Derivatives of Inverse Trigonometric Functions. Logarithmic Differentiation.

LECTURE: Definition of \(\arcsin(x) \), \(\arctan(x) \). Derivative of \(\arcsin(x) \).

1) Without using a calculator, compute:

 a) \(\arcsin(1/2) \)
 b) \(\arctan(1) \)
 c) \(\sin(\arcsin(1/5)) \)
 d) \(\arcsin(\sin(\pi/5)) \)
 e) \(\arctan(\tan(-3\pi/4)) \)
 f) \(\arcsin(\sin(3\pi/4)) \)

2) Compute the following derivatives:

 a) \(\frac{d}{dx}(x^3 \arcsin(3x)) \)
 b) \(\frac{d}{dx}\left(\frac{\sqrt{x}}{\arcsin(x)}\right) \)
 c) \(\frac{d}{dx}[\ln(\arcsin(e^x))] \)
 d) \(\frac{d}{dx}[\arcsin(\cos x)] \)

 The result of part d) might be surprising, but there is a reason for it. If you find it, it will also lead you to a simple proof for the derivative of \(\arccos x \)!

3) In this problem, you will compute \(\frac{d}{dx} \arctan(x) \)

 a) Using the chain rule, differentiate both sides of the equality \(\tan(\arctan(x)) = x \) and solve the resulting equation for \(\frac{d}{dx} \arctan(x) \).

 b) Let \(\theta = \arctan(x) \) so \(\tan(\theta) = x \). Draw a right triangle with vertices \(A, B, \) and \(C \) and angles \(\angle ABC = \pi/2 \) and \(\angle BAC = \theta \). If the length of the side \(AB \) is \(|AB| = 1 \), find the lengths \(|BC| \) and \(|AC| \) in terms of \(x \).

 c) Using the triangle you drew in (b), find \(\sec(\arctan(x)) \).

 d) Combine your answers for (c) and (a) to get \(\frac{d}{dx} \arctan(x) \).
4) Compute the following derivatives:

\[\frac{d}{dx} \arctan(e^x) \] \hspace{1cm} \frac{d}{dx} [e^x \arctan(x)]

\[\frac{d}{dx} \sin(\arctan(x)) \] \hspace{1cm} \frac{d}{dx} [\arctan(\arcsin(x^2))]

LECTURE BREAK: Logarithmic differentiation. Show the example \((x^x)’\)

5) Use logarithmic differentiation to find the derivative of each of the following functions:

(a) \(y = x^{\sin x} \) \hspace{1cm} (b) \(y = \frac{x^{\frac{3}{2}}}{(x+2)^5} \)

6) (a) We proved the power rule \((x^n)’ = nx^{n-1}\) for the case when \(n\) was a positive integer and in some other special cases. Now use logarithmic differentiation to show that the power rule \((x^r)’ = rx^{r-1}\) holds for any real constant \(r\).

(b) Use logarithmic differentiation to prove the product rule.

(c) Use logarithmic differentiation to prove the quotient rule.

LECTURE BREAK: Implicit differentiation; Show one or two examples.

7) For each of the following implicitly defined functions, find \(\frac{dy}{dx}\):

(a) \(y^4 - 3y^3 - x = 3 \) \hspace{1cm} (b) \(\cos(xy) = x - y \)

8) Consider the function implicitly defined by \(y^4 = x + y\).

(a) Find an expression for the derivative \(\frac{dy}{dx}\).

(b) Find the equation of the line tangent to this function at the point (0,1).

(c) Find where the tangent line is vertical.

Practice: (Don’t turn these in.) 3.3 # 43-53 odd, 65 – Inverse trig differentiation problems. 3.1 # 1-13odd, 19, 25, 27, 29*, 33* – Implicit diff problems.
Logarithmic Differentiation problems were recorded on the previous worksheet (in 3.2).