2 ∈ Z.

Remark 4.7. If D contains only negative integers, then obviously
∏

d∈A d is not a perfect
square whenever A ⊂ D has odd cardinality.

Proof. The argument adopts ideas from [10, 9]. Thanks to Lemma 4.3, there exists r 6= 0
such that

gcd (d, r) = 1 and

(

d

r

)

= −1, for each d ∈ D. (4.5)

Define

δ := lcm {|d| : d ∈ D}. (4.6)

Note, (4.5) and (4.6) imply that gcd (δ, r) = 1. Let h > 0 and set

A := sup
0≤j≤h

|r + δj|. (4.7)

Define P be the product

P :=
∏

p1+α (4.8)

where the product is taken over all primes p with

p ∤ δ and pα ≤ A < p1+α for some integer α > 0. (4.9)

Because of (4.8) and (4.9), we have gcd(P, δ) = 1. Then, by Bezout’s identity, there exists
an integer m ∈ [1, P ] satisfying

δm ≡ r (mod P ). (4.10)

We argue that h ≥ C logm, if h is sufficiently large. Indeed, the number of primes p ≤ A
is asymptotic to A

logA . Therefore, for A sufficiently large, the number of primes p ≤ A is

less than 2A
logA .
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By (4.8) and (4.9), we obtain that

P =
∏

p1+α ≤
∏

p2α ≤
∏

A2 ≤ A
4A

logA = e4A. (4.11)

Due to (4.7), we have, for sufficiently large h,

A ≤ |r|+ δh ≤ 2δh. (4.12)

Because of (4.11) and (4.12) together with the fact m ≤ P , we conclude that, for suffi-
ciently large h,

m ≤ e8δh. (4.13)

Inequality (4.13) can be written as h ≥ 1
8δ logm, for sufficiently large h.

We claim that T (k1, k2) 6∈ [m,m+ h] for any k1, k2 ∈ Z.
Indeed, thanks to Lemma 4.4, it is sufficient to show that whenever 0 ≤ j ≤ h and

d = b2 − 4ac ∈ D, there exists a prime number p satisfying

p ∤ d,

(

d

p

)

= −1, and p |o (m+ j). (4.14)

We take an arbitrary integer j ∈ [0, h]. Note, r + δj ≡ r (mod d) due to (4.6). Thus, we
obtain from (4.4) and (4.5) that

(

d

r + δj

)

=

(

d

r

)

= −1. (4.15)

Since gcd(d, r) = 1 and d divides δ, we see that gcd(d, r + δj) = 1.

We write the prime factorization for r+ δj =
∏

pa and use (4.2) to obtain that
(

d
r+δj

)

=
∏

(

d
p

)a
= −1. It follows that there exists a prime p ∤ d with

(

d
p

)

= −1 satisfying

p |o (r + δj), (4.16)

namely, p divides r + δj an odd number of times.
Since gcd (δ, r) = 1 and using (4.16), we have p ∤ δ. Then, because of (4.7), (4.8) and

(4.9), we see that p, as a factor of P , occurs with a greater multiplicity than as a factor of
r + δj. Moreover, by (4.10),

δ(m+ j) ≡ r + δj (mod P ).

As a result, p divides δ(m + j) and r + δj the same number of times. Then, due to (4.16)
and p ∤ δ, it follows that p |o (m+ j) as claimed in (4.14). �

Proposition 4.8. Consider a quadratic function T (k1, k2) = ak21+bk1k2+ck22+sk1+tk2+u
for k1, k2 ∈ Z, where coefficients a, b, c, s, t, u ∈ Q such that b2 − 4ac 6= 0. Then there exist
ξ1, ξ2, ξ3 ∈ Q such that T (x1 + ξ1, x2 + ξ2)− ξ3 = ax21 + bx1x2 + cx22 for all x1, x2 ∈ Q.

Proof. Let us explicitly find ξ1, ξ2, ξ3 ∈ Q such that the following equality holds for all
x1, x2 ∈ Q. Consider

T (x1 + ξ1, x2 + ξ2)− ξ3 = ax21 + bx1x2 + cx22 + x1(2aξ1 + bξ2 + s) + x2(2cξ2 + bξ1 + t)

+ (aξ21 + bξ1ξ2 + cξ22 + sξ1 + tξ2 + u− ξ3) = ax21 + bx1x2 + cx22.
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Therefore,










2aξ1 + bξ2 + s = 0

2cξ2 + bξ1 + t = 0

aξ21 + bξ1ξ2 + cξ22 + sξ1 + tξ2 + u− ξ3 = 0 .

Hence,
(

ξ1
ξ2

)

=

(

2a b
b 2c

)−1(−s
−t

)

=
1

4ac− b2

(

2c −b
−b 2a

)(

−s
−t

)

=
1

4ac− b2

(

−2cs + bt
bs− 2at

)

.

It follows that

ξ1 =
bt− 2cs

4ac− b2
, ξ2 =

bs− 2at

4ac− b2
. (4.17)

With values of ξ1 and ξ2, we can find the value of ξ3:

ξ3 = aξ21 + bξ1ξ2 + cξ22 + sξ1 + tξ2 + u. (4.18)

�

4.2. Proof of Theorem 2.5.

With the preparations above, now we are ready to prove Theorem 2.5.

Proof. We adopt ideas from [9]. Let us fix a distance d ≥ 1. Consider a spherical shell in
R3:

N = {x ∈ R3 : m ≤ |x|2 ≤ m+ h}.
Suppose there exist lattice points k, ℓ ∈ Z3 such that

k, ℓ ∈ N with 0 < |k − ℓ| ≤ d. (4.19)

Let j = ℓ− k, then 0 < |j| ≤ d. Thus, |ℓ|2 = |k|2 + |j|2 + 2k · j. It follows that

|k · j| ≤ 1

2

∣

∣|k|2 − |ℓ|2
∣

∣+
1

2
|j|2 ≤ 1

2
h+

1

2
d2,

because k, ℓ ∈ N .
We denote n = k · j. Then n ∈ Z satisfying

|n| = |k · j| ≤ 1

2
h+

1

2
d2. (4.20)

Since j = (j1, j2, j3) 6= 0, without loss of generality, we assume j3 6= 0. For k = (k1, k2, k3),
solving n = k · j = k1j1 + k2j2 + k3j3, we obtain

k3 = j−1
3 (n − k1j1 − k2j2).

Thus,

|k|2 = k21 + k22 + j−2
3 (k1j1 + k2j2 − n)2

= j−2
3

[

(j21 + j23)k
2
1 + (2j1j2)k1k2 + (j22 + j23)k

2
2 − 2nj1k1 − 2nj2k2 + n2)

]

=: Tj,n(k1, k2), (4.21)
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where j ∈ Z3, n ∈ Z such that 0 < |j| ≤ d and |n| ≤ 1
2h+ 1

2d
2. Since k ∈ N , we know that

Tj,n(k1, k2) ∈ [m,m+ h]. (4.22)

We remark that the function Tj,n defined in (4.21) is a function of the form Tj,n(k1, k2) =
ak21 + bk1k2 + ck22 + sk1 + tk2 + u where coefficients a, b, c, s, t, u ∈ Q and b2 − 4ac < 0.
Thanks to Proposition 4.8, there exist rational numbers ξ1, ξ2 and ξ3 such that

Tj,n(x1 + ξ1, x2 + ξ2)− ξ3 = j−2
3 (j21 + j23)x

2
1 + (2j−2

3 j1j2)x1x2 + j−2
3 (j22 + j23)x

2
2, (4.23)

for all rational numbers x1 and x2. Moreover, due to (4.17) and (4.18) and straightforward
calculation, we obtain

ξ1 =
nj1
|j|2 , ξ2 =

nj2
|j|2 , ξ3 =

n2

|j|2 . (4.24)

Without loss of generality, we assume d is an integer. We set

β = lcm{12, 22, 33, · · · , d2}. (4.25)

Consider arguments of the form x1 =
i1
β and x2 =

i2
β . Then, by (4.23), we obtain

[

Tj,n

( i1
β

+ ξ1,
i2
β

+ ξ2

)

− ξ3

]

β3

= βj−2
3 (j21 + j23)i

2
1 + (2βj−2

3 j1j2)i1i2 + βj−2
3 (j22 + j23)i

2
2

=: T̃j(i1, i2). (4.26)

Because of (4.25), i1
β + ξ1 and i2

β + ξ2 can take any integer values by adjusting i1 and i2.

Also due to (4.25) and (4.26), T̃j(i1, i2) is a quadratic form with integer coefficients and
negative discriminant. Note, j belongs to a finite set. Thanks to Lemma 4.6 and Remark
4.7, there exist arbitrary large m0 and h0 ≥ C logm0 such that

T̃j(i1, i2) 6∈ [m0, m0 + h0], for any i1, i2 ∈ Z, and for any j ∈ Z3 with 0 < |j| ≤ d. (4.27)

For sufficiently large h0, we can find h > 0 satisfying

h0 =

(

h+
1

4
(h+ d2)2

)

β3. (4.28)

Then, we set

m =
m0

β3
+

1

4
(h+ d2)2. (4.29)

Due to (4.24) and (4.20), we have

ξ3 =
n2

|j|2 ≤ 1

4
(h+ d2)2. (4.30)

Using (4.26)-(4.30), we obtain

Tj,n

( i1
β

+ ξ1,
i2
β

+ ξ2

)

6∈ [m− 1

4
(h+ d2)2 + ξ3, m+ h+ ξ3] ⊃ [m,m+ h], (4.31)

for any i1, i2 ∈ Z. In particular, there exist i1, i2 ∈ Z such that k1 =
i1
β +ξ1 and k2 =

i2
β +ξ2,

and thus (4.31) shows that Tj,n(k1, k2) 6∈ [m,m + h], which contradicts (4.22). Therefore,



SPARSE DISTRIBUTION OF LATTICE POINTS IN ANNULAR REGIONS 13

for these pairs of m and h, (4.19) cannot happen. Thus, for any one of these pairs of
m and h, if there exist two lattice points k, ℓ ∈ Z3 that belong to the spherical shell
{x ∈ R3 : m ≤ |x|2 ≤ m+ h}, then |k − ℓ| > d.

Recall that we fix d at the beginning. Then, due to (4.28) and (4.29), asymptotically,

h0 ∼
1

4
β3h2, m ∼ 1

β3
m0.

Thus, along with the fact that h0 ≥ C logm0, we conclude that

h ≥ C̃
√

logm,

for sufficiently large m, where the constant C̃ depends on d. �

4.3. Proof of Proposition 2.6.

Proof. Let C > 4 4
√
8. For any sufficiently large real number m > 0, it is easy to verify

that
√

m+ Cm1/8 − s−
√
m− s > 2, for any s ∈ N satisfying m− βm1/4 < s < m, where

2
√
2 < β < C2

16 . Therefore, there exists a positive integer n such that

√
m− s ≤ n < n+ 1 ≤

√

m+ Cm1/8 − s. (4.32)

By Bambah and Chowla [2], for any large m ∈ R, there exists s = k2 + l2, k, l ∈ Z, such
that m− βm1/4 < s < m, since β > 2

√
2. Consequently, the spherical shell {x ∈ R3 : m ≤

|x|2 ≤ m+ Cm1/8} contains lattice points (k, l, n) and (k, l, n + 1). �

4.4. Remarks. Theorem 2.5 shows the existence of spherical shells {x ∈ R3 : m ≤ |x|2 ≤
m+h} in which lattice points are sparsely distributed. Here, m can be arbitrarily large, and
h ≥ C

√
logm. The optimality of the order

√
logm is unknown, but it is closely connected

to the logarithmic size of large gaps between sums of two squares due to Richards [10]. The
proof of Theorem 2.5 relies on Lemma 4.6, which extends Richards’ result to a family of
quadratic forms. An important element of the proof is the prime number theorem.

Suppose Theorem 2.5 holds true for a higher order h = h(m) with h(m)√
logm

→ ∞ as

m → ∞. Let’s take d = 1. If m is sufficiently large, then
√
m+ h− s −

√
m− s > 2, for

any s ∈ N satisfying m − ch2 < s < m, where 0 < c < 1
16 . Thus, there exists a positive

integer n such that
√
m− s ≤ n < n + 1 ≤

√
m+ h− s. If s = k2 + l2, then the spherical

shell {x ∈ R3 : m ≤ |x|2 ≤ m+h} contains lattice points (k, l, n) and (k, l, n+1). However,
according to our assumption, there exist arbitrarily large values of m such that any two
lattice points in the spherical shell {x ∈ R3 : m ≤ |x|2 ≤ m + h} must be separated by a
distance strictly greater than d = 1. Therefore, for these values of m, any s ∈ (m− ch2,m)
cannot be expressed as a sum of two squares. This would improve the logarithmic size of

large gaps between sums of squares, since we assume h(m)√
logm

→ ∞ as m → ∞. However, as

of now, there have been no advancements that surpass the logarithmic order discovered by
Richards in [10].
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5. Discussion

In this section, we discuss some related problems and future work.
The original motivation of this project was to find an optimal estimate for large gaps

between sums of two squares, and this remains its long-term goal. It is an important open
problem whether one can improve the logarithmic growth rate of the lower bound for large
gaps between sums of squares presented in (1.2). Also, it is interesting to ask whether one
can reduce the polynomial growth rate (the power of 1/4) of the upper bound in (1.2).

We would like to draw some naive comparisons with a related problem: gaps between
primes. It is well-known that the number of primes less than x is approximately x

log x ,

whereas the number of sums of squares less than x behaves asymptotically as bx√
log x

, where

b is the Landau–Ramanujan constant. Therefore, there are fewer primes than sums of
squares in [0, x] for large x. Thus, on average, sums of squares are distributed more densely
than primes throughout the natural numbers. It is a classical result of Westzynthius [12]
that

lim sup
n→∞

pn+1 − pn
log pn

= ∞, (5.1)

where pn is the sequence of primes. By comparing (5.1) and (1.1), we see that large gaps
between primes might grow faster than large gaps between sums of squares asymptotically.
Also, it is worth mentioning that gaps between primes have an upper bound

pn+1 − pn ≤ pθn, (5.2)

with an estimate θ = 0.525, for sufficiently large n (see [1]). One can compare θ = 0.525 in
(5.2) with the exponent 1/4 in (1.2) concerning the upper bound of gaps between sums of
two squares. Furthermore, we would like to mention the twin prime conjecture regarding
small gaps between primes; however, small gaps between sums of squares are always 1,
which is trivial. All of the above observations show that, in general, sums of two squares
appear more frequently than primes within the set of positive integers. See [11] for more
discussion on this topic.

Regarding the sparse distribution of lattice points in annuli in R2, we have already
achieved an optimal asymptotic result concerning the width of these annuli in this paper.
However, in three dimensions, the optimality of our estimates remains unknown, making
it interesting to explore the possibility of refining the thickness of these spherical shells
provided in Theorem 2.5. This inquiry is closely related to the study of large gaps between
sums of squares. Furthermore, our proofs contain deep geometric perspectives that can be
explored further to generate other useful results. Most importantly, our findings on the
sparse distribution of lattice points in annuli have the potential for applications in simpli-
fying infinite-dimensional dissipative dynamical systems to finite-dimensional counterparts,
particularly in solving the inertial manifold problem for the Navier-Stokes equations. For
an example of such applications, please refer to [9].

Sums of squares are eigenvalues of the Laplacian on a periodic domain. Likewise, we
can consider gaps between eigenvalues of the Dirichlet Laplacian on a bounded domain in
Rn, or more generally, on an n-dimensional Riemannian manifold. In these cases, explicit
expressions of eigenvalues are usually not available. An important problem is to find sharp
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estimates for the upper and lower bounds of the size of the gaps between eigenvalues of the
Dirichlet Laplacian. Please refer to [3] for an estimate of the upper bound.
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