Solutions to Exam #2

1a) True. This follows from the power law and the differentiation rules \((cf)' = cf'\) and \((f + g)' = f' + g'\).

1b) False. You can’t evaluate the function (i.e. substitute in 2 for \(x\)) before differentiating.

1c) True. We have \(y' = \cos(x)\) and \(y'' = -\sin(x) = -y\).

1d) False. We compute \((\cos(g(x)))'\) by using the chain rule, not the product rule. The correct expression would be \(h'(x) = -\sin(g(x))g'(x)\).

1e) True. Just apply the chain rule.

1f) True. We compute \(y' = 1/x\) so the slope of the tangent line at \((a, \ln(a))\) is \(1/a\) and \(\lim_{a \to 0^+} 1/a = \infty\).

2a) \(\frac{d}{dx} (3x^5 - 2\sqrt{x} + 10^x) = 3(5)x^4 - 2\frac{1}{2\sqrt{x}} + \ln(10)10^x\)

2b) \[\frac{d}{dx} \left(\frac{\arcsin x}{x^2 + 4} \right) = \frac{1}{\sqrt{1-x^2}}(x^2 + 4) - 2x \arcsin(x)}{(x^2 + 4)^2}\]

2c) \[\frac{d}{dx} (e^{\cos x} \tan x) = e^{\cos(x)}(-\sin(x)) \tan(x) + e^{\cos(x)} \sec^2(x)\]

2d) \[\frac{d}{dx} (\ln(\sec(\arctan x))) = \frac{\sec(\arctan(x)) \tan(\arctan(x)) \frac{1}{1+x^2}}{\sec(\arctan(x))} \frac{1}{1+x^2} = \tan(\arctan(x)) \frac{1}{1+x^2} = \frac{x}{1+x^2}\]

2e) Take the logarithm of each side and simplify:

\[\ln(y) = \ln \left(\left(1 + x^2 \right)^{1/x} \right) = \frac{1}{x} \ln(1 + x^2)\]
We then differentiate both sides:
\[
\frac{dy}{dx} \ln(y) = \frac{d}{dx} \left(\frac{1}{x} \ln(1 + x^2) \right)
\]
\[
y' = \left(-\frac{1}{x^2} \right) \ln(1 + x^2) + \left(\frac{1}{x} \right) \frac{2x}{1 + x^2}
\]
Hence,
\[
y' = y \left(\left(-\frac{1}{x^2} \right) \ln(1 + x^2) + \left(\frac{1}{x} \right) \frac{2x}{1 + x^2} \right)
\]
\[
= (1 + x^2)^{1/x} \left(-\frac{\ln(1 + x^2)}{x^2} + \frac{2}{1 + x^2} \right)
\]

3) Let \(y \) be the altitude of the rocket above the launch pad (in kilometers). Let \(z \) be the distance from the rocket to the radar station. You should make a picture and mark these variables on your picture. Note that both \(y \) and \(z \) vary with time, whereas the horizontal distance between the launch pad and radar station is a constant (30 km). From Pythagorean theorem, \(z^2 = y^2 + (30)^2 \). Differentiate both sides of this equality with respect to \(t \):
\[
2z \frac{dz}{dt} = 2y \frac{dy}{dt}.
\]
When \(z = 50 \), we have \((50)^2 = y^2 + (30)^2\) so \(y = 40 \). Thus, if \(z = 50 \) and \(dz/dt = 60 \), we have
\[
2(50)(60) = 2(40) \frac{dy}{dt},
\]
so \(\frac{dy}{dt} = \frac{2(50)(60)}{2(30)} = \frac{3000}{40} = 75 \) kilometers per minute.

4a) We compute \(f'(x) = \frac{1}{4}x^{-3/4} \). Then \(f(x_0) = f(1) = (1)^{1/4} = 1 \) and \(f'(x_0) = f'(1) = \frac{1}{4}(1)^{-3/4} = \frac{1}{4} \). Hence, the linear approximation is
\[
x^{1/4} \approx 1 + \frac{1}{4}(x - 1).
\]

4b) Using the formula
\[
x^{1/4} \approx 1 + \frac{1}{4}(x - 1),
\]
we see that
\[
(.92)^{1/4} \approx 1 + \frac{1}{4}(0.92 - 1) = 1 + \frac{-0.08}{4} = 0.98.
\]

5) We differentiate implicitly:
\[
4(x^2 + y^2)(2x + 2yy') = 25(2x - 2yy').
\]
Now substitute in \(x = 3 \) and \(y = 1 \) into the preceding equation and get:

\[
4(3^2 + 1^2)(2(3) + 2(1)y') = 25(2(3) - 2(1)y')
\]
\[
4(10)(6 + 2y') = 25(6 - 2y')
\]
\[
240 + 80y' = 150 - 50y'
\]
\[
130y' = 150 - 240 = -90
\]
\[
y' = \frac{90}{130} = -\frac{9}{13}
\]

Thus, the slope of the line tangent to the curve at \((3, 1)\) is \(-9/13\) so the equation of the line is:

\[
y - 1 = -\frac{9}{13}(x - 3).
\]

6a) We compute:

\[
\frac{d}{dx} \cos(x) = \lim_{h \to 0} \frac{\cos(x + h) - \cos(x)}{h}
\]
\[
= \lim_{h \to 0} \frac{\cos(x) \cos(h) - \sin(x) \sin(h) - \cos(x)}{h}
\]
\[
= \lim_{h \to 0} \frac{\cos(x) \cos(h) - \cos(x)}{h} - \sin(x) \lim_{h \to 0} \frac{\sin(h)}{h}
\]
\[
= \cos(x) \lim_{h \to 0} \frac{\cos(h) - 1}{h} - \sin(x) \lim_{h \to 0} \frac{\sin(h)}{h}
\]
\[
= \cos(x)(0) - \sin(x)(1)
\]
\[
= -\sin(x).
\]

6b) We differentiate both sides of the identity \(\cos(\arccos(x)) = x \) and get

\[
\frac{d}{dx} (\cos(\arccos(x))) = \frac{d}{dx} x
\]
\[
- \sin(\arccos(x)) \frac{d}{dx} \arccos(x) = 1
\]

Thus,

\[
\frac{d}{dx} \arccos(x) = -\frac{1}{\sin(\arccos(x))}.
\]

We simplify \(\sin(\arccos(x)) \) by drawing a right triangle containing the angle \(\theta = \arccos(x) \). If the side adjacent to the angle \(\theta \) has length \(x \), then the hypotenuse must have length 1. The side opposite the angle \(\theta \) must then have length \(\sqrt{1 - x^2} \). Hence, \(\sin(\arccos(x)) = \sin(\theta) = \sqrt{1 - x^2}/1 \) and we have

\[
\frac{d}{dx} \arccos(x) = -\frac{1}{\sin(\arccos(x))} = -\frac{1}{\sqrt{1 - x^2}}.
\]
7) The chain rule tells us that

$$h'(x) = f'(g(x))g'(x).$$

We differentiate again and get:

$$h''(x) = \frac{d}{dx} (f'(g(x))g'(x))$$

$$= \left(\frac{d}{dx} (f'(g(x))) \right) g'(x) + f'(g(x)) \frac{d}{dx} g'(x) \quad \text{by the product rule}$$

$$= f''(g(x))g'(x)g'(x) + f'(g(x))g''(x).$$